Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(6): 1246-1264, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38660801

RESUMO

BACKGROUND: Heterogeneity in the severity of cerebral cavernous malformations (CCMs) disease, including brain bleedings and thrombosis that cause neurological disabilities in patients, suggests that environmental, genetic, or biological factors act as disease modifiers. Still, the underlying mechanisms are not entirely understood. Here, we report that mild hypoxia accelerates CCM disease by promoting angiogenesis, neuroinflammation, and vascular thrombosis in the brains of CCM mouse models. METHODS: We used genetic studies, RNA sequencing, spatial transcriptome, micro-computed tomography, fluorescence-activated cell sorting, multiplex immunofluorescence, coculture studies, and imaging techniques to reveal that sustained mild hypoxia via the CX3CR1-CX3CL1 (CX3C motif chemokine receptor 1/chemokine [CX3C motif] ligand 1) signaling pathway influences cell-specific neuroinflammatory interactions, contributing to heterogeneity in CCM severity. RESULTS: Histological and expression profiles of CCM neurovascular lesions (Slco1c1-iCreERT2;Pdcd10fl/fl; Pdcd10BECKO) in male and female mice found that sustained mild hypoxia (12% O2, 7 days) accelerates CCM disease. Our findings indicate that a small reduction in oxygen levels can significantly increase angiogenesis, neuroinflammation, and thrombosis in CCM disease by enhancing the interactions between endothelium, astrocytes, and immune cells. Our study indicates that the interactions between CX3CR1 and CX3CL1 are crucial in the maturation of CCM lesions and propensity to CCM immunothrombosis. In particular, this pathway regulates the recruitment and activation of microglia and other immune cells in CCM lesions, which leads to lesion growth and thrombosis. We found that human CX3CR1 variants are linked to lower lesion burden in familial CCMs, proving it is a genetic modifier in human disease and a potential marker for aggressiveness. Moreover, monoclonal blocking antibody against CX3CL1 or reducing 1 copy of the Cx3cr1 gene significantly reduces hypoxia-induced CCM immunothrombosis. CONCLUSIONS: Our study reveals that interactions between CX3CR1 and CX3CL1 can modify CCM neuropathology when lesions are accelerated by environmental hypoxia. Moreover, a hypoxic environment or hypoxia signaling caused by CCM disease influences the balance between neuroinflammation and neuroprotection mediated by CX3CR1-CX3CL1 signaling. These results establish CX3CR1 as a genetic marker for patient stratification and a potential predictor of CCM aggressiveness.


Assuntos
Receptor 1 de Quimiocina CX3C , Quimiocina CX3CL1 , Modelos Animais de Doenças , Hemangioma Cavernoso do Sistema Nervoso Central , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Hemangioma Cavernoso do Sistema Nervoso Central/patologia , Hipóxia/metabolismo , Hipóxia/complicações , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Doenças Neuroinflamatórias/genética
2.
Mult Scler ; : 13524585241275491, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258406

RESUMO

BACKGROUND: It is unknown whether people with aquaporin-4 antibody positive (AQP4-IgG+) neuromyelitis optica spectrum disorder (NMOSD) experience a prodrome, although a few cases report AQP4 + serology up to 16 years before the first attack. OBJECTIVES: To evaluate whether individuals with AQP4-IgG + NMOSD have prodromal neurologic symptoms preceding the first attack. METHODS: We reviewed medical records of participants meeting the 2015 diagnostic criteria for AQP4-IgG + NMOSD from four demyelinating disease centres in the Canadian NMOSD cohort study CANOPTICS. We searched for neurologic symptoms occurring at least 30 days before the first attack. RESULTS: Of 116 participants with NMOSD, 17 (14.7%) had prodromal neurologic symptoms. The median age was 48 years (range 25-83) at first attack; 16 (94.1%) were female. Participants presented with numbness/tingling (n = 9), neuropathic pain (n = 5), visual disturbance (n = 4), tonic spasms (n = 2), Lhermitte sign (n = 2), severe headache (n = 2), incoordination (n = 2), weakness (n = 1), psychosis (n = 1) or seizure (n = 1). Of eight who underwent magnetic resonance imaging (MRI) brain, orbits and/or spinal cord, five had T2 lesions. Within 1.5-245 months (median 14) from the onset of prodromal neurologic symptoms, participants experienced their first NMOSD attack. CONCLUSIONS: One in seven people with NMOSD experienced neurologic symptoms before their first attack. Further investigation of a possible NMOSD prodrome is warranted.

3.
Mult Scler ; 30(3): 357-368, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38314479

RESUMO

BACKGROUND: Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) can cause optic neuritis, transverse myelitis, or acute disseminated encephalomyelitis (ADEM). Immunotherapy is often used for relapsing disease, but there is variability in treatment decisions. OBJECTIVE: The objective was to determine the annualized relapse rates (ARRs) and incidence rate ratios (IRRs) compared to pre-treatment and relapse-freedom probabilities among patients receiving steroids, B-cell depletion (BCD), intravenous immunoglobulin (IVIG), and mycophenolate mofetil (MMF). METHODS: Retrospective cohort study of patients with relapsing MOGAD treated at Mass General Brigham. ARRs and IRRs compared to pre-treatment, and relapse-freedom probability and odds ratio for relapse-freedom compared to prednisone were calculated. RESULTS: A total of 88 patients met the inclusion criteria. The ARR on IVIG was 0.13 (95% confidence interval (CI) = 0.06-0.27) and the relapse-freedom probability after at least 6 months of therapy was 72%. The ARR on BCD was 0.51 (95% CI = 0.34-0.77), and the relapse-freedom probability was 33%. The ARR on MMF was 0.32 (95% CI = 0.19-0.53) and the relapse-freedom probability was 49%. In pediatric-onset disease, MMF had the lowest ARRs (0.15, 95% CI = 0.07-0.33). CONCLUSION: IVIG had the lowest ARRs and IRRs compared to pre-treatment and the highest relapse-freedom odds ratio compared to prednisone, while BCD had the lowest. In pediatric-onset MOGAD, MMF had the lowest ARRs.


Assuntos
Autoanticorpos , Imunoglobulinas Intravenosas , Humanos , Criança , Glicoproteína Mielina-Oligodendrócito , Estudos Retrospectivos , Prednisona , Recidiva Local de Neoplasia , Ácido Micofenólico , Imunoterapia , Recidiva
4.
Epilepsia ; 65(6): 1491-1511, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38687769

RESUMO

Genome-scale biological studies conducted in the post-genomic era have revealed that two-thirds of human genes do not encode proteins. Most functional non-coding RNA transcripts in humans are products of long non-coding RNA (lncRNA) genes, an abundant but still poorly understood class of human genes. As a result of their fundamental and multitasking regulatory roles, lncRNAs are associated with a wide range of human diseases, including neurological disorders. Approximately 40% of lncRNAs are specifically expressed in the brain, and many of them exhibit distinct spatiotemporal patterns of expression. Comparative genomics approaches have determined that 65%-75% of human lncRNA genes are primate-specific and hence can be posited as a contributing potential cause of the higher-order complexity of primates, including human, brains relative to those of other mammals. Although lncRNAs present important mechanistic examples of epileptogenic functions, the human/primate specificity of lncRNAs questions their relevance in rodent models. Here, we present an in-depth review that supports the contention that human lncRNAs are direct contributors to the etiology and pathogenesis of human epilepsy, as a means to accelerate the integration of lncRNAs into clinical practice as potential diagnostic biomarkers and therapeutic targets. Meta-analytically, the major finding of our review is the commonality of lncRNAs in epilepsy and cancer pathogenesis through mitogen-activated protein kinase (MAPK)-related pathways. In addition, neuroinflammation may be a relevant part of the common pathophysiology of cancer and epilepsy. LncRNAs affect neuroinflammation-related signaling pathways such as nuclear factor kappa- light- chain- enhancer of activated B cells (NF-κB), Notch, and phosphatidylinositol 3- kinase/ protein kinase B (Akt) (PI3K/AKT), with the NF-κB pathway being the most common. Besides the controversy over lncRNA research in non-primate models, whether neuroinflammation is triggered by injury and/or central nervous system (CNS) toxicity during epilepsy modeling in animals or is a direct consequence of epilepsy pathophysiology needs to be considered meticulously in future studies.


Assuntos
Epilepsia , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Epilepsia/genética , Animais , Encéfalo/metabolismo
5.
Curr Neurol Neurosci Rep ; 24(10): 479-494, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39259430

RESUMO

PURPOSE OF REVIEW: B-cell depletion therapy, including anti-CD20 and anti-CD19 therapies, is increasingly used for a variety of autoimmune and conditions, including those affecting the central nervous system. However, B-cell depletion therapy use can be complicated by adverse effects associated with administration and immunosuppression. This review aims to summarize the application of anti-CD20 and anti-CD19 therapies for the pediatric neurologist and neuroimmunologist. RECENT FINDINGS: Most existing literature come from clinical trials with adult patients, although more recent studies are now capturing the effects of these therapies in children. The most common side effects include infusion related reactions and increased infection risk from immunosuppression. Several strategies can mitigate infusion related reactions. Increased infections due to persistent hypogammaglobulinemia can benefit from replacement immunoglobulin. B-cell depletion therapies can be safe and effective in pediatric patients. Anticipation and mitigation of common adverse effects through primary prevention strategies, close monitoring, and appropriate symptomatic management can improve safety and tolerability.


Assuntos
Linfócitos B , Doenças Neuroinflamatórias , Humanos , Linfócitos B/imunologia , Criança , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/terapia , Depleção Linfocítica/métodos , Antígenos CD19/imunologia , Rituximab/uso terapêutico , Rituximab/efeitos adversos , Antígenos CD20/imunologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-39317977

RESUMO

AIM: Neuroinflammation is an important causal factor for a variety of psychiatric disorders. We previously reported increased cerebrospinal fluid interleukin-6 levels in patients with schizophrenia and major depressive disorder. The present study aimed to examine the possible association of interleukin-6 levels with anxiety and frustration, negative valence symptoms shared in various psychiatric disorders. METHODS: We included 129 patients with psychiatric disorders and 70 controls. CSF and plasma interleukin-6 levels were measured by immunoassay kits, and psychological symptoms were assessed with the State-Trait Anxiety Inventory, and the Basic Psychological Need Satisfaction and Frustration Scale. To examine regional cerebral blood flow, patients underwent arterial spin labeling analysis using magnetic resonance imaging. RESULTS: Cerebrospinal fluid interleukin-6 levels were significantly correlated with State-Trait Anxiety Inventory-trait anxiety (r = 0.25, P = 0.046) and Basic Psychological Need Satisfaction and Frustration Scale-autonomy frustration scores (r = 0.29, P = 0.018). Patients with abnormally high cerebrospinal fluid interleukin-6 levels (defined >97.5 percentile of the controls) had higher scores for trait anxiety (P = 0.035) and autonomy frustration (P = 0.026), and significantly increased regional cerebral blood flow in the left superior temporal gyrus, bilateral nucleus accumbens, and cerebellum than the remaining patients. CONCLUSION: Patients with elevated cerebrospinal fluid interleukin-6 constitute a subpopulation of psychiatric disorders associated with anxiety and autonomy frustration, which may be related to altered functions in specific brain areas.

7.
Phytother Res ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39267167

RESUMO

Long-term inflammation can cause chronic pain and trigger patients' anxiety by sensitizing the central nervous system. However, effective drugs with few side effects for treating chronic pain-induced anxiety are still lacking. The anxiolytic and anti-inflammatory effects of ruscogenin (RUS), an important active compound in Ophiopogon japonicus, were evaluated in a mouse model of chronic inflammatory pain and N9 cells. RUS (5, 10, or 20 mg/kg/day, i.g.) was administered once daily for 7 days after CFA injection; pain- and anxiety-like behaviors were assessed in mice. Anti-inflammatory effect of RUS (0.1, 1, 10 µM) on N9 microglia after LPS treatment was evaluated. Inflammatory markers (TNF-α, IL-1ß, IL-6, CD86, IL-4, ARG-1, and CD206) were measured using qPCR. The levels of IBA1, ROS, NF-κB, TLR4, P-IKK, P-IκBα, and P65, MAPKs (ERK, JNK, and P38), NLRP3 (caspase-1, ASC, and NLRP3) were detected by Western blotting or immunofluorescence staining. The potential target of RUS was validated by molecular docking and adeno-associated virus injection. Mice in CFA group exhibited allodynia and anxiety-like behaviors. LPS induced neuroinflammation in N9 cells. Both CFA and LPS increased the levels of IBA1, ROS, and inflammatory markers. RUS (10 mg/kg in vivo and 1 µM in vitro) alleviated these alterations through NF-κB/MAPKs/NLRP3 signaling pathways but had no effect on pain hypersensitivity. TLR4 strongly interacted with RUS, and TLR4 overexpression abolished the effects of RUS on anxiety and neuroinflammation. RUS exerts anti-inflammatory and anxiolytic effects via TLR4-mediated NF-κB/MAPKs/NLRP3 signaling pathways, which provides a basis for the treatment of chronic pain-induced anxiety.

8.
Stroke ; 54(3): e52-e57, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36727508

RESUMO

BACKGROUND: Neuroinflammation is ubiquitous in acute stroke and worsens outcome. However, the precise timing of the inflammatory response is unknown, hindering the design of acute anti-inflammatory therapeutic interventions. We sought to identify the onset of the neuroinflammatory cascade using a mobile stroke unit. METHODS: The study is a proof-of-concept, cohort investigation of ultra-early blood- and extracellular vesicle-derived markers of neuroinflammation and outcome in acute stroke. Blood was obtained, prehospital, on an mobile stroke unit. Outcomes were biomarker concentrations, modified Rankin Scale score, and National Institutes of Health Stroke Scale score. RESULTS: Forty-one adults were analyzed, including 15 patients treated on the mobile stroke unit between August 2021 and April 2022, and 26 healthy controls to establish biomarker reference levels. Median patient age was 74 (range, 36-97) years, 60% were female, and 80% White. Ten (67%) were diagnosed as stroke, with 8 (53%) confirmed and 2 likely transient ischemic attack or stroke averted by thrombolysis; 5 were stroke mimics. For strokes, median initial National Institutes of Health Stroke Scale score was 11 (range, 4-19) and 6 (75%) received tPA (tissue-type plasminogen activator). Blood was obtained a median of 58 (range, 36-133) minutes after symptom onset. Within 36 minutes after stroke, plasma IL-6 (interleukin-6), neurofilament light chain, UCH-L1 (ubiquitin C-terminal hydrolase L1), and GFAP (glial fibrillary acidic protein) were elevated by as much as 10 times normal. In EVs, MMP-9 (matrix metalloproteinase-9), CXCL4 (chemokine (C-X-C motif) ligand 4), CRP (C-reactive protein), IL-6, OPN (osteopontin), and PECAM1 (platelet and endothelial cell adhesion molecule 1) were elevated. Inflammatory markers increased rapidly in the first 2 hours and continued rising for 24 hours. CONCLUSIONS: The neuroinflammatory cascade was found to be activated within 36 to 133 minutes after stroke and progresses rapidly. This is earlier than observed previously in humans and suggests injury from neuroinflammation occurs faster than had been surmised. These findings could inform development of acute immunomodulatory stroke therapies and lead to new diagnostic tools and improved outcomes.


Assuntos
Isquemia Encefálica , Ataque Isquêmico Transitório , Acidente Vascular Cerebral , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Encefálica/tratamento farmacológico , Interleucina-6 , Ataque Isquêmico Transitório/tratamento farmacológico , Doenças Neuroinflamatórias , Acidente Vascular Cerebral/terapia , Ativador de Plasminogênio Tecidual/uso terapêutico , Resultado do Tratamento
9.
Biol Chem ; 404(4): 303-310, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36453998

RESUMO

It is known that the thalamus plays an important role in pathological brain conditions involved in demyelinating, inflammatory and neurodegenerative diseases such as Multiple Sclerosis (MS). Beside immune cells and cytokines, ion channels were found to be key players in neuroinflammation. MS is a prototypical example of an autoimmune disease of the central nervous system that is classified as a channelopathy where abnormal ion channel function leads to symptoms and clinical signs. Here we review the influence of the cytokine-ion channel interaction in the thalamocortical system in demyelination and inflammation.


Assuntos
Esclerose Múltipla , Humanos , Esclerose Múltipla/patologia , Encéfalo/patologia , Inflamação , Canais Iônicos , Citocinas
10.
Mult Scler ; 29(4-5): 595-605, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36840605

RESUMO

BACKGROUND: Reports suggest a potential association between coronavirus disease 2019 (COVID-19) vaccines and acute central nervous system (CNS) inflammation. OBJECTIVE: The main objective of this study is to describe features of acute CNS inflammation following COVID-19 vaccination. METHODS: A retrospective observational cohort study was performed at the BARLO MS Centre in Toronto, Canada. Clinicians reported acute CNS inflammatory events within 60 days after a COVID-19 vaccine from March 2021 to August 2022. Clinical characteristics were evaluated. RESULTS: Thirty-eight patients (median age 39 (range: 20-82) years; 60.5% female) presented within 0-55 (median 15) days of a receiving a COVID-19 vaccine and were diagnosed with relapsing remitting multiple sclerosis (MS) (n = 16), post-vaccine transverse myelitis (n = 7), clinically isolated syndrome (n = 5), MS relapse (n = 4), tumefactive demyelination (n = 2), myelin oligodendrocyte glycoprotein antibody disease (n = 1), neuromyelitis optica spectrum disorder (n = 1), chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (n = 1) and primary autoimmune cerebellar ataxia (n = 1). Twenty-two received acute treatment and 21 started disease-modifying therapy. Sixteen received subsequent COVID-19 vaccination, of which 87.5% had no new or worsening neurological symptoms. CONCLUSION: To our knowledge, this is the largest study describing acute CNS inflammation after COVID-19 vaccination. We could not determine whether the number of inflammatory events was higher than expected.


Assuntos
COVID-19 , Neuromielite Óptica , Feminino , Humanos , Masculino , Vacinas contra COVID-19/efeitos adversos , Estudos Retrospectivos , COVID-19/prevenção & controle , Recidiva Local de Neoplasia , Sistema Nervoso Central , Estudos de Coortes , Inflamação/etiologia , Vacinação/efeitos adversos , Glicoproteína Mielina-Oligodendrócito
11.
Eur J Neurol ; 30(6): 1801-1814, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36815561

RESUMO

BACKGROUND AND PURPOSE: Kelchlike protein 11 antibodies (KLHL11-IgGs) were first described in 2019 as a marker of paraneoplastic neurological syndromes (PNSs). They have mostly been associated with testicular germ cell tumors (tGCTs). METHODS: Two patients with KLHL11-IgG encephalitis are reported, and the literature is comprehensively reviewed. RESULTS: Patient 1 had been in remission from a tGCT 10 years prior. He developed episodic vertigo and diplopia progressing over a few days. Treatment with corticosteroids (CSs) was started a few days after symptom onset. Patient 2 had transient diplopia, which resolved spontaneously. Visual problems persisted for 7 months, when he additionally developed a progressive cerebellar syndrome. One year after onset, CS treatment was started. Initial magnetic resonance imaging was unremarkable in both patients, but analysis of cerebrospinal fluid (CSF) revealed chronic inflammation. KLHL11-IgG was positive in both patients (Patient 1 only in CSF, Patient 2 in serum). Neoplastic screening has so far not revealed any signs of active underlying malignancy. We found 15 publications of 112 patients in total with KLHL11-IgG encephalitis. Most patients (n = 82) had a cerebellar syndrome with or without signs of rhombencephalitis. The most common symptoms were ataxia (n = 82) and vertigo (n = 47), followed by oculomotor disturbances (n = 35) and hearing disorders (n = 31). Eighty of 84 patients had a GCT as an underlying tumor. CONCLUSIONS: Our cases demonstrate classical symptoms of KLHL11-IgG encephalitis. Early diagnosis and therapy are imperative. As with other PNSs, clinical awareness is needed and further studies are required especially in regard to therapeutic management.


Assuntos
Doenças Cerebelares , Encefalite , Masculino , Humanos , Diplopia , Imunoglobulina G , Vertigem , Autoanticorpos/análise
12.
Alzheimers Dement ; 19(1): 261-273, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35357079

RESUMO

HYPOTHESIS: We hypothesized that Lomecel-B, an allogeneic medicinal signaling cell (MSC) therapeutic candidate for Alzheimer's disease (AD), is safe and potentially disease-modifying via pleiotropic mechanisms of action. KEY PREDICTIONS: We prospectively tested the predictions that Lomecel-B administration to mild AD patients is safe (primary endpoint) and would provide multiple exploratory indications of potential efficacy in clinical and biomarker domains (prespecified secondary/exploratory endpoints). STRATEGY AND KEY RESULTS: Mild AD patient received a single infusion of low- or high-dose Lomecel-B, or placebo, in a double-blind, randomized, phase I trial. The primary safety endpoint was met. Fluid-based and imaging biomarkers indicated significant improvement in the Lomecel-B arms versus placebo. The low-dose Lomecel-B arm showed significant improvements versus placebo on neurocognitive and other assessments. INTERPRETATION: Our results support the safety of Lomecel-B for AD, suggest clinical potential, and provide mechanistic insights. This early-stage study provides important exploratory information for larger efficacy-powered clinical trials.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Resultado do Tratamento , Método Duplo-Cego , Biomarcadores
13.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629117

RESUMO

Anti-glycolipid antibodies have been reported to play pathogenic roles in peripheral inflammatory neuropathies, such as Guillain-Barré syndrome. On the other hand, the role in multiple sclerosis (MS), inflammatory demyelinating disease in the central nervous system (CNS), is largely unknown, although the presence of anti-glycolipid antibodies was reported to differ among MS patients with relapsing-remitting (RR), primary progressive (PP), and secondary progressive (SP) disease courses. We investigated whether the induction of anti-glycolipid antibodies could differ among experimental MS models with distinct clinical courses, depending on induction methods. Using three mouse strains, SJL/J, C57BL/6, and A.SW mice, we induced five distinct experimental autoimmune encephalomyelitis (EAE) models with myelin oligodendrocyte glycoprotein (MOG)35-55, MOG92-106, or myelin proteolipid protein (PLP)139-151, with or without an additional adjuvant curdlan injection. We also induced a viral model of MS, using Theiler's murine encephalomyelitis virus (TMEV). Each MS model had an RR, SP, PP, hyperacute, or chronic clinical course. Using the sera from the MS models, we quantified antibodies against 11 glycolipids: GM1, GM2, GM3, GM4, GD3, galactocerebroside, GD1a, GD1b, GT1b, GQ1b, and sulfatide. Among the MS models, we detected significant increases in four anti-glycolipid antibodies, GM1, GM3, GM4, and sulfatide, in PLP139-151-induced EAE with an RR disease course. We also tested cellular immune responses to the glycolipids and found CD1d-independent lymphoproliferative responses only to sulfatide with decreased interleukin (IL)-10 production. Although these results implied that anti-glycolipid antibodies might play a role in remissions or relapses in RR-EAE, their functional roles need to be determined by mechanistic experiments, such as injections of monoclonal anti-glycolipid antibodies.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Theilovirus , Animais , Camundongos , Camundongos Endogâmicos C57BL , Sulfoglicoesfingolipídeos , Recidiva Local de Neoplasia , Anticorpos , Glicoproteína Mielina-Oligodendrócito , Glicolipídeos
14.
Medicina (Kaunas) ; 59(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37893449

RESUMO

Background and Objectives: Milk is healthy and includes several vital nutrients and microbiomes. Probiotics in milk and their derivatives modulate the immune system, fight inflammation, and protect against numerous diseases. The present study aimed to isolate novel bacterial species with probiotic potential for neuroinflammation. Materials and Methods: Six milk samples were collected from lactating dairy cows. Bacterial isolates were obtained using standard methods and were evaluated based on probiotic characteristics such as the catalase test, hemolysis, acid/bile tolerance, cell adhesion, and hydrophobicity, as well as in vitro screening. Results: Nine morphologically diverse bacterial isolates were found in six different types of cow's milk. Among the isolates, PO3 displayed probiotic characteristics. PO3 was a Gram-positive rod cell that grew in an acidic (pH-2) salty medium containing bile salt and salinity (8% NaCl). PO3 also exhibited substantial hydrophobicity and cell adhesion. The sequencing comparison of the 16S rRNA genes revealed that PO3 was Lactococcus raffinolactis with a similarity score of 99.3%. Furthermore, PO3 was assessed for its neuroanti-inflammatory activity on human oligodendrocyte (HOG) cell lines using four different neuroimmune markers: signal transducer and activator of transcription (STAT-3), myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and GLAC in HOG cell lines induced by MOG. Unlike the rest of the evaluated neuroimmune markers, STAT-3 levels were elevated in the MOG-treated HOG cell lines compared to the untreated ones. The expression level of STAT-3 was attenuated in both PO3-MOG-treated and only PO3-treated cell lines. On the contrary, in PO3-treated cell lines, MBP, GFAP, and GLAC were significantly expressed at higher levels when compared with the MOG-treated cell lines. Conclusions: The findings reported in this article are to be used as a foundation for further in vivo research in order to pave the way for the possible use of probiotics in the treatment of neuroinflammatory diseases, including multiple sclerosis.


Assuntos
Lactação , Probióticos , Animais , Bovinos , Feminino , Humanos , RNA Ribossômico 16S/genética , Probióticos/uso terapêutico , Oligodendroglia , Bactérias , Lactococcus/genética
15.
Stroke ; 53(5): 1473-1486, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35387495

RESUMO

Maintaining blood-brain barrier (BBB) integrity is crucial for the homeostasis of the central nervous system. Structurally comprising the BBB, brain endothelial cells interact with pericytes, astrocytes, neurons, microglia, and perivascular macrophages in the neurovascular unit. Brain ischemia unleashes a profound neuroinflammatory response to remove the damaged tissue and prepare the brain for repair. However, the intense neuroinflammation occurring during the acute phase of stroke is associated with BBB breakdown, neuronal injury, and worse neurological outcomes. Here, we critically discuss the role of neuroinflammation in ischemic stroke pathology, focusing on the BBB and the interactions between central nervous system and peripheral immune responses. We highlight inflammation-driven injury mechanisms in stroke, including oxidative stress, increased MMP (matrix metalloproteinase) production, microglial activation, and infiltration of peripheral immune cells into the ischemic tissue. We provide an updated overview of imaging techniques for in vivo detection of BBB permeability, leukocyte infiltration, microglial activation, and upregulation of cell adhesion molecules following ischemic brain injury. We discuss the possibility of clinical implementation of imaging modalities to assess stroke-associated neuroinflammation with the potential to provide image-guided diagnosis and treatment. We summarize the results from several clinical studies evaluating the efficacy of anti-inflammatory interventions in stroke. Although convincing preclinical evidence suggests that neuroinflammation is a promising target for ischemic stroke, thus far, translating these results into the clinical setting has proved difficult. Due to the dual role of inflammation in the progression of ischemic damage, more research is needed to mechanistically understand when the neuroinflammatory response begins the transition from injury to repair. This could have important implications for ischemic stroke treatment by informing time- and context-specific therapeutic interventions.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Humanos , Inflamação/patologia , Doenças Neuroinflamatórias , Acidente Vascular Cerebral/metabolismo
16.
Stroke ; 53(5): 1449-1459, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35468002

RESUMO

In both acute and chronic diseases, functional differences in host immune responses arise from a multitude of intrinsic and extrinsic factors. Two of the most important factors affecting the immune response are biological sex and aging. Ischemic stroke is a debilitating disease that predominately affects older individuals. Epidemiological studies have shown that older women have poorer functional outcomes compared with men, in part due to the older age at which they experience their first stroke and the increased comorbidities seen with aging. The immune response also differs in men and women, which could lead to altered inflammatory events that contribute to sex differences in poststroke recovery. Intrinsic factors including host genetics and chromosomal sex play a crucial role both in shaping the host immune system and in the neuroimmune response to brain injury. Ischemic stroke leads to altered intracellular communication between astrocytes, neurons, and resident immune cells in the central nervous system. Increased production of cytokines and chemokines orchestrate the infiltration of peripheral immune cells and promote neuroinflammation. To maintain immunosurveillance, the host immune and central nervous system are highly regulated by a diverse population of immune cells which are strategically distributed within the neurovascular unit and become activated with injury. In this review, we provide a comprehensive overview of sex-specific host immune responses in ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Idoso , Sistema Nervoso Central , Citocinas , Feminino , Humanos , Imunidade , Masculino
17.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805923

RESUMO

Electroconvulsive therapy (ECT) is based on conducting an electrical current through the brain to stimulate it and trigger generalized convulsion activity with therapeutic ends. Due to the efficient use of ECT during the last years, interest in the molecular bases involved in its mechanism of action has increased. Therefore, different hypotheses have emerged. In this context, the goal of this review is to describe the neurobiological, endocrine, and immune mechanisms involved in ECT and to detail its clinical efficacy in different psychiatric pathologies. This is a narrative review in which an extensive literature search was performed on the Scopus, Embase, PubMed, ISI Web of Science, and Google Scholar databases from inception to February 2022. The terms "electroconvulsive therapy", "neurobiological effects of electroconvulsive therapy", "molecular mechanisms in electroconvulsive therapy", and "psychiatric disorders" were among the keywords used in the search. The mechanisms of action of ECT include neurobiological function modifications and endocrine and immune changes that take place after ECT. Among these, the decrease in neural network hyperconnectivity, neuroinflammation reduction, neurogenesis promotion, modulation of different monoaminergic systems, and hypothalamus-hypophysis-adrenal and hypothalamus-hypophysis-thyroid axes normalization have been described. The majority of these elements are physiopathological components and therapeutic targets in different mental illnesses. Likewise, the use of ECT has recently expanded, with evidence of its use for other pathologies, such as Parkinson's disease psychosis, malignant neuroleptic syndrome, post-traumatic stress disorder, and obsessive-compulsive disorder. In conclusion, there is sufficient evidence to support the efficacy of ECT in the treatment of different psychiatric disorders, potentially through immune, endocrine, and neurobiological systems.


Assuntos
Eletroconvulsoterapia , Transtorno Obsessivo-Compulsivo , Transtornos Psicóticos , Humanos , Sistemas Neurossecretores , Transtornos Psicóticos/psicologia , Resultado do Tratamento
18.
Wien Med Wochenschr ; 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472724

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) represents a rare neuroimmunological disease causing recurrent attacks and accumulation of permanent disability in affected patients. The discovery of the pathogenic IgG­1 antibody targeting a water channel expressed in astrocytes, aquaporin 4, constitutes a milestone achievement. Subsequently, multiple pathophysiological aspects of this distinct disease entity have been investigated. Demyelinating lesions and axonal damage ensue from autoantibodies targeting an astroglial epitope. This conundrum has been addressed in the current disease model, where activation of the complement system as well as B cells and interleukin 6 (IL-6) emerged as key contributors. It is the aim of this review to address these factors in light of novel treatment compounds which reflect these pathophysiological concepts in aiming for attack prevention, thus reducing disease burden in patients with NMOSD.

19.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922780

RESUMO

Different psychopathological manifestations, such as affective, psychotic, obsessive-compulsive symptoms, and impulse control disturbances, may occur in most central nervous system (CNS) disorders including neurodegenerative and neuroinflammatory diseases. Psychiatric symptoms often represent the clinical onset of such disorders, thus potentially leading to misdiagnosis, delay in treatment, and a worse outcome. In this review, psychiatric symptoms observed along the course of several neurological diseases, namely Alzheimer's disease, fronto-temporal dementia, Parkinson's disease, Huntington's disease, and multiple sclerosis, are discussed, as well as the involved brain circuits and molecular/synaptic alterations. Special attention has been paid to the emerging role of fluid biomarkers in early detection of these neurodegenerative diseases. The frequent occurrence of psychiatric symptoms in neurological diseases, even as the first clinical manifestations, should prompt neurologists and psychiatrists to share a common clinico-biological background and a coordinated diagnostic approach.


Assuntos
Doenças do Sistema Nervoso Central/complicações , Transtornos Psicóticos/diagnóstico , Diagnóstico Diferencial , Diagnóstico Precoce , Humanos , Transtornos Psicóticos/etiologia , Transtornos Psicóticos/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA