Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Cell ; 186(1): 162-177.e18, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608651

RESUMO

The cortex influences movement by widespread top-down projections to many nervous system regions. Skilled forelimb movements require brainstem circuitry in the medulla; however, the logic of cortical interactions with these neurons remains unexplored. Here, we reveal a fine-grained anatomical and functional map between anterior cortex (AC) and medulla in mice. Distinct cortical regions generate three-dimensional synaptic columns tiling the lateral medulla, topographically matching the dorso-ventral positions of postsynaptic neurons tuned to distinct forelimb action phases. Although medial AC (MAC) terminates ventrally and connects to forelimb-reaching-tuned neurons and its silencing impairs reaching, lateral AC (LAC) influences dorsally positioned neurons tuned to food handling, and its silencing impairs handling. Cortico-medullary neurons also extend collaterals to other subcortical structures through a segregated channel interaction logic. Our findings reveal a precise alignment between cortical location, its function, and specific forelimb-action-tuned medulla neurons, thereby clarifying interaction principles between these two key structures and beyond.


Assuntos
Movimento , Neurônios , Camundongos , Animais , Movimento/fisiologia , Neurônios/fisiologia , Membro Anterior/fisiologia , Tronco Encefálico
2.
Annu Rev Genet ; 56: 391-422, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36055969

RESUMO

Recent advances in genomics have revealed a wide spectrum of genetic variants associated with neurodevelopmental disorders at an unprecedented scale. An increasing number of studies have consistently identified mutations-both inherited and de novo-impacting the function of specific brain circuits. This suggests that, during brain development, alterations in distinct neural circuits, cell types, or broad regulatory pathways ultimately shaping synapses might be a dysfunctional process underlying these disorders. Here, we review findings from human studies and animal model research to provide a comprehensive description of synaptic and circuit mechanisms implicated in neurodevelopmental disorders. We discuss how specific synaptic connections might be commonly disrupted in different disorders and the alterations in cognition and behaviors emerging from imbalances in neuronal circuits. Moreover, we review new approaches that have been shown to restore or mitigate dysfunctional processes during specific critical windows of brain development. Considering the heterogeneity of neurodevelopmental disorders, we also highlight the recent progress in developing improved clinical biomarkers and strategies that will help to identify novel therapeutic compounds and opportunities for early intervention.


Assuntos
Transtornos do Neurodesenvolvimento , Animais , Humanos , Transtornos do Neurodesenvolvimento/genética , Modelos Animais de Doenças , Genômica , Mutação , Sinapses/genética
3.
Annu Rev Cell Dev Biol ; 30: 417-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25150010

RESUMO

Precise connectivity in neuronal circuits is a prerequisite for proper brain function. The dauntingly complex environment encountered by axons and dendrites, even after navigation to their target area, prompts the question of how specificity of synaptic connections arises during development. We review developmental strategies and molecular mechanisms that are used by neurons to ensure their precise matching of pre- and postsynaptic elements. The emerging theme is that each circuit uses a combination of simple mechanisms to achieve its refined, often complex connectivity pattern. At increasing levels of resolution, from lamina choice to subcellular targeting, similar signaling concepts are reemployed to narrow the choice of potential matches. Temporal control over synapse development and synapse elimination further ensures the specificity of connections in the nervous system.


Assuntos
Sinapses/fisiologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/fisiologia , Adesão Celular , Moléculas de Adesão Celular Neuronais/metabolismo , Drosophila melanogaster/fisiologia , Proteínas do Olho/metabolismo , Cones de Crescimento/fisiologia , Humanos , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Neurônios/ultraestrutura , Células Fotorreceptoras de Invertebrados/fisiologia , Células Fotorreceptoras de Invertebrados/ultraestrutura , Retina/citologia , Transmissão Sináptica , Fatores de Tempo
4.
J Neurophysiol ; 131(6): 1226-1239, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691531

RESUMO

Mitral/tufted cells (M/TCs) form complex local circuits with interneurons in the olfactory bulb and are powerfully inhibited by these interneurons. The horizontal limb of the diagonal band of Broca (HDB), the only GABAergic/inhibitory source of centrifugal circuit with the olfactory bulb, is known to target olfactory bulb interneurons, and we have shown targeting also to olfactory bulb glutamatergic neurons in vitro. However, the net efficacy of these circuits under different patterns of activation in vivo and the relative balance between the various targeted intact local and centrifugal circuits was the focus of this study. Here channelrhodopsin-2 (ChR2) was expressed in HDB GABAergic neurons to investigate the short-term plasticity of HDB-activated disinhibitory rebound excitation of M/TCs. Optical activation of HDB interneurons increased spontaneous M/TC firing without odor presentation and increased odor-evoked M/TC firing. HDB activation induced disinhibitory rebound excitation (burst or cluster of spiking) in all classes of M/TCs. This excitation was frequency dependent, with short-term facilitation only at higher HDB stimulation frequency (5 Hz and above). However, frequency-dependent HDB regulation was more potent in the deeper layer M/TCs compared with more superficial layer M/TCs. In all neural circuits the balance between inhibition and excitation in local and centrifugal circuits plays a critical functional role, and this patterned input-dependent regulation of inhibitory centrifugal inputs to the olfactory bulb may help maintain the precise balance across the populations of output neurons in different environmental odors, putatively to sharpen the enhancement of tuning specificity of individual or classes of M/TCs to odors.NEW & NOTEWORTHY Neuronal local circuits in the olfactory bulb are modulated by centrifugal long circuits. In vivo study here shows that inhibitory horizontal limb of the diagonal band of Broca (HDB) modulates all five types of mitral/tufted cells (M/TCs), by direct inhibitory circuits HDB → M/TCs and indirect disinhibitory long circuits HDB → interneurons → M/TCs. The HDB net effect exerts excitation in all types of M/TCs but more powerful in deeper layer output neurons as HDB activation frequency increases, which may sharpen the tuning specificity of classes of M/TCs to odors during sensory processing.


Assuntos
Interneurônios , Bulbo Olfatório , Bulbo Olfatório/fisiologia , Bulbo Olfatório/citologia , Animais , Interneurônios/fisiologia , Camundongos , Neurônios GABAérgicos/fisiologia , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Masculino , Camundongos Endogâmicos C57BL , Potenciais de Ação/fisiologia , Inibição Neural/fisiologia , Feminino , Optogenética
5.
Neurobiol Dis ; 191: 106392, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145853

RESUMO

Having experienced stress during sensitive periods of brain development strongly influences how individuals cope with later stress. Some are prone to develop anxiety or depression, while others appear resilient. The as-yet-unknown mechanisms underlying these differences may lie in how genes and environmental stress interact to shape the circuits that control emotions. Here, we investigated the role of the habenulo-interpeduncular system (HIPS), a critical node in reward circuits, in early stress-induced anxiety in mice. We found that habenular and IPN components characterized by the expression of Otx2 are synaptically connected and particularly sensitive to chronic stress (CS) during the peripubertal period. Stress-induced peripubertal activation of this HIPS subcircuit elicits both HIPS hypersensitivity to later stress and susceptibility to develop anxiety. We also show that HIPS silencing through conditional Otx2 knockout counteracts these effects of stress. Together, these results demonstrate that a genetic factor, Otx2, and stress interact during the peripubertal period to shape the stress sensitivity of the HIPS, which is shown to be a key modulator of susceptibility or resilience to develop anxiety.


Assuntos
Habenula , Resiliência Psicológica , Camundongos , Animais , Transtornos de Ansiedade/metabolismo , Emoções , Habenula/metabolismo , Ansiedade
6.
J Neurosci ; 42(10): 1958-1973, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35046121

RESUMO

The superficial dorsal horn (SDH) of the spinal cord represents the first site of integration between innocuous and noxious somatosensory stimuli. According to gate control theory, diverse populations of excitatory and inhibitory interneurons within the SDH are activated by distinct sensory afferents, and their interplay determines the net nociceptive output projecting to higher pain centers. Although specific SDH cell types are ill defined, numerous classifications schemes find that excitatory and inhibitory neurons fundamentally differ in their morphology, electrophysiology, neuropeptides, and pain-associated plasticity; yet little is known about how these neurons respond over a range of natural innocuous and noxious stimuli. To address this question, we applied an in vivo imaging approach in male mice where the genetically encoded calcium indicator GCaMP6s was expressed either in vGluT2-positive excitatory or vIAAT-positive inhibitory neurons. We found that inhibitory neurons were markedly more sensitive to innocuous touch than excitatory neurons but still responded dynamically over a wide range of noxious mechanical stimuli. Inhibitory neurons were also less sensitive to thermal stimuli than their excitatory counterparts. In a capsaicin model of acute pain sensitization, the responses of excitatory neurons were significantly potentiated to innocuous and noxious mechanical stimuli, whereas inhibitory neural responses were only depressed to noxious stimuli. These in vivo findings show that excitatory and inhibitory SDH neurons diverge considerably in their somatosensory responses and plasticity, as postulated by gate control theory.SIGNIFICANCE STATEMENT Gate control theory posits that opposing spinal excitatory and inhibitory neurons, differently tuned across somatosensory modalities, determine the net nociceptive output to higher pain centers. Little is known about how natural stimuli activate these two neural populations. This study applied an in vivo calcium imaging approach to genetically target these neurons and contrast their responses over a range of innocuous and noxious mechanical and thermal stimuli. Compared with excitatory neurons, we found that inhibitory neurons are more sensitive to innocuous touch and far less sensitive to thermal stimuli. An acute model of pain also revealed that these subtypes undergo divergent mechanosensory plasticity. Our data provide important and novel insights for gate-control inspired models of pain processing.


Assuntos
Cálcio , Corno Dorsal da Medula Espinal , Animais , Cálcio/metabolismo , Masculino , Camundongos , Neurônios/fisiologia , Dor/metabolismo , Células do Corno Posterior/metabolismo , Medula Espinal/fisiologia
7.
J Neurophysiol ; 129(6): 1515-1533, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37222431

RESUMO

Mitral/tufted cells (M/TCs), the principal output neuron classes form complex circuits with bulbar neurons and long-range centrifugal circuits with higher processing areas such as the horizontal limb of the diagonal band of Broca (HDB). The precise excitability of output neurons is sculpted by local inhibitory circuits. Here, light-gated cation channel channelrhodopsin-2 (ChR2) was expressed in HDB GABAergic neurons to investigate the short-term plasticity of evoked postsynaptic currents/potentials of HDB input to all classes of M/TCs and effects on firing in the acute slice preparation. Activation of the HDB directly inhibited all classes of output neurons exhibiting frequency-dependent short-term depression of evoked inhibitory postsynaptic current (eIPSC)/potential (eIPSP), resulting in decreased inhibition of responses to olfactory nerve input as a function of input frequency. In contrast, activation of an indirect circuit of HDB→interneurons→M/TCs induced frequency-dependent disinhibition, resulting in short-term facilitation of evoked excitatory postsynaptic current (eEPSC) eliciting a burst or cluster of spiking in M/TCs. The facilitatory effects of elevated HDB input frequency were strongest on deeper output neurons (deep tufted and mitral cells) and negligible on peripheral output neurons (external and superficial tufted cells). Taken together, GABAergic HDB activation generates frequency-dependent regulation that differentially affects the excitability and responses across the five classes of M/TCs. This regulation may help maintain the precise balance between inhibition and excitation of neuronal circuits across the populations of output neurons in the face of changes in an animal sniffing rate, putatively to enhance and sharpen the tuning specificity of individual or classes of M/TCs to odors.NEW & NOTEWORTHY Neuronal circuits in the olfactory bulb closely modulate olfactory bulb output activity. Activation of GABAergic circuits from the HDB to the olfactory bulb has both direct and indirect action differentially across the five classes of M/TC bulbar output neurons. The net effect enhances the excitability of deeper output neurons as HDB frequency increases, altering the relative inhibition-excitation balance of output circuits. We hypothesize that this sharpens the tuning specificity of classes of M/TCs to odors during sensory processing.


Assuntos
Odorantes , Bulbo Olfatório , Animais , Bulbo Olfatório/fisiologia , Sensação , Potenciais Sinápticos , Nervo Olfatório
8.
Cell Mol Life Sci ; 78(4): 1163-1189, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32997200

RESUMO

Humans and animals live in social relationships shaped by actions of approach and avoidance. Both are crucial for normal physical and mental development, survival, and well-being. Active withdrawal from social interaction is often induced by the perception of threat or unpleasant social experience and relies on adaptive mechanisms within neuronal networks associated with social behavior. In case of confrontation with overly strong or persistent stressors and/or dispositions of the affected individual, maladaptive processes in the neuronal circuitries and its associated transmitters and modulators lead to pathological social avoidance. This review focuses on active, fear-driven social avoidance, affected circuits within the mesocorticolimbic system and associated regions and a selection of molecular modulators that promise translational potential. A comprehensive review of human research in this field is followed by a reflection on animal studies that offer a broader and often more detailed range of analytical methodologies. Finally, we take a critical look at challenges that could be addressed in future translational research on fear-driven social avoidance.


Assuntos
Ansiedade/fisiopatologia , Aprendizagem da Esquiva/fisiologia , Medo/fisiologia , Rede Nervosa/fisiopatologia , Animais , Ansiedade/psicologia , Medo/psicologia , Humanos , Neurônios/patologia , Neurônios/fisiologia , Comportamento Social
9.
J Neurosci Res ; 99(11): 3084-3100, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34374447

RESUMO

The laterodorsal tegmentum (LDT) is a brainstem nucleus classically involved in REM sleep and attention, and that has recently been associated with reward-related behaviors, as it controls the activity of ventral tegmental area (VTA) dopaminergic neurons, modulating dopamine release in the nucleus accumbens. To further understand the role of LDT-VTA inputs in reinforcement, we optogenetically manipulated these inputs during different behavioral paradigms in male rats. We found that in a two-choice instrumental task, optical activation of LDT-VTA projections shifts and amplifies preference to the laser-paired reward in comparison to an otherwise equal reward; the opposite was observed with inhibition experiments. In a progressive ratio task, LDT-VTA activation boosts motivation, that is, enhances the willingness to work to get the reward associated with LDT-VTA stimulation; and the reverse occurs when inhibiting these inputs. Animals abolished preference if the reward was omitted, suggesting that LDT-VTA stimulation adds/decreases value to the stimulation-paired reward. In addition, we show that LDT-VTA optical activation induces robust preference in the conditioned and real-time place preference tests, while optical inhibition induces aversion. The behavioral findings are supported by electrophysiological recordings and c-fos immunofluorescence correlates in downstream target regions. In LDT-VTA ChR2 animals, we observed an increase in the recruitment of lateral VTA dopamine neurons and D1 neurons from nucleus accumbens core and shell; whereas in LDT-VTA NpHR animals, D2 neurons appear to be preferentially recruited. Collectively, these data show that the LDT-VTA inputs encode positive reinforcement signals and are important for different dimensions of reward-related behaviors.


Assuntos
Tegmento Mesencefálico , Área Tegmentar Ventral , Animais , Neurônios Dopaminérgicos/fisiologia , Masculino , Núcleo Accumbens , Ratos , Recompensa , Área Tegmentar Ventral/fisiologia
10.
Cell Tissue Res ; 383(1): 457-472, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33404841

RESUMO

The ability of the olfactory system to detect and discriminate a broad spectrum of odor molecules with extraordinary sensitivity relies on a wide range of odorant receptors and on the distinct architecture of neuronal circuits in olfactory brain areas. More than 1000 odorant receptors, distributed almost randomly in the olfactory epithelium, are plotted out in two mirror-symmetric maps of glomeruli in the olfactory bulb, the first relay station of the olfactory system. How does such a precise spatial arrangement of glomeruli emerge from a random distribution of receptor neurons? Remarkably, the identity of odorant receptors defines not only the molecular receptive range of sensory neurons but also their glomerular target. Despite their key role, odorant receptors are not the only determinant, since the specificity of neuronal connections emerges from a complex interplay between several molecular cues and electrical activity. This review provides an overview of the mechanisms underlying olfactory circuit formation. In particular, recent findings on the role of odorant receptors in regulating axon targeting and of spontaneous activity in the development and maintenance of synaptic connections are discussed.


Assuntos
Mapeamento Encefálico/métodos , Odorantes , Bulbo Olfatório/fisiologia , Animais
11.
Dev Growth Differ ; 63(6): 323-339, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34166527

RESUMO

The sensory cortex underlies our ability to perceive and interact with the external world. Sensory perceptions are controlled by specialized neuronal circuits established through fine-tuning, which relies largely on neuronal activity during the development. Spontaneous neuronal activity is an essential driving force of neuronal circuit refinement. At early developmental stages, sensory cortices display spontaneous activities originating from the periphery and characterized by correlated firing arranged spatially according to the modality. The firing patterns are reorganized over time and become sparse, which is typical for the mature brain. This review focuses mainly on rodent sensory cortices. First, the features of the spontaneous activities during early postnatal stages are described. Then, the developmental changes in the spatial organization of the spontaneous activities and the transition mechanisms involved are discussed. The identification of the principles controlling the spatial organization of spontaneous activities in the developing sensory cortex is essential to understand the self-organization process of neuronal circuits.


Assuntos
Neurônios , Córtex Somatossensorial
12.
Adv Exp Med Biol ; 1293: 209-224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33398815

RESUMO

Optogenetic approaches combine the power to allocate optogenetic tools (proteins) to specific cell populations (defined genetically or functionally) and the use of light-based interfaces between biological wetware (cells and tissues) and hardware (controllers and recorders). The optogenetic toolbox contains two main compartments: tools to interfere with cellular processes and tools to monitor cellular events. Among the latter are genetically encoded voltage indicators (GEVIs). This chapter outlines the development, current state of the art and prospects of emerging optical GEVI imaging technologies.


Assuntos
Proteínas Luminescentes/genética , Potenciais da Membrana , Optogenética/métodos , Células/metabolismo , Células/efeitos da radiação , Potenciais da Membrana/efeitos da radiação , Optogenética/instrumentação
13.
Microsc Microanal ; 27(1): 156-169, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33303051

RESUMO

Brain circuits are highly interconnected three-dimensional structures fabricated from components ranging vastly in size; from cell bodies to individual synapses. While neuronal activity can be visualized with advanced light microscopy (LM) techniques, the resolution of electron microscopy (EM) is critical for identifying synaptic connections between neurons. Here, we combine these two techniques, affording the advantage of each and allowing for measurements to be made of the same neural features across imaging platforms. We established an EM-label-free workflow utilizing inherent structural features to correlate in vivo two-photon LM and volumetric scanning EM (SEM) in the ferret visual cortex. By optimizing the volume SEM sample preparation protocol, imaging with the OnPoint detector, and utilizing the focal charge compensation device during serial block-face imaging, we achieved sufficient resolution and signal-to-noise ratio to analyze synaptic ultrastructure for hundreds of synapses within sample volumes. Our novel workflow provides a reliable method for quantitatively characterizing synaptic ultrastructure in functionally imaged neurons, providing new insights into neuronal circuit organization.


Assuntos
Imageamento Tridimensional , Neurônios , Microscopia Eletrônica de Varredura , Neurônios/ultraestrutura
14.
Neurobiol Learn Mem ; 176: 107323, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053429

RESUMO

Novelty triggers an increase in orienting behavior that is critical to evaluate the potential salience of unknown events. As novelty becomes familiar upon repeated encounters, this increase in response rapidly habituates as a form of behavioral adaptation underlying goal-directed behaviors. Many neurodevelopmental, psychiatric and neurodegenerative disorders are associated with abnormal responses to novelty and/or familiarity, although the neuronal circuits and cellular/molecular mechanisms underlying these natural behaviors in the healthy brain are largely unknown, as is the maladaptive processes that occur to induce impairment of novelty signaling in diseased brains. In rodents, the development of cutting-edge tools that allow for measurements of real time activity dynamics in selectively identified neuronal ensembles by gene expression signatures is beginning to provide advances in understanding the neural bases of the novelty response. Accumulating evidence indicate that midbrain circuits, the majority of which linked to dopamine transmission, promote exploratory assessments and guide approach/avoidance behaviors to different types of novelty via specific projection sites. The present review article focuses on midbrain circuit analysis relevant to novelty processing and habituation with familiarity.


Assuntos
Neurônios Dopaminérgicos/fisiologia , Comportamento Exploratório/fisiologia , Mesencéfalo/fisiologia , Rede Nervosa/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Habituação Psicofisiológica , Humanos , Camundongos , Núcleos da Rafe/fisiologia , Ratos
15.
J Neurogenet ; 33(2): 75-89, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164023

RESUMO

Egg-laying behavior is one of the most important aspects of female behavior, and has a profound impact on the fitness of a species. As such, it is controlled by several layers of regulation. Here, we review recent advances in our understanding of insect neural circuits that control when, where and how to lay an egg. We also outline outstanding open questions about the control of egg-laying decisions, and speculate on the possible neural underpinnings that can drive the diversification of oviposition behaviors through evolution.


Assuntos
Evolução Biológica , Insetos/fisiologia , Oviposição/fisiologia , Animais , Feminino
16.
J Comput Neurosci ; 47(2-3): 141-166, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659570

RESUMO

The paper presents a hierarchical series of computational models for myelinated axonal compartments. Three classes of models are considered, either with distributed parameters (2.5D EQS-ElectroQuasi Static, 1D TL-Transmission Lines) or with lumped parameters (0D). They are systematically analyzed with both analytical and numerical approaches, the main goal being to identify the best procedure for order reduction of each case. An appropriate error estimator is proposed in order to assess the accuracy of the models. This is the foundation of a procedure able to find the simplest reduced model having an imposed precision. The most computationally efficient model from the three geometries proved to be the analytical 1D one, which is able to have accuracy less than 0.1%. By order reduction with vector fitting, a finite model is generated with a relative difference of 10- 4 for order 5. The dynamical models thus extracted allow an efficient simulation of neurons and, consequently, of neuronal circuits. In such situations, the linear models of the myelinated compartments coupled with the dynamical, non-linear models of the Ranvier nodes, neuronal body (soma) and dendritic tree give global reduced models. In order to ease the simulation of large-scale neuronal systems, the sub-models at each level, including those of myelinated compartments should have the lowest possible order. The presented procedure is a first step in achieving simulations of neural systems with accuracy control.


Assuntos
Axônios/fisiologia , Simulação por Computador , Modelos Neurológicos , Bainha de Mielina/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/fisiologia , Nós Neurofibrosos/fisiologia
17.
J Exp Biol ; 222(Pt 19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511344

RESUMO

Taste is essential for animals to evaluate food quality and make important decisions about food choice and intake. How complex brains process sensory information to produce behavior is an essential question in the field of sensory neurobiology. Currently, little is known about higher-order taste circuits in the brain as compared with those of other sensory systems. Here, we used the common vinegar fly, Drosophila melanogaster, to screen for candidate neurons labeled by different transgenic GAL4 lines in controlling feeding behaviors. We found that activation of one line (VT041723-GAL4) produces 'proboscis holding' behavior (extrusion of the mouthpart without withdrawal). Further analysis showed that the proboscis holding phenotype indicates an aversive response, as flies pre-fed with either sucrose or water prior to neuronal activation exhibited regurgitation. Anatomical characterization of VT041723-GAL4-labeled neurons suggests that they receive sensory input from peripheral taste neurons. Overall, our study identifies a subset of brain neurons labeled by VT041723-GAL4 that may be involved in a taste circuit that controls regurgitation.


Assuntos
Encéfalo/fisiologia , Drosophila melanogaster/fisiologia , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal , Drosophila melanogaster/genética , Feminino , Proteínas de Fluorescência Verde/metabolismo , Masculino , Optogenética , Faringe/inervação , Caracteres Sexuais , Sinapses/fisiologia , Paladar/fisiologia , Termogênese/fisiologia
18.
J Neurosci ; 37(43): 10358-10371, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28951448

RESUMO

Glycoprotein-deleted rabies virus-mediated monosynaptic tracing has become a standard method for neuronal circuit mapping, and is applied to virtually all parts of the rodent nervous system, including the spinal cord and primary sensory neurons. Here we identified two classes of unmyelinated sensory neurons (nonpeptidergic and C-fiber low-threshold mechanoreceptor neurons) resistant to direct and trans-synaptic infection from the spinal cord with rabies viruses that carry glycoproteins in their envelopes and that are routinely used for infection of CNS neurons (SAD-G and N2C-G). However, the same neurons were susceptible to infection with EnvA-pseudotyped rabies virus in tumor virus A receptor transgenic mice, indicating that resistance to retrograde infection was due to impaired virus adsorption rather than to deficits in subsequent steps of infection. These results demonstrate an important limitation of rabies virus-based retrograde tracing of sensory neurons in adult mice, and may help to better understand the molecular machinery required for rabies virus spread in the nervous system. In this study, mice of both sexes were used.SIGNIFICANCE STATEMENT To understand the neuronal bases of behavior, it is important to identify the underlying neural circuitry. Rabies virus-based monosynaptic tracing has been used to identify neuronal circuits in various parts of the nervous system. This has included connections between peripheral sensory neurons and their spinal targets. These connections form the first synapse in the somatosensory pathway. Here we demonstrate that two classes of unmyelinated sensory neurons, which account for >40% of dorsal root ganglia neurons, display resistance to rabies infection. Our results are therefore critical for interpreting monosynaptic rabies-based tracing in the sensory system. In addition, identification of rabies-resistant neurons might provide a means for future studies addressing rabies pathobiology.


Assuntos
Gânglios Espinais/química , Rede Nervosa/química , Técnicas de Rastreamento Neuroanatômico/métodos , Vírus da Raiva , Células Receptoras Sensoriais/química , Animais , Feminino , Gânglios Espinais/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/citologia , Células do Corno Posterior/química
19.
J Physiol ; 596(2): 317-342, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29178354

RESUMO

KEY POINTS: Hyperexcitability and hypersynchrony of neuronal networks are thought to be linked to the generation of epileptic activity in both humans and animal models. Here we show that human epileptic postoperative neocortical tissue is able to generate two different types of synchronies in vitro. Epileptiform bursts occurred only in slices derived from epileptic patients and were hypersynchronous events characterized by high levels of excitability. Spontaneous population activity emerged in both epileptic and non-epileptic tissue, with a significantly lower degree of excitability and synchrony, and could not be linked to epilepsy. These results help us to understand better the role of excitatory and inhibitory neuronal circuits in the generation of population events, and to define the subtle border between physiological and pathological synchronies. ABSTRACT: Interictal activity is a hallmark of epilepsy diagnostics and is linked to neuronal hypersynchrony. Little is known about perturbations in human epileptic neocortical microcircuits, and their role in generating pathological synchronies. To explore hyperexcitability of the human epileptic network, and its contribution to convulsive activity, we investigated an in vitro model of synchronous burst activity spontaneously occurring in postoperative tissue slices derived from patients with or without preoperative clinical and electrographic manifestations of epileptic activity. Human neocortical slices generated two types of synchronies. Interictal-like discharges (classified as epileptiform events) emerged only in epileptic samples, and were hypersynchronous bursts characterized by considerably elevated levels of excitation. Synchronous population activity was initiated in both epileptic and non-epileptic tissue, with a significantly lower degree of excitability and synchrony, and could not be linked to epilepsy. However, in pharmacoresistant epileptic tissue, a higher percentage of slices exhibited population activity, with higher local field potential gradient amplitudes. More intracellularly recorded neurons received depolarizing synaptic potentials, discharging more reliably during the events. Light and electron microscopic examinations showed slightly lower neuron densities and higher densities of excitatory synapses in the human epileptic neocortex. Our data suggest that human neocortical microcircuits retain their functionality and plasticity in vitro, and can generate two significantly different synchronies. We propose that population bursts might not be pathological events while interictal-like discharges may reflect the epileptogenicity of the human cortex. Our results show that hyperexcitability characterizes the human epileptic neocortical network, and that it is closely related to the emergence of synchronies.


Assuntos
Potenciais de Ação , Excitabilidade Cortical , Epilepsia/fisiopatologia , Neocórtex/fisiopatologia , Rede Nervosa/fisiopatologia , Sinapses/fisiologia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Dev Biol ; 417(2): 168-81, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27235816

RESUMO

Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.


Assuntos
Sistema Nervoso Entérico/embriologia , Trato Gastrointestinal/inervação , Mesoderma/embriologia , Crista Neural/embriologia , Animais , Comunicação Celular/fisiologia , Diferenciação Celular , Movimento Celular/fisiologia , Trato Gastrointestinal/embriologia , Humanos , Crista Neural/citologia , Neurônios/citologia , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA