Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
FASEB J ; 38(18): e70064, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39295162

RESUMO

12-hydroxyeicosatetraenoic acid (12-HETE), a major metabolite of arachidonic acid, is converted by 12/15-lipoxygenase and implicated in diabetic retinopathy (DR). Our previous study demonstrated a positive correlation between 12-HETE and the prevalence of DR. However, reasons for the increased production of 12-HETE are unclear, and the underlying mechanisms through which 12-HETE promotes DR are unknown. This study aimed to elucidate the correlation between 12-HETE and DR onset, investigate potential mechanisms through which 12-HETE promotes DR, and seek explanations for the increased production of 12-HETE in diabetes. We conducted a prospective cohort study, which revealed that higher serum 12-HETE levels could induce DR. Additionally, G protein-coupled receptor 31 (GPR31), a high-affinity receptor for 12-HETE, was expressed in human retinal microvascular endothelial cells (HRMECs). 12-HETE/GPR31-mediated HRMEC inflammation occurred via the p38 MAPK pathway. 12-HETE levels were significantly higher in the retina of mice with high-fat diet (HFD)- and streptozotocin (STZ)-induced diabetes than in those with only STZ-induced diabetes and healthy controls. They were positively correlated with the levels of inflammatory cytokines in the retina, indicating that HFD could induce increased 12-HETE synthesis in patients with diabetes in addition to hyperglycemia. Conclusively, 12-HETE is a potential risk factor for DR. The 12-HETE/GPR31 axis plays a crucial role in HRMEC dysfunction and could be a novel target for DR prevention and control. Nevertheless, further research is warranted to provide comprehensive insights into the complex underlying mechanisms of 12-HETE in DR.


Assuntos
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Diabetes Mellitus Experimental , Retinopatia Diabética , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G , Retinopatia Diabética/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Humanos , Animais , Receptores Acoplados a Proteínas G/metabolismo , Camundongos , Masculino , Diabetes Mellitus Experimental/metabolismo , Feminino , Células Endoteliais/metabolismo , Pessoa de Meia-Idade , Estudos Prospectivos , Células Cultivadas
2.
J Cell Physiol ; 239(8): e31298, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38764331

RESUMO

Early-onset preeclampsia, which occurrs before 34 weeks of gestation, is the most dangerous classification of preeclampsia, which is a pregnancy-specific disease that causes 1% of maternal deaths. G protein-coupled receptor 124 (GPR124) is significantly expressed at various stages of the human reproductive process, particularly during embryogenesis and angiogenesis. Our prior investigation demonstrated a notable decrease in GPR124 expression in the placentas of patients with early-onset preeclampsia compared to that in normal pregnancy placentas. However, there is a lack of extensive investigation into the molecular processes that contribute to the role of GPR124 in placenta development. This study aimed to examine the mechanisms by which GPR124 affects the occurrence of early-onset preeclampsia and its function in trophoblast. Proliferative, invasive, migratory, apoptotic, and inflammatory processes were identified in GPR124 knockdown, GPR124 overexpression, and normal HTR8/SVneo cells. The mechanism of GPR124-mediated cell function in GPR124 knockdown HTR8/SVneo cells was examined using inhibitors of the JNK or P38 MAPK pathway. Downregulation of GPR124 was found to significantly inhibit proliferation, invasion and migration, and promote apoptosis of HTR8/SVneo cells when compared to the control and GPR124 overexpression groups. This observation is consistent with the pathological characteristics of preeclampsia. In addition, GPR124 overexpression inhibits the secretion of pro-inflammatory cytokines interleukin (IL)-8 and interferon-γ (IFN-γ) while enhancing the secretion of the anti-inflammatory cytokine interleukin (IL)-4. Furthermore, GPR124 suppresses the activation of P-JNK and P-P38 within the JNK/P38 MAPK pathway. The invasion, apoptosis, and inflammation mediated by GPR124 were partially restored by suppressing the JNK and P38 MAPK pathways in HTR8/SVneo cells. GPR124 plays a crucial role in regulating trophoblast proliferation, invasion, migration, apoptosis, and inflammation via the JNK and P38 MAPK pathways. Furthermore, the effect of GPR124 on trophoblast suggests its involvement in the pathogenesis of early-onset preeclampsia.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Inflamação , Pré-Eclâmpsia , Receptores Acoplados a Proteínas G , Trofoblastos , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Trofoblastos/metabolismo , Trofoblastos/patologia , Apoptose/genética , Proliferação de Células/genética , Feminino , Movimento Celular/genética , Gravidez , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Pré-Eclâmpsia/patologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Inflamação/patologia , Inflamação/genética , Inflamação/metabolismo , Sistema de Sinalização das MAP Quinases , Linhagem Celular , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Placenta/metabolismo , Placenta/patologia , Receptores de Estrogênio
3.
Glia ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39310943

RESUMO

Neurotoxic A1 reactive astrocytes are induced by inflammatory stimuli. Leptin has been confirmed to have neuroprotective properties. However, its effect on the activation of A1 astrocytes in infectious inflammation is unclear. In the current study, astrocytes cultured from postnatal day 1 Sprague-Dawley rats were stimulated with lipopolysaccharide (LPS) to induce an acute in vitro inflammatory response. Leptin was applied 6 h later to observe its protective effects. The viability of the astrocytes was assessed. A1 astrocyte activation was determined by analyzing the gene expression of C3, H2-D1, H2-T23, and Serping 1 and secretion of pro-inflammatory cytokines IL-6 and TNF-α. The levels of phospho-p38 (pp38) and nuclear factor-κB (NF-κB) phosphor-p65 (pp65) were measured to explore the possible signaling pathways. Additionally, an LPS-induced inflammatory animal model was established to investigate the in vivo effects of leptin on A1 astrocytic activation. Results showed that in the in vitro culture system, LPS stimulation caused elevated expression of A1 astrocyte-specific genes and the secretion of pro-inflammatory cytokines, indicating the activation of A1 astrocytes. Leptin treatment significantly reversed the LPS induced upregulation in a dose-dependent manner. Similarly, LPS upregulated pp38, NF-κB pp65 protein and inflammatory cytokines were successfully reduced by leptin. In the LPS-induced animal model, the amelioratory effect of leptin on A1 astrocyte activation and inflammation was further confirmed, showed by the reduced sickness behaviors, A1 astrocyte genesis and inflammatory cytokines in vivo. Our results demonstrate that leptin efficiently inhibits LPS-induced neurotoxic activation of A1 astrocytes and neuroinflammation by suppressing p38-MAPK signaling pathway.

4.
Cell Mol Life Sci ; 80(11): 312, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37796333

RESUMO

Increasing evidence indicate that the expression of defense genes at the right place and the right time are regulated by host-defense transcription factors. However, the precise mechanisms of this regulation are not well understood. Homeodomain transcription factors, encoded by homeobox genes, play crucial role for the development of multicellular eukaryotes. In this study, we demonstrated that homeodomain transcription factor CEH-37 (known as OTX2 in mammals) was a key transcription factor for host defense in Caenorhabditis elegans. Meanwhile, CEH-37 acted in the intestine to protect C. elegans against pathogen infection. We further showed that the homeodomain transcription factor CEH-37 positively regulated PMK-1/ p38 MAPK activity to promote the intestinal immunity via suppression phosphatase VHP-1. Furthermore, we demonstrated that this function was conserved, because the human homeodomain transcription factor OTX2 also exhibited protective function in lung epithelial cells during Pseudomonas aeruginosa infection. Thus, our work reveal that CEH-37/OTX2 is a evolutionarily conserved transcription factor for defense against pathogen infection. The finding provides a model in which CEH-37 decreases VHP-1 phosphatase activity, allowing increased stimulation of PMK-1/p38 MAPK phosphorylation cascade in the intestine for pathogen resistance.


Assuntos
Proteínas de Caenorhabditis elegans , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Imunidade Inata , Proteínas de Ligação a DNA/metabolismo , Mamíferos/metabolismo , Fosfatases de Especificidade Dupla
5.
Toxicol Ind Health ; 40(5): 244-253, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518383

RESUMO

With the widespread use of manganese dioxide nanoparticles (nano MnO2), health hazards have also emerged. The inflammatory damage of brain tissues could result from nano MnO2, in which the underlying mechanism is still unclear. During this study, we aimed to investigate the role of ROS-mediated p38 MAPK pathway in nano MnO2-induced inflammatory response in BV2 microglial cells. The inflammatory injury model was established by treating BV2 cells with 2.5, 5.0, and 10.0 µg/mL nano MnO2 suspensions for 12 h. Then, the reactive oxygen species (ROS) scavenger (20 nM N-acetylcysteine, NAC) and the p38 MAPK pathway inhibitor (10 µM SB203580) were used to clarify the role of ROS and the p38 MAPK pathway in nano MnO2-induced inflammatory lesions in BV2 cells. The results indicated that nano MnO2 enhanced the expression of pro-inflammatory cytokines IL-1ß and TNF-α, elevated intracellular ROS levels and activated the p38 MAPK pathway in BV2 cells. Controlling intracellular ROS levels with NAC inhibited p38 MAPK pathway activation and attenuated the inflammatory response induced by nano MnO2. Furthermore, inhibition of the p38 MAPK pathway with SB203580 led to a decrease in the production of inflammatory factors (IL-1ß and TNF-α) in BV2 cells. In summary, nano MnO2 can induce inflammatory damage by increasing intracellular ROS levels and further activating the p38 MAPK pathway in BV2 microglial cells.


Assuntos
Compostos de Manganês , Microglia , Óxidos , Proteínas Quinases p38 Ativadas por Mitógeno , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Linhagem Celular
6.
Appl Environ Microbiol ; 89(7): e0052723, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37428035

RESUMO

Hirudomacin (Hmc) belongs to the Macin family of antimicrobial peptides, which can be used for bactericidal purposes in vitro by cleaving cell membranes. Although the Macin family has broad-spectrum antibacterial properties, few studies have been reported on bacterial inhibition by enhancing innate immunity. To further investigate the mechanism of Hmc inhibition, we chose the classical innate immune model organism Caenorhabditis elegans as the study subject. In this investigation, we found that Hmc treatment directly reduced the number of Staphylococcus aureus and Escherichia coli in the intestine of infected wild-type nematodes and infected pmk-1 mutant nematodes. Hmc treatment significantly prolonged the life span of infected wild-type nematodes and increased the expression of antimicrobial effectors (clec-82, nlp-29, lys-1, lys-7), and Hmc treatment still significantly increased the expression of antimicrobial effectors (clec-82, nlp-29, lys-7) in wild-type nematodes in the absence of bacterial stimulation. In addition, Hmc treatment significantly increased the expression of key genes of the pmk-1/p38 MAPK pathway (pmk-1, tir-1, atf-7, skn-1) under both infected and uninfected conditions but failed to increase the life span of infected pmk-1 mutant nematodes as well as the expression of antimicrobial effector genes. Western blot results further demonstrated that Hmc treatment significantly elevated pmk-1 protein expression levels in infected wild-type nematodes. In conclusion, our data suggest that Hmc has both direct bacteriostatic and immunomodulatory effects and may upregulate antimicrobial peptides in response to infection via the pmk-1/p38 MAPK pathway. It has the potential to serve as a new antibacterial agent and immune modulator. IMPORTANCE In today's world, bacterial drug resistance is becoming increasingly serious, and natural antibacterial proteins are attracting attention because of advantages such as their diverse and complex antibacterial modes, lack of residue, and harder-to-develop drug resistance. Notably, there are few antibacterial proteins with multiple effects such as direct antibacterial and innate immunity enhancement at the same time. We believe that an ideal antimicrobial agent can be developed only through a more comprehensive and in-depth study of the bacteriostatic mechanism of natural antibacterial proteins. The significance of our study is that based on the known in vitro bacterial inhibition of Hirudomacin (Hmc), we further clarified its mechanism in vivo, which can be subsequently developed as a natural bacterial inhibitor for various applications in medicine, food, farming, and daily chemicals.


Assuntos
Proteínas de Caenorhabditis elegans , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/farmacologia , Imunidade Inata , Caenorhabditis elegans/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/farmacologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Peptídeos Antimicrobianos
7.
Mol Cell Biochem ; 478(2): 317-327, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35796909

RESUMO

Morchella is a kind of important edible and medicinal fungi, which is rich in polysaccharides, enzymes, fatty acids, amino acids and other active components. Extracellular vesicles (EVs) have a typical membrane structure, and the vesicles contain some specific lipids, miRNAs and proteins, and their can deliver the contents to different cells to change their functions. The present study investigated whether Morchella produce extracellular vesicles and its anti-inflammatory effect on lipopolysaccharide (LPS)-induced RAW246.7 macrophages. The experimental results showed that Morchella produced extracellular vesicles and significantly reduced the production of nitric oxide (NO) and reactive oxygen species (ROS) in a model of LPS-induced inflammation. In addition, the expression of inflammatory factor-related genes such as inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) showed dose-dependent inhibition. Morchella extracellular vesicles also can inhibit the inflammatory response induced by LPS by inhibiting the production of ROS and reducing the phosphorylation levels of the p38 MAPK signaling pathway. These results indicate that the Morchella extracellular vesicles can be used as a potential anti-inflammatory substance in the treatment of inflammatory diseases.


Assuntos
Ascomicetos , Lipopolissacarídeos , Animais , Camundongos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Óxido Nítrico/metabolismo
8.
Phytother Res ; 37(5): 2168-2186, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37039761

RESUMO

In the search for compounds that inhibit the SARS-CoV-2 after the onset of the COVID-19 pandemic, isoquinoline-containing alkaloids have been identified as compounds with high potential to fight the disease. In addition to having strong antiviral activities, most of these alkaloids have significant anti-inflammatory effects which are often manifested through the inhibition of a promising host-based anti-COVID-19 target, the p38 MAPK signaling pathway. In the present review, our pharmacological and medicinal chemistry evaluation resulted in highlighting the potential of anti-SARS-CoV-2 isoquinoline-based alkaloids for the treatment of COVID-19 patients. Considering critical parameters of the antiviral and anti-inflammatory activities, mechanism of action, as well as toxicity/safety profile, we introduce the alkaloids emetine, cephaeline, and papaverine as high-potential therapeutic agents for use in the treatment of COVID-19. Although preclinical studies confirm that some isoquinoline-based alkaloids reviewed in this study have a high potential to inhibit the SARS-CoV-2, their entry into drug regimens of COVID-19 patients requires further clinical trial studies and toxicity evaluation.


Assuntos
Alcaloides , COVID-19 , Humanos , Química Farmacêutica , SARS-CoV-2 , Pandemias , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico
9.
Immunopharmacol Immunotoxicol ; 45(6): 742-753, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37459395

RESUMO

BACKGROUND: The association between S100 calcium-binding protein A8 (S100A8) and angiogenesis has been reported in previous reports. This study focuses on the roles of S100A8 in the angiogenesis of human dermal microvascular endothelial cells (HDMECs) and in cutaneous wound healing in mice. METHODS: Candidate genes related to angiogenesis activity were screened using a GSE83582 dataset. The overexpression DNA plasmid of S100A8 was transfected into HDMECs to analyze its effect on cell proliferation, migration, and angiogenesis. Full-thickness skin wounds were induced on mice, followed by adenovirus treatments to analyze the function of gene alteration in wound healing and pathological changes. The upstream regulator of S100A8 was predicted by bioinformatics analysis and verified by luciferase and immunoprecipitation assays. The role of the forkhead box A1 (FOXA1)-S100A8 interaction in p38 MAPK activation and angiogenesis were validated by rescue experiments. RESULTS: S100A8 was identified as a gene significantly correlated with angiogenesis. The S100A8 upregulation promoted the proliferation, migration, and angiogenesis of HDMECs, and it promoted p38 MAPK phosphorylation. Treatment of SB203580, a p38 MAPK inhibitor, blocked the promoting effect of S100A8. FOXA1 was identified as an upstream factor of S100A8 promoting its transcription. FOXA1 overexpression in HDMECs increased p38 MAPK phosphorylation and enhanced the activity of cells, which were blocked by the S100A8 inhibition. Similar results were reproduced in vivo where FOXA1 overexpression accelerated whereas the S100A8 knockdown retarded the cutaneous wound healing in mice. CONCLUSION: FOXA1 mediates the phosphorylation of p38 MAPK through transcription activation of S100A8, thereby inducing angiogenesis and promoting cutaneous wound healing.


Assuntos
Células Endoteliais , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Humanos , Camundongos , Movimento Celular , Células Endoteliais/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosforilação , Pele , Cicatrização
10.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37833891

RESUMO

Bone morphogenetic proteins (BMPs) are a group of structurally and functionally related signaling molecules that comprise a subfamily, belonging to the TGF-ß superfamily. Most BMPs play roles in the regulation of embryonic development, stem cell differentiation, tumor growth and some cardiovascular and cerebrovascular diseases. Although evidence is emerging for the antiviral immunity of a few BMPs, more BMPs are needed to determine whether this function is universal. Here, we identified the zebrafish bmp4 ortholog, whose expression is up-regulated through challenge with grass carp reovirus (GCRV) or its mimic poly(I:C). The overexpression of bmp4 in epithelioma papulosum cyprini (EPC) cells significantly decreased the viral titer of GCRV-infected cells. Moreover, compared to wild-type zebrafish, viral load and mortality were significantly increased in both larvae and adults of bmp4-/- mutant zebrafish infected with GCRV virus. We further demonstrated that Bmp4 promotes the phosphorylation of Tbk1 and Irf3 through the p38 MAPK pathway, thereby inducing the production of type I IFNs in response to virus infection. These data suggest that Bmp4 plays an important role in the host defense against virus infection. Our study expands the understanding of BMP protein functions and opens up new targets for the control of viral infection.


Assuntos
Proteínas Morfogenéticas Ósseas , Imunidade Inata , Peixe-Zebra , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Reoviridae/fisiologia , Viroses/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4843-4851, 2023 Sep.
Artigo em Zh | MEDLINE | ID: mdl-37802826

RESUMO

To investigate the mechanism by which Cangxi Tongbi Capsules promote chondrocyte autophagy to inhibit knee osteoarthritis(KOA) progression by regulating the circRNA_0008365/miR-1271/p38 mitogen-activated protein kinase(MAPK) pathway. The cell and animal models of KOA were established and intervened with Cangxi Tongbi Capsules, si-circRNA_0008365, si-NC, and Cangxi Tongbi Capsules combined with si-circRNA_0008365. Flow cytometry and transmission electron microscopy were employed to determine the level of apoptosis and observe autophagosomes, respectively. Western blot was employed to reveal the changes in the protein levels of microtubule-associated protein light chain 3(LC3)Ⅱ/Ⅰ, Beclin-1, selective autophagy junction protein p62/sequestosome 1, collagen Ⅱ, a disintegrin and metalloproteinase with thrombospondin motifs 5(ADAMTS-5), and p38 MAPK. The mRNA levels of circRNA_0008365, miR-1271, collagen Ⅱ, and ADAMTS-5 were determined by qRT-PCR. Hematoxylin-eosin staining was employed to reveal the pathological changes of the cartilage tissue of the knee, and enzyme-linked immunosorbent assay to measure the levels of interleukin-1ß(IL-1ß) and tumor necrosis factor-alpha(TNF-α). The chondrocytes treated with IL-1ß showed down-regulated expression of circRNA_0008365, up-regulated expression of miR-1271 and p38 MAPK, lowered autophagy level, increased apoptosis rate, and accelerated catabolism of extracellular matrix. The intervention with Cangxi Tongbi Capsules up-regulated the expression of circRNA_0008365, down-regulated the expression of miR-1271 and p38 MAPK, increased the autophagy level, decreased the apoptosis rate, and weakened the catabolism of extracellular matrix. However, the effect of Cangxi Tongbi Capsules was suppressed after interfering with circRNA_0008365. The in vivo experiments showed that Cangxi Tongbi Capsules dose-dependently inhibited the p38 MAPK pathway, enhanced chondrocyte autophagy, and mitigated articular cartilage damage and inflammatory response, thereby inhibiting the progression of KOA in rats. This study indicated that Cangxi Tongbi Capsules promoted chondrocyte autophagy by regulating the circRNA_0008365/miR-1271/p38 MAPK pathway to inhibit the development of KOA.


Assuntos
MicroRNAs , Osteoartrite do Joelho , Ratos , Animais , Condrócitos , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , RNA Circular/genética , RNA Circular/metabolismo , RNA Circular/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose , Autofagia/genética , Colágeno/metabolismo
12.
Fish Shellfish Immunol ; 131: 1063-1074, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36375784

RESUMO

Imidacloprid (IMI), one of the most frequently used neonicotinoid insecticides in agriculture, is resided in surface water worldwide and poses a threat to aquatic organisms. Melatonin (MT) provides effective protection against insecticide-induced toxicity, nevertheless, the toxic effects and whether MT attenuates intestinal injury caused by IMI exposure in the common carps remains poorly explored. Previous studies have reported adverse effects of IMI exposure on intestinal health status. Therefore, we first demonstrated that IMI altered the composition and function of the intestinal microbiota, destroying the integrity of intestinal ultrastructure, increasing intestinal permeability. Meanwhile, metagenomic sequencing and ELISA kits results hypothesized that peptidoglycan (PGN) is an IMI-triggered intestinal microbial metabolite. Subsequently, we thus further elucidated that IMI induced an increase in intestinal tight junction permeability by inducing PGN secretion in vitro model. MT addition dramatically attenuated IMI-induced intestinal toxicity by remitting PGN synthesis and thus resecuring tight junction permeability, thereby reducing intestinal injury. SB203580 was supplied as a P38MAPK inhibitor to alleviate the increased permeability of tight junctions induced by IMI/PGN. Therefore, these findings confirmed that MT protects against IMI-induced intestinal injury by negatively regulating PGN/P38MAPK pathway to antagonize the increased tight junction permeability.


Assuntos
Carpas , Inseticidas , Melatonina , Poluentes Químicos da Água , Animais , Melatonina/farmacologia , Peptidoglicano , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Neonicotinoides/análise , Neonicotinoides/toxicidade , Inseticidas/toxicidade , Inseticidas/metabolismo , Carpas/metabolismo
13.
Kidney Blood Press Res ; 47(1): 61-71, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34788763

RESUMO

BACKGROUND: Trimethylamine-N-oxide (TMAO) is an intestinal metabolic toxin, which is produced by gut flora via metabolizing high-choline foods. TMAO is known to increase the risk of atherosclerosis and cardiovascular events in chronic kidney disease (CKD) patients. OBJECTIVES: The objective of this study was to explore the role and mechanism of TMAO aggravating kidney injury. METHOD: We used the five-sixths nephrectomy (5/6 Nx)-induced CKD rats to investigate whether TMAO could aggravate kidney damage and its possible mechanisms. Six weeks after the operation, the two groups of 5/6 Nx rats were subjected to intraperitoneal injection with 2.5% glucose peritoneal dialysis fluid (2.5% PDF) and 2.5% PDF plus TMAO 20 mg/kg/day. RESULTS: In this study, we provided evidence showing TMAO significantly aggravated renal failure as well as inflammatory cell infiltration and in five-sixths nephrectomy-induced CKD rats. We found that TMAO could upregulate inflammatory factors including MCP-1, TNF-α, IL-6, IL-1ß, and IL-18 by activating p38 phosphorylation and upregulation of human antigen R. TMAO could aggravate oxidative stress by upregulating NOX4 and downregulating SOD. The result also confirmed that TMAO promoted NLRP3 inflammasome formation as well as cleaved caspase-1 and IL-1ß activation in the kidney tissue. CONCLUSIONS: Taken together, the present study validates TMAO as a pro-inflammatory factor that causes renal inflammatory injury and renal function impairment. Inhibition of TMAO synthesis or promoting its clearance may be a potential therapeutic approach of CKD in the future.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Metilaminas/metabolismo , Insuficiência Renal Crônica/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Inflamação/metabolismo , Inflamação/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/patologia , Regulação para Cima
14.
Nutr Metab Cardiovasc Dis ; 32(10): 2424-2438, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36096977

RESUMO

BACKGROUND AND AIMS: Low-grade chronic inflammation was reported to serve as a distinctive pathophysiologic feature of coronary artery disease (CAD), the leading cause of death around the world. Herein, the current study aimed to explore whether and how microRNA-34c-5p (miR-34c-5p), a miRNA enriched in extracellular vesicles (EVs) originated from the activated platelet (PLT-EVs), affects the inflammation of human coronary artery endothelial cells (HCAECs). METHODS AND RESULTS: HCAECs were established as an in vitro cell model using oxidized low-density lipoprotein (ox-LDL). miR-34c-5p, an abundant miRNA in PLT-EVs, can be transferred to HCAECs and target PODXL by binding to its 3'UTR. Gain- and loss-of-function experiments of miR-34c-5p and podocalyxin (PODXL) were performed in ox-LDL-induced HCAECs. Subsequently, HCAECs were subjected to co-culture with PLT-EVs, followed by detection of the expression patterns of key pro-inflammatory factors. Either miR-34c-5p mimic or PLT-EVs harboring miR-34c-5p attenuated the ox-LDL-evoked inflammation in HCAECs by suppressing interleukin-1ß (IL-1ß), IL-6 and tumor necrosis factor-α (TNF-α). By blocking the P38 MAPK signaling pathway, miR-34c-5p-mediated depletion of PODXL contributed to protection against ox-LDL-induced inflammation. In vitro findings were further validated by findings observed in ApoE knock-out mice. Additionally, miR-34c-5p in PLT-EVs showed an athero-protective role in the murine model. CONCLUSION: Altogether, our findings highlighted that miR-34c-5p in PLT-EVs could alleviate inflammation response in HCAECs by targeting PODXL and inactivation of the P38 MAPK signaling pathway.


Assuntos
Vesículas Extracelulares , MicroRNAs , Regiões 3' não Traduzidas , Animais , Apolipoproteínas E/genética , Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/prevenção & controle , Interleucina-1beta , Interleucina-6/metabolismo , Lipoproteínas LDL/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Sialoglicoproteínas , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Int Urogynecol J ; 33(8): 2203-2212, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34036402

RESUMO

INTRODUCTION AND HYPOTHESIS: Pelvic organ prolapse (POP) is a common condition in older women that affects quality of life. Mechanical injury of the pelvic floor support system contributes to POP development. In our study, we aimed to examine the mechanical damage to human uterosacral ligament fibroblasts (hUSLFs) to preliminarily explore the mechanism of mechanical transduction in POP. METHODS: hUSLFs were derived from POP and non-POP patients. Mechanical stress was induced by the FX-5000 T-cell stress loading system. Student's t-test was used for comparisons between different groups. RESULTS: We found that hUSLFs from POP patients were larger and longer than those from non-POP patients and exhibited cytoskeleton F-actin rearrangement. Collagen I and III expression levels were lower and matrix metalloproteinase 1 (MMP1) levels were higher in POP patients than in non-POP patients. Additionally, the apoptosis rate was significantly increased in POP patients compared to non-POP patients. After mechanical stretching, hUSLFs underwent a POP-like transformation. Cells became longer, and the cytoskeleton became thicker and rearranged. The extracellular matrix (ECM) was remodelled because of the upregulation of collagen I and III expression and downregulation of MMP1 expression. Mechanical stress also induced hUSLF apoptosis. Notably, we found that the p38 MAPK pathway was activated by mechanical stretching. CONCLUSIONS: Mechanical stress induced morphological changes in ligament fibroblasts, leading to cytoskeleton and ECM remodelling and cell apoptosis. p38 MAPK might be involved in this process, providing novel insights into the mechanical biology of and possible therapies for this disease.


Assuntos
Metaloproteinase 1 da Matriz , Prolapso de Órgão Pélvico , Idoso , Colágeno Tipo I/metabolismo , Feminino , Fibroblastos , Humanos , Ligamentos/metabolismo , Prolapso de Órgão Pélvico/metabolismo , Qualidade de Vida , Estresse Mecânico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Allergol Immunopathol (Madr) ; 50(6): 169-175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36335461

RESUMO

OBJECTIVE: To reveal the possible effects of death-associated protein kinase 1 (DAPK1) on the progression of osteoarthritis (OA) and the potential underlying mechanism. METHODS: : The expression of DAPK1 in OA and normal samples and interleukin (IL)-1ß-stimulated chondrocytes was analyzed by quantitative real-time polymerase chain reaction and Immunoblot assay. Cell viability, proliferation, and apoptosis in DAPK1-knockdown cells stimulated with IL-1ß were detected by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) solution, 5-ethynyl-2ß-deoxyuridine staining and flow cytometry. The chondrocyte degradation and inflammatory response in IL-1ß-induced chondrocytes were investigated by Immunoblot analysis and enzyme-linked-immunosorbent serologic assay. In addition, the effect of DAPK1 on p38 mitogen-activated protein kinase (MAPK) activation was analyzed by immunoblot assay. RESULTS: : This study revealed that DAPK1 was highly expressed in OA patients and IL-1ß-induced chondrocytes. Down-regulation of DAPK1 enhanced IL-1ß-induced chondrocyte proliferation. DAPK1 knockdown inhibited IL-1ß-induced chondrocyte degradation. In addition, DAPK1 depletion inhibited IL-1ß-induced chondrocyte inflammation. Mechanically, it was revealed that down--regulation of DAPK1 could inhibit the p38 MAPK pathway, and therefore affected progression of OA. CONCLUSION: : DAPK1 knockdown attenuates IL-1ß-induced extracellular matrix degradation and inflammatory response in OA chondrocytes by regulating the p38 MAPK pathway.


Assuntos
MicroRNAs , Osteoartrite , Humanos , Condrócitos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células Cultivadas , Osteoartrite/genética , Osteoartrite/metabolismo , Interleucina-1beta/farmacologia , Interleucina-1beta/metabolismo , Transdução de Sinais , Apoptose , Matriz Extracelular/metabolismo , MicroRNAs/metabolismo , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Proteínas Quinases Associadas com Morte Celular/farmacologia
17.
Environ Toxicol ; 37(5): 1058-1070, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35006638

RESUMO

The lung inflammatory damage could result from the nickel oxide nanoparticles (NiO NPs), in which the underlying mechanism is still unclear. This article explored the roles of long noncoding RNA maternally expressed gene 3 (lncRNA MEG3) and p38 mitogen activated protein kinases (p38 MAPK) pathway in pulmonary inflammatory injury induced by NiO NPs. Wistar rats were treated with NiO NPs suspensions (0.015, 0.06, and 0.24 mg/kg) by intratracheal instillation twice-weekly for 9 weeks. Meanwhile, A549 cells were treated with NiO NPs suspensions (25, 50, and 100 µg/ml) for 24 h. It can be concluded that the NiO NPs did trigger pulmonary inflammatory damage, which was confirmed by the histopathological examination, abnormal changes of inflammatory cells and inflammatory cytokines (IL-1ß, IL-6, TGF-ß1, TNF-α, IFN-γ, IL-10, CXCL-1 and CXCL-2) in bronchoalveolar lavage fluid (BALF), pulmonary tissue and cell culture supernatant. Furthermore, NiO NPs activated the p38 MAPK pathway and downregulated MEG3 in vivo and in vitro. However, p38 MAPK pathway inhibitor (10 µM SB203580) reversed the alterations in the expression levels of inflammatory cytokines induced by NiO NPs. Meanwhile, over-expressed MEG3 significantly suppressed NiO NPs-induced p38 MAPK pathway activation and inflammatory cytokines changes. Overall, the above results proved that over-expression of lncRNA MEG3 reduced NiO NPs-induced inflammatory damage by preventing the activation of p38 MAPK pathway.


Assuntos
Nanopartículas , RNA Longo não Codificante , Animais , Pulmão/metabolismo , RNA Longo não Codificante/genética , Ratos , Ratos Wistar , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
18.
J Neuroinflammation ; 18(1): 50, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602274

RESUMO

BACKGROUND: The pathological process of traumatic spinal cord injury (SCI) involves excessive activation of microglia leading to the overproduction of proinflammatory cytokines and causing neuronal injury. Sphingosine kinase 1 (Sphk1), a key enzyme responsible for phosphorylating sphingosine into sphingosine-1-phosphate (S1P), plays an important role in mediating inflammation, cell proliferation, survival, and immunity. METHODS: We aim to investigate the mechanism and pathway of the Sphk1-mediated neuroinflammatory response in a rodent model of SCI. Sixty Sprague-Dawley rats were randomly assigned to sham surgery, SCI, or PF543 (a specific Sphk1 inhibitor) groups. Functional outcomes included blinded hindlimb locomotor rating and inclined plane test. RESULTS: We discovered that Sphk1 is upregulated in injured spinal cord tissue of rats after SCI and is associated with production of S1P and subsequent NF-κB p65 activation. PF543 attenuated p65 activation, reduced inflammatory response, and relieved neuronal damage, leading to improved functional recovery. Western blot analysis confirmed that expression of S1P receptor 3 (S1PR3) and phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) are activated in microglia of SCI rats and mitigated by PF543. In vitro, we demonstrated that Bay11-7085 suppressed NF-κB p65 and inhibited amplification of the inflammation cascade by S1P, reducing the release of proinflammatory TNF-α. We further confirmed that phosphorylation of p38 MAPK and activation of NF-κB p65 is inhibited by PF543 and CAY10444. p38 MAPK phosphorylation and NF-κB p65 activation were enhanced by exogenous S1P and inhibited by the specific inhibitor SB204580, ultimately indicating that the S1P/S1PR3/p38 MAPK pathway contributes to the NF-κB p65 inflammatory response. CONCLUSION: Our results demonstrate a critical role of Sphk1 in the post-traumatic SCI inflammatory cascade and present the Sphk1/S1P/S1PR3 axis as a potential target for therapeutic intervention to control neuroinflammation, relieve neuronal damage, and improve functional outcomes in SCI.


Assuntos
Mediadores da Inflamação/metabolismo , Neurônios/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Traumatismos da Medula Espinal/enzimologia , Animais , Feminino , Metanol/farmacologia , Metanol/uso terapêutico , Camundongos , Neurônios/patologia , Células PC12 , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Sulfonas/farmacologia , Sulfonas/uso terapêutico , Vértebras Torácicas/lesões
19.
IUBMB Life ; 73(1): 213-222, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249758

RESUMO

Diabetes mellitus (DM)-induced glucolipotoxicity is a factor strongly contributing to alveolar bone deficiency. Parathyroid hormone (PTH) has been identified as a main systemic mediator to balance physiological calcium in bone. This study aimed to uncover PTH's potential role in ameliorating the osteogenic capacity of human bone marrow mesenchymal stem cells (HBMSCs) against glucolipotoxicity. Optimal PTH concentrations and high glucose and palmitic acid (GP) were administered to cells, followed by alkaline phosphatase (ALP) staining and ALP activity assay. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and Immunoblot were carried out for assessing mRNA and protein amounts, respectively. Cell counting kit-8 (CCK-8) and flow cytometry were performed for quantitating cell proliferation. Osteogenesis and oxidative stress were determined, and the involvement of mitogen-activated protein kinase (MAPK) signaling was further verified. About 1-50 mmol/ml GP significantly inhibited the osteogenic differentiation of HBMSCs. 10-9 mol/L PTH was found to be the optimal concentration for HBMSC induction. PTH had no effects on HBMSC proliferation, with or without GP treatment. PTH reversed inadequate osteogenesis and excessive oxidative stress in GP-treated HBMSCs. Mechanistically, PTH activated p38 MAPK signaling, while inhibiting p38 MAPK-suppressed PTH's beneficial impacts on HBMSCs. Collectively, PTH promotes osteogenic differentiation in HBMSCs against glucolipotoxicity via p38 MAPK signaling.


Assuntos
Glucose/efeitos adversos , Células-Tronco Mesenquimais/citologia , Osteogênese , Ácido Palmítico/efeitos adversos , Hormônio Paratireóideo/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Adulto , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Inibidores Enzimáticos/efeitos adversos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Transdução de Sinais , Edulcorantes/efeitos adversos , Adulto Jovem , Proteínas Quinases p38 Ativadas por Mitógeno/genética
20.
Insect Mol Biol ; 30(3): 325-339, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33538052

RESUMO

The mitogen-activated protein kinase (MAPK) cascade pathway is a ubiquitous signal transduction pathway in eukaryotes that regulates a variety of immune responses. This study accomplished the first isolation of an AccMKK4 gene from Apis cerana cerana and explored its function. Yeast two-hybrid experiments proved that AccMKK4 can interact with Accp38b, and the silencing of AccMKK4 in honeybees downregulated the expression level of Accp38b, which suggests that AccMKK4 might participate in the oxidative stress response through the p38 MAPK pathway. Tissue-specific expression levels of AccMKK4 analysis showed that AccMKK4 in the thorax, particularly muscle tissue, was higher than that in other tissues. The qRT-PCR results from different conditions demonstrated that AccMKK4 responds to various environmental stresses. After AccMKK4 silencing, the transcription level of some antioxidant genes and the activity of antioxidant-related enzymes are reduced, which indicated that AccMKK4 plays an important role in resistance against oxidative stress caused by external stimuli. In summary, our findings indicate that AccMKK4 probably plays an indispensable role in the response of honeybees to environmental stress and might aid for further research on the role of the MAPK cascade pathway in the antioxidant defence mechanisms of insects.


Assuntos
Abelhas/fisiologia , Proteínas de Insetos/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Sequência de Aminoácidos , Animais , Abelhas/genética , Proteínas de Insetos/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Estresse Oxidativo/genética , Filogenia , Alinhamento de Sequência , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA