Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Cell ; 185(19): 3520-3532.e26, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36041435

RESUMO

We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6-12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6-12 residue size range cross membranes with an apparent permeability greater than 1 × 10-6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics.


Assuntos
Amidas , Peptídeos , Amidas/química , Hidrogênio , Ligação de Hidrogênio , Lipídeos , Peptídeos/química
2.
J Biol Chem ; 300(3): 105680, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272230

RESUMO

Migration and invasion enhancer 1 (MIEN1) overexpression characterizes several cancers and facilitates cancer cell migration and invasion. Leveraging conserved immunoreceptor tyrosine-based activation motif and prenylation motifs within MIEN1, we identified potent anticancer peptides. Among them, bioactive peptides LA3IK and RP-7 induced pronounced transcriptomic and protein expression changes at sub-IC50 concentrations. The peptides effectively inhibited genes and proteins driving cancer cell migration, invasion, and epithelial-mesenchymal transition pathways, concurrently suppressing epidermal growth factor-induced nuclear factor kappa B nuclear translocation in metastatic breast cancer cells. Specifically, peptides targeted the same signal transduction pathway initiated by MIEN1. Molecular docking and CD spectra indicated the formation of MIEN1-peptide complexes. The third-positioned isoleucine in LA3IK and CVIL motif in RP-7 were crucial for inhibiting breast cancer cell migration. This is evident from the limited migration inhibition observed when MDA-MB-231 cells were treated with scrambled peptides LA3IK SCR and RP-7 SCR. Additionally, LA3IK and RP-7 effectively suppressed tumor growth in an orthotopic breast cancer model. Notably, mice tolerated high intraperitoneal (ip) peptide doses of 90 mg/Kg well, surpassing significantly lower doses of 5 mg/Kg intravenously (iv) and 30 mg/Kg intraperitoneally (ip) used in both in vivo pharmacokinetic studies and orthotopic mouse model assays. D-isomers of LA3IK and RP-7 showed enhanced anticancer activity compared to their L-isomers. D-LA3IK remained stable in mouse plasma for 24 h with 75% remaining, exhibiting superior pharmacokinetic properties over D/L-RP-7. In summary, our findings mark the first report of short peptides based on MIEN1 protein sequence capable of inhibiting cancer signaling pathways, effectively impeding cancer progression both in vitro and in vivo.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Neoplasias , Animais , Camundongos , Movimento Celular/genética , Proliferação de Células , Transição Epitelial-Mesenquimal , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Humanos , Linhagem Celular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia
3.
Proteins ; 92(1): 76-95, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37646459

RESUMO

Cell invasion is an important process in cancer progression and recurrence. Invasion and implantation of cancer cells from their original place to other tissues, by disabling vital organs, challenges the treatment of cancer patients. Given the importance of the matter, many molecular treatments have been developed to inhibit cancer cell invasion. Because of their low production cost and ease of production, peptides are valuable therapeutic molecules for inhibiting cancer cell invasion. In recent years, advances in the field of computational biology have facilitated the design of anti-cancer peptides. In our investigation, using computational biology approaches such as evolutionary analysis, residue scanning, protein-peptide interaction analysis, molecular dynamics, and free energy analysis, our team designed a peptide library with about 100 000 candidates based on A6 (acetyl-KPSSPPEE-amino) sequence which is an anti-invasion peptide. During computational studies, two of the designed peptides that give the highest scores and showed the greatest sequence similarity to A6 were entered into the experimental analysis workflow for further analysis. In experimental analysis steps, the anti-metastatic potency and other therapeutic effects of designed peptides were evaluated using MTT assay, RT-qPCR, zymography analysis, and invasion assay. Our study disclosed that the IK1 (acetyl-RPSFPPEE-amino) peptide, like A6, has great potency to inhibit the invasion of cancer cells.


Assuntos
Receptores de Ativador de Plasminogênio Tipo Uroquinase , Ativador de Plasminogênio Tipo Uroquinase , Humanos , Ativador de Plasminogênio Tipo Uroquinase/química , Ativador de Plasminogênio Tipo Uroquinase/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/uso terapêutico , Peptídeos/farmacologia , Invasividade Neoplásica
4.
Chemistry ; 30(52): e202400080, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38972842

RESUMO

Protein aggregation correlates with many human diseases. Protein aggregates differ in structure and shape. Strategies to develop effective aggregation inhibitors that reach the clinic failed so far. Here, we developed a family of peptides targeting early aggregation stages for both amorphous and fibrillar aggregates of proteins unrelated in sequence and structure. They act on dynamic precursors before mechanistic differentiation takes place. Using peptide arrays, we first identified peptides inhibiting the amorphous aggregation of a molten globular, aggregation-prone mutant of the Axin tumor suppressor. Optimization revealed that the peptides activity did not depend on their sequences but rather on their molecular determinants: a composition of 20-30 % flexible, 30-40 % aliphatic and 20-30 % aromatic residues, a hydrophobicity/hydrophilicity ratio close to 1, and an even distribution of residues of different nature throughout the sequence. The peptides also suppressed fibrillation of Tau, a disordered protein that forms amyloids in Alzheimer's disease, and slowed down that of Huntingtin Exon1, an amyloidogenic protein in Huntington's disease, both entirely unrelated to Axin. Our compounds thus target early stages of different aggregation mechanisms, inhibiting both amorphous and amyloid aggregation. Such cross-mechanistic, multi-targeting aggregation inhibitors may be lead compounds for developing drug candidates against various protein aggregation diseases.


Assuntos
Peptídeos , Agregados Proteicos , Peptídeos/química , Peptídeos/farmacologia , Agregados Proteicos/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas tau/metabolismo , Proteínas tau/química , Amiloide/química , Amiloide/metabolismo , Amiloide/antagonistas & inibidores , Proteína Huntingtina/química , Proteína Huntingtina/metabolismo , Proteína Axina/química , Proteína Axina/metabolismo , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Sequência de Aminoácidos
5.
J Pept Sci ; 30(3): e3549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37828738

RESUMO

One third of all structurally characterised proteins contain a metal; however, the interplay between metal-binding and peptide/protein folding has yet to be fully elucidated. To better understand how metal binding affects peptide folding, a range of metals should be studied within a specific scaffold. To this end, we modified a histidine-containing coiled-coil peptide to create a cysteine-containing scaffold, named CX3C, which was designed to bind heavy metal ions. In addition, we generated a peptide named CX2C, which contains a binding site more commonly found in natural proteins. Using a combination of analytical techniques including circular dichroism (CD) spectroscopy, UV-Vis spectroscopy and size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), we examined the differences in the metal-binding properties of the two peptides. Both peptides are largely unfolded in the apo state due to the disruption of the hydrophobic core by inclusion of the polar cysteine residues. However, this unfolding is overcome by the addition of Cd(II), Pb(II) and Hg(II), and helical assemblies are formed. Both peptides have differing affinities for these metal ions, a fact likely attributed to the differing sizes of the ions. We also show that the oligomerisation state of the peptide complexes and the coordination geometries of the metal ions differ between the two peptide scaffolds. These findings highlight that subtle changes in the primary structure of a peptide can have considerable implications for metal binding.


Assuntos
Cisteína , Peptídeos , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Peptídeos/química , Proteínas , Metais/química , Metais/metabolismo , Sítios de Ligação , Íons , Dicroísmo Circular
6.
J Pept Sci ; 30(2): e3540, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37690796

RESUMO

The designability of orthogonal coiled coil (CC) dimers, which draw on well-established design rules, plays a pivotal role in fueling the development of CCs as synthetically versatile assembly-directing motifs for the fabrication of bionanomaterials. Here, we aim to expand the synthetic CC toolkit through establishing a "minimalistic" set of orthogonal, de novo CC peptides that comprise 3.5 heptads in length and a single buried Asn to prescribe dimer formation. The designed sequences display excellent partner fidelity, confirmed via circular dichroism (CD) spectroscopy and Ni-NTA binding assays, and are corroborated in silico using molecular dynamics (MD) simulation. Detailed analysis of the MD conformational data highlights the importance of interhelical E@g-N@a interactions in coordinating an extensive 6-residue hydrogen bonding network that "locks" the interchain Asn-Asn' contact in place. The enhanced stability imparted to the Asn-Asn' bond elicits an increase in thermal stability of CCs up to ~15°C and accounts for significant differences in stability within the collection of similarly designed orthogonal CC pairs. The presented work underlines the utility of MD simulation as a tool for constructing de novo, orthogonal CCs, and presents an alternative handle for modulating the stability of orthogonal CCs via tuning the number of interhelical E@g-N@a contacts. Expansion of CC design rules is a key ingredient for guiding the design and assembly of more complex, intricate CC-based architectures for tackling a variety of challenges within the fields of nanomedicine and bionanotechnology.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos , Sequência de Aminoácidos , Estrutura Secundária de Proteína , Peptídeos/química , Domínios Proteicos , Dicroísmo Circular
7.
Chem Pharm Bull (Tokyo) ; 72(2): 155-160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296557

RESUMO

Peptides have recently garnered attention as middle-molecular-weight drugs with the characteristics of small molecules and macromolecules. Lysine-specific demethylase 1 (LSD1) is a potential therapeutic target for lung cancer, neuroblastoma, and leukemia, and some peptide-based LSD1 inhibitors designed based on the N-terminus of SNAIL1, a member of the SNAIL/SCRATCH family of transcription factors, have been reported. The N-terminus of SNAIL1 peptide acts as a cap of the catalytic site of LSD1, inhibiting interactions with LSD1. However, the structure-activity relationship (SAR) of these inhibitors is not yet fully understood. Therefore, in the present study, we aimed to uncover the SAR and to identify novel SNAIL1 peptide-based LSD1 inhibitors. We synthesized peptide inhibitor candidates based on truncating the N-terminus of SNAIL1 or substituting its amino acid residues. In the truncation study, we found that SNAIL1 1-16 (2), which was composed of 16 residues, strongly inhibited LSD1. Furthermore, we investigated the SAR at residues-3 and -5 from the N-terminus and found that peptides 2j and 2k, in which leucine 5 of the parent peptide is substituted with unnatural amino acids, cyclohexylalanine and norleucine, respectively, strongly inhibited LSD1. This result suggests that the hydrophobic interaction between the inhibitor peptides and LSD1 affects the LSD1-inhibitory activity. We believe that this SAR information provides a basis for the development of more potent LSD1 inhibitors.


Assuntos
Inibidores Enzimáticos , Lisina , Lisina/química , Inibidores Enzimáticos/química , Peptídeos/farmacologia , Peptídeos/química , Relação Estrutura-Atividade , Aminoácidos , Histona Desmetilases
8.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256184

RESUMO

The 21-residue peptide α3, which is artificially designed and consists of three repeats of 7 residues, is known to rapidly assemble into the α-helix nanofiber. However, its molecular structure within the fiber has not yet been fully elucidated. Thus, we conducted a thorough investigation of the fiber's molecular structure using solid-state NMR and other techniques. The molecules were found to be primarily composed of the α-helix structure, with some regions near the C- and N-terminal adopting a 310-helix structure. Furthermore, it was discovered that ß-sheet hydrogen bonds were formed between the molecules at both ends. These intermolecular interactions caused the molecules to assemble parallelly in the same direction, forming helical fibers. In contrast, we designed two molecules, CaRP2 and ßKE, that can form ß-sheet intermolecular hydrogen bonds using the entire molecule instead of just the ends. Cryo-EM and other measurements confirmed that the nanofibers formed in a cross ß structure, albeit at a slow rate, with the formation times ranging from 1 to 42 days. To create peptide nanofibers that instantaneously respond to changes in the external environment, we designed several molecules (HDM1-3) based on α3 by introducing metal-binding sites. One of these molecules was found to be highly responsive to the addition of metal ions, inducing α-helix formation and simultaneously assembling into nanofibers. The nanofibers lost their structure upon removal of the metal ion. The change occurred promptly and was reversible, demonstrating that the intended level of responsiveness was attained.


Assuntos
Nanofibras , Microscopia Crioeletrônica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Peptídeos , Espectroscopia de Ressonância Magnética
9.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39201537

RESUMO

Peptides are bioactive molecules whose functional versatility in living organisms has led to successful applications in diverse fields. In recent years, the amount of data describing peptide sequences and function collected in open repositories has substantially increased, allowing the application of more complex computational models to study the relations between the peptide composition and function. This work introduces AMP-Detector, a sequence-based classification model for the detection of peptides' functional biological activity, focusing on accelerating the discovery and de novo design of potential antimicrobial peptides (AMPs). AMP-Detector introduces a novel sequence-based pipeline to train binary classification models, integrating protein language models and machine learning algorithms. This pipeline produced 21 models targeting antimicrobial, antiviral, and antibacterial activity, achieving average precision exceeding 83%. Benchmark analyses revealed that our models outperformed existing methods for AMPs and delivered comparable results for other biological activity types. Utilizing the Peptide Atlas, we applied AMP-Detector to discover over 190,000 potential AMPs and demonstrated that it is an integrative approach with generative learning to aid in de novo design, resulting in over 500 novel AMPs. The combination of our methodology, robust models, and a generative design strategy offers a significant advancement in peptide-based drug discovery and represents a pivotal tool for therapeutic applications.


Assuntos
Peptídeos Antimicrobianos , Aprendizado de Máquina , Peptídeos Antimicrobianos/química , Peptídeos Antimicrobianos/farmacologia , Algoritmos , Descoberta de Drogas/métodos , Sequência de Aminoácidos , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biologia Computacional/métodos
10.
Angew Chem Int Ed Engl ; : e202410237, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151024

RESUMO

The gut-derived peptide hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) play important physiological roles. Stabilized agonists of the GLP-1 receptor (GLP-1R) and the GIP receptor (GIPR) for the management of diabetes and obesity have generated widespread enthusiasm and have become blockbuster drugs. These therapeutics are refractory to the action of dipeptidyl peptidase-4 (DPP4), that catalyzes rapid removal of the two N-terminal residues of the native peptides, in turn severely diminishing their activity profiles.  Here we report that a single atom change from carbon to nitrogen in the backbone of the entire peptide make them refractory to DPP4 action while still retaining full potency and efficacy at their respective receptors.  This was accomplished by use of aza-amino acids, that are bioisosteric replacements for a-amino acids that perturb the structural backbone and local side chain conformations.  Molecular dynamics simulations reveal that aza-amino acid can populate the same conformational space that GLP-1 adopts when bound to the GLP-1R. The insertion of an aza-amino acid at the second position from the N-terminus in semaglutide and in a dual agonist of GLP-1R and GIPR further demonstrates its capability as a viable alternative to current DPP4 resistance strategies while offering additional structural variety.

11.
Small ; 19(3): e2204428, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36417574

RESUMO

Recent developments in antimicrobial peptides (AMPs) have focused on the rational design of short sequences with less than 20 amino acids due to their relatively low synthesis costs and ease of correlation of the structure-function relationship. However, gaps remain in the understanding of how short cationic AMPs interact with the bacterial outer and inner membranes to affect their antimicrobial efficacy and dynamic killing. The membrane-lytic actions of two designed AMPs, G(IIKK)3 I-NH2 (G3 ) and G(IIKK)4 I-NH2 (G4 ), and previously-studied controls GLLDLLKLLLKAAG-NH2 (LDKA, biomimetic) and GIGAVLKVLTTGLPALISWIKRKR-NH2 (Melittin, natural) are examined. The mechanistic processes of membrane damage and the disruption strength of the four AMPs are characterized by molecular dynamics simulations and experimental measurements including neutron reflection and scattering. The results from the combined studies are characterized with distinctly different intramembrane nanoaggregates formed upon AMP-specific binding, reflecting clear influences of AMP sequence, charge and the chemistry of the inner and outer membranes. G3 and G4 display different nanoaggregation with the outer and inner membranes, and the smaller sizes and further extent of insertion of the intramembrane nanoaggregates into bacterial membranes correlate well with their greater antimicrobial efficacy and faster dynamic killing. This work demonstrates the crucial roles of intramembrane nanoaggregates in optimizing antimicrobial efficacy and dynamic killing.


Assuntos
Anti-Infecciosos , Peptídeos Antimicrobianos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Anti-Infecciosos/farmacologia , Bactérias , Simulação de Dinâmica Molecular
12.
Biochem J ; 479(12): 1285-1302, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35638868

RESUMO

Fibroblast Growth Factor/FGF Receptor 1 (FGF2/FGFR1) system regulates the growth and metastasis of different cancers. Inhibition of this signaling pathway is an attractive target for cancer therapy. Here, we aimed to reproduce the 118-126 fragment of FGF2 to interfere with the FGF2-FGFR1 interaction. To determine whether the loop structure affects the function of this fragment, we compared cyclic (disulfide-bonded) and linear peptide variants. The cyclic peptide (referred to as BGF1) effectively inhibited the FGF2-induced proliferation of HUVECs, 4T1 mammary carcinoma, U87 glioblastoma, and SKOV3 ovarian carcinoma cells. It led to apoptosis induction in HUVECs, whereas the linear peptide (referred to as BGF2) was ineffective. In a murine 4T1 tumor model, BGF1 inhibited tumor growth more effectively than Avastin and increased animals' survival without causing weight loss, but the linear peptide BGF2 had no significant anti-tumor effects. According to immunohistochemical studies, the anti-tumor properties of BGF1 were associated with suppression of tumor cell proliferation (Ki-67 expression), angiogenesis (CD31 expression), and apoptosis induction (as was shown by increased p53 expression and TUNEL staining and decreased Bcl-2 expression). The potential of BGF1 to suppress tumor invasion was indicated by quantitative analysis of the metastasis-related proteins, including FGFR1, pFGFR1, NF-κB, p-NF-κB, MMP-9, E-cadherin, N-cadherin, and Vimentin, and supported by small animal positron emission tomography (PET) used 18Fluorodeoxyglucose (18F-FDG). These results demonstrate that the functional properties of the 118-126 region of FGF2 depend on the loop structure and the peptide derived from this fragment encourages further preclinical investigations.


Assuntos
Neoplasias da Mama , Fator 2 de Crescimento de Fibroblastos , Animais , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Fator 2 de Crescimento de Fibroblastos/farmacologia , Humanos , Camundongos , NF-kappa B , Peptídeos/farmacologia
13.
Proc Natl Acad Sci U S A ; 117(29): 17211-17220, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32611811

RESUMO

The bacterial second messenger cyclic diguanylate (c-di-GMP) regulates a wide range of cellular functions from biofilm formation to growth and survival. Targeting a second-messenger network is challenging because the system involves a multitude of components with often overlapping functions. Here, we present a strategy to intercept c-di-GMP signaling pathways by directly targeting the second messenger. For this, we developed a c-di-GMP-sequestering peptide (CSP) that was derived from a CheY-like c-di-GMP effector protein. CSP binds c-di-GMP with submicromolar affinity. The elucidation of the CSP⋅c-di-GMP complex structure by NMR identified a linear c-di-GMP-binding motif, in which a self-intercalated c-di-GMP dimer is tightly bound by a network of H bonds and π-stacking interactions involving arginine and aromatic residues. Structure-based mutagenesis yielded a variant with considerably higher, low-nanomolar affinity, which subsequently was shortened to 19 residues with almost uncompromised affinity. We demonstrate that endogenously expressed CSP intercepts c-di-GMP signaling and effectively inhibits biofilm formation in Pseudomonas aeruginosa, the most widely used model for serious biofilm-associated medical implications.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Peptídeos/metabolismo , Sistemas do Segundo Mensageiro , Transdução de Sinais , Biofilmes/crescimento & desenvolvimento , Proteínas de Escherichia coli , Modelos Moleculares , Mutagênese , Peptídeos/química , Peptídeos/genética , Mutação Puntual , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/metabolismo
14.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686057

RESUMO

More than 930,000 protein-protein interactions (PPIs) have been identified in recent years, but their physicochemical properties differ from conventional drug targets, complicating the use of conventional small molecules as modalities. Cyclic peptides are a promising modality for targeting PPIs, but it is difficult to predict the structure of a target protein-cyclic peptide complex or to design a cyclic peptide sequence that binds to the target protein using computational methods. Recently, AlphaFold with a cyclic offset has enabled predicting the structure of cyclic peptides, thereby enabling de novo cyclic peptide designs. We developed a cyclic peptide complex offset to enable the structural prediction of target proteins and cyclic peptide complexes and found AlphaFold2 with a cyclic peptide complex offset can predict structures with high accuracy. We also applied the cyclic peptide complex offset to the binder hallucination protocol of AfDesign, a de novo protein design method using AlphaFold, and we could design a high predicted local-distance difference test and lower separated binding energy per unit interface area than the native MDM2/p53 structure. Furthermore, the method was applied to 12 other protein-peptide complexes and one protein-protein complex. Our approach shows that it is possible to design putative cyclic peptide sequences targeting PPI.


Assuntos
Sistemas de Liberação de Medicamentos , Peptídeos Cíclicos , Excipientes , Aparelhos Ortopédicos
15.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833918

RESUMO

Antimicrobial peptides have gradually attracted interest as promising alternatives to conventional agents to control the worldwide health threats posed by antibiotic resistance and cancer. Crabrolin is a tridecapeptide extracted from the venom of the European hornet (Vespa crabro). Its antibacterial and anticancer potentials have been underrated compared to other peptides discovered from natural resources. Herein, a series of analogs were designed based on the template sequence of crabrolin to study its structure-activity relationship and enhance the drug's potential by changing the number, type, and distribution of charged residues. The cationicity-enhanced derivatives were shown to have improved antibacterial and anticancer activities with a lower toxicity. Notably, the double-arginine-modified product, crabrolin-TR, possessed a potent capacity against Pseudomonas aeruginosa (minimum inhibitory concentration (MIC) = 4 µM), which was around thirty times stronger than the parent peptide (MIC = 128 µM). Furthermore, crabrolin-TR showed an in vivo treatment efficacy in a Klebsiella-pneumoniae-infected waxworm model and was non-toxic under its maximum MBC value (MIC = 8 µM), indicating its therapeutic potency and better selectivity. Overall, we rationally designed functional peptides by progressively increasing the number and distribution of charged residues, demonstrating new insights for developing therapeutic molecules from natural resources with enhanced properties, and proposed crabrolin-TR as an appealing antibacterial and anticancer agent candidate for development.


Assuntos
Peptídeos Antimicrobianos , Vespas , Animais , Peptídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Venenos de Vespas/química , Testes de Sensibilidade Microbiana
16.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982723

RESUMO

The demand for new molecules to counter bacterial resistance to antibiotics and tumor cell resistance is increasingly pressing. The Mediterranean seagrass Posidonia oceanica is considered a promising source of new bioactive molecules. Polypeptide-enriched fractions of rhizomes and green leaves of the seagrass were tested against Gram-positive (e.g., Staphylococcus aureus, Enterococcus faecalis) and Gram-negative bacteria (e.g., Pseudomonas aeruginosa, Escherichia coli), as well as towards the yeast Candida albicans. The aforementioned extracts showed indicative MIC values, ranging from 1.61 µg/mL to 7.5 µg/mL, against the selected pathogens. Peptide fractions were further analyzed through a high-resolution mass spectrometry and database search, which identified nine novel peptides. Some discovered peptides and their derivatives were chemically synthesized and tested in vitro. The assays identified two synthetic peptides, derived from green leaves and rhizomes of P. oceanica, which revealed interesting antibiofilm activity towards S. aureus, E. coli, and P. aeruginosa (BIC50 equal to 17.7 µg/mL and 70.7 µg/mL). In addition, the natural and derivative peptides were also tested for potential cytotoxic and apoptosis-promoting effects on HepG2 cells, derived from human hepatocellular carcinomas. One natural and two synthetic peptides were proven to be effective against the "in vitro" liver cancer cell model. These novel peptides could be considered a good chemical platform for developing potential therapeutics.


Assuntos
Alismatales , Neoplasias , Humanos , Staphylococcus aureus , Escherichia coli , Peptídeos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Pseudomonas aeruginosa , Alismatales/química , Testes de Sensibilidade Microbiana
17.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047325

RESUMO

Overcoming the short lifespan of current dental adhesives remains a significant clinical need. Adhesives rely on formation of the hybrid layer to adhere to dentin and penetrate within collagen fibrils. However, the ability of adhesives to achieve complete enclosure of demineralized collagen fibrils is recognized as currently unattainable. We developed a peptide-based approach enabling collagen intrafibrillar mineralization and tested our hypothesis on a type-I collagen-based platform. Peptide design incorporated collagen-binding and remineralization-mediating properties using the domain structure conservation approach. The structural changes from representative members of different peptide clusters were generated for each functional domain. Common signatures associated with secondary structure features and the related changes in the functional domain were investigated by attenuated total reflectance Fourier-transform infrared (ATR-FTIR) and circular dichroism (CD) spectroscopy, respectively. Assembly and remineralization properties of the peptides on the collagen platforms were studied using atomic force microscopy (AFM). Mechanical properties of the collagen fibrils remineralized by the peptide assemblies was studied using PeakForce-Quantitative Nanomechanics (PF-QNM)-AFM. The engineered peptide was demonstrated to offer a promising route for collagen intrafibrillar remineralization. This approach offers a collagen platform to develop multifunctional strategies that combine different bioactive peptides, polymerizable peptide monomers, and adhesive formulations as steps towards improving the long-term prospects of composite resins.


Assuntos
Biomimética , Colágeno , Microscopia Eletrônica de Transmissão , Colágeno/química , Colágeno Tipo I/análise , Peptídeos/análise , Dentina/química
18.
Int J Mol Sci ; 24(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37240379

RESUMO

Antimicrobial peptides (AMPs), or host defence peptides, are short proteins in various life forms. Here we discuss AMPs, which may become a promising substitute or adjuvant in pharmaceutical, biomedical, and cosmeceutical uses. Their pharmacological potential has been investigated intensively, especially as antibacterial and antifungal drugs and as promising antiviral and anticancer agents. AMPs exhibit many properties, and some of these have attracted the attention of the cosmetic industry. AMPs are being developed as novel antibiotics to combat multidrug-resistant pathogens and as potential treatments for various diseases, including cancer, inflammatory disorders, and viral infections. In biomedicine, AMPs are being developed as wound-healing agents because they promote cell growth and tissue repair. The immunomodulatory effects of AMPs could be helpful in the treatment of autoimmune diseases. In the cosmeceutical industry, AMPs are being investigated as potential ingredients in skincare products due to their antioxidant properties (anti-ageing effects) and antibacterial activity, which allows the killing of bacteria that contribute to acne and other skin conditions. The promising benefits of AMPs make them a thrilling area of research, and studies are underway to overcome obstacles and fully harness their therapeutic potential. This review presents the structure, mechanisms of action, possible applications, production methods, and market for AMPs.


Assuntos
Peptídeos Antimicrobianos , Cosmecêuticos , Cosmecêuticos/farmacologia , Cosmecêuticos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/química , Antibacterianos/farmacologia , Bactérias
19.
Molecules ; 28(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687259

RESUMO

Although loop epitopes at protein-protein binding interfaces often play key roles in mediating oligomer formation and interaction specificity, their binding sites are underexplored as drug targets owing to their high flexibility, relatively few hot spots, and solvent accessibility. Prior attempts to develop molecules that mimic loop epitopes to disrupt protein oligomers have had limited success. In this study, we used structure-based approaches to design and optimize cyclic-constrained peptides based on loop epitopes at the human phosphoglycerate dehydrogenase (PHGDH) dimer interface, which is an obligate homo-dimer with activity strongly dependent on the oligomeric state. The experimental validations showed that these cyclic peptides inhibit PHGDH activity by directly binding to the dimer interface and disrupting the obligate homo-oligomer formation. Our results demonstrate that loop epitope derived cyclic peptides with rationally designed affinity-enhancing substitutions can modulate obligate protein homo-oligomers, which can be used to design peptide inhibitors for other seemingly intractable oligomeric proteins.


Assuntos
Dermatite , Fosfoglicerato Desidrogenase , Humanos , Fosfoglicerato Desidrogenase/genética , Peptídeos Cíclicos/farmacologia , Sítios de Ligação , Epitopos , Polímeros
20.
Angew Chem Int Ed Engl ; 62(7): e202213362, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36542066

RESUMO

AlphaFold has revolutionized structural biology by predicting highly accurate structures of proteins and their complexes with peptides and other proteins. However, for protein-peptide systems, we are also interested in identifying the highest affinity binder among a set of candidate peptides. We present a novel competitive binding assay using AlphaFold to predict structures of the receptor in the presence of two peptides. For systems in which the individual structures of the peptides are well predicted, the assay captures the higher affinity binder in the bound state, and the other peptide in the unbound form with statistical significance. We test the application on six protein receptors for which we have experimental binding affinities to several peptides. We find that the assay is best suited for identifying medium to strong peptide binders that adopt stable secondary structures upon binding.


Assuntos
Peptídeos , Proteínas , Ligação Proteica , Peptídeos/química , Proteínas/química , Proteínas de Transporte/metabolismo , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA