Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.696
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 53(2): 417-428.e4, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32735844

RESUMO

Psychological stress has adverse effects on various human diseases, including those of the cardiovascular system. However, the mechanisms by which stress influences disease activity remain unclear. Here, using vaso-occlusive episodes (VOEs) of sickle cell disease as a vascular disease model, we show that stress promotes VOEs by eliciting a glucocorticoid hormonal response that augments gut permeability, leading to microbiota-dependent interleukin-17A (IL-17A) secretion from T helper 17 (Th17) cells of the lamina propria, followed by the expansion of the circulating pool of aged neutrophils that trigger VOEs. We identify segmented filamentous bacteria as the commensal essential for the stress-induced expansion of aged neutrophils that enhance VOEs in mice. Importantly, the inhibition of glucocorticoids synthesis, blockade of IL-17A, or depletion of the Th17 cell-inducing gut microbiota markedly reduces stress-induced VOEs. These results offer potential therapeutic targets to limit the impact of psychological stress on acute vascular occlusion.


Assuntos
Anemia Falciforme/patologia , Microbioma Gastrointestinal/imunologia , Interleucina-17/metabolismo , Estresse Psicológico/patologia , Células Th17/imunologia , Anemia Falciforme/psicologia , Animais , Bactérias/imunologia , Linhagem Celular , Vida Livre de Germes , Glucocorticoides/biossíntese , Fator Estimulador de Colônias de Granulócitos/metabolismo , Células HEK293 , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Inflamação/imunologia , Inflamação/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia
2.
Mol Cell ; 77(3): 656-668.e5, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004469

RESUMO

Class B G protein-coupled receptors (GPCRs) are important therapeutic targets for major diseases. Here, we present structures of peptide and Gs-bound pituitary adenylate cyclase-activating peptide, PAC1 receptor, and corticotropin-releasing factor (CRF), (CRF1) receptor. Together with recently solved structures, these provide coverage of the major class B GPCR subfamilies. Diverse orientations of the extracellular domain to the receptor core in different receptors are at least partially dependent on evolutionary conservation in the structure and nature of peptide interactions. Differences in peptide interactions to the receptor core also influence the interlinked TM2-TM1-TM6/ECL3/TM7 domain, and this is likely important in their diverse signaling. However, common conformational reorganization of ECL2, linked to reorganization of ICL2, modulates G protein contacts. Comparison between receptors reveals ICL2 as a key domain forming dynamic G protein interactions in a receptor- and ligand-specific manner. This work advances our understanding of class B GPCR activation and Gs coupling.


Assuntos
Receptores de Hormônio Liberador da Corticotropina/ultraestrutura , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/ultraestrutura , Sequência de Aminoácidos , Microscopia Crioeletrônica/métodos , Encefalinas , Humanos , Ligantes , Modelos Moleculares , Peptídeos , Precursores de Proteínas , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transdução de Sinais
3.
Mol Cell ; 75(5): 982-995.e9, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31444106

RESUMO

Long non-coding RNAs (lncRNAs) are key regulatory molecules, but unlike with other RNAs, the direct link between their tertiary structure motifs and their function has proven elusive. Here we report structural and functional studies of human maternally expressed gene 3 (MEG3), a tumor suppressor lncRNA that modulates the p53 response. We found that, in an evolutionary conserved region of MEG3, two distal motifs interact by base complementarity to form alternative, mutually exclusive pseudoknot structures ("kissing loops"). Mutations that disrupt these interactions impair MEG3-dependent p53 stimulation in vivo and disrupt MEG3 folding in vitro. These findings provide mechanistic insights into regulation of the p53 pathway by MEG3 and reveal how conserved motifs of tertiary structure can regulate lncRNA biological function.


Assuntos
Genes Supressores de Tumor , Motivos de Nucleotídeos , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células HCT116 , Humanos , Dobramento de RNA , RNA Longo não Codificante/genética , Proteína Supressora de Tumor p53/genética
4.
Proc Natl Acad Sci U S A ; 120(43): e2308489120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844254

RESUMO

The circadian clock is a biological timekeeping system that oscillates with a circa-24-h period, reset by environmental timing cues, especially light, to the 24-h day-night cycle. In mammals, a "central" clock in the hypothalamic suprachiasmatic nucleus (SCN) synchronizes "peripheral" clocks throughout the body to regulate behavior, metabolism, and physiology. A key feature of the clock's oscillation is resistance to abrupt perturbations, but the mechanisms underlying such robustness are not well understood. Here, we probe clock robustness to unexpected photic perturbation by measuring the speed of reentrainment of the murine locomotor rhythm after an abrupt advance of the light-dark cycle. Using an intersectional genetic approach, we implicate a critical role for arginine vasopressin pathways, both central within the SCN and peripheral from the anterior pituitary.


Assuntos
Relógios Circadianos , Camundongos , Animais , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/metabolismo , Vasopressinas/metabolismo , Fotoperíodo , Mamíferos/metabolismo
5.
J Biol Chem ; 300(4): 107157, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479600

RESUMO

The aryl hydrocarbon receptor (AhR)-interacting protein (AIP) is a ubiquitously expressed, immunophilin-like protein best known for its role as a co-chaperone in the AhR-AIP-Hsp90 cytoplasmic complex. In addition to regulating AhR and the xenobiotic response, AIP has been linked to various aspects of cancer and immunity that will be the focus of this review article. Loss-of-function AIP mutations are associated with pituitary adenomas, suggesting that AIP acts as a tumor suppressor in the pituitary gland. However, the tumor suppressor mechanisms of AIP remain unclear, and AIP can exert oncogenic functions in other tissues. While global deletion of AIP in mice yields embryonically lethal cardiac malformations, heterozygote, and tissue-specific conditional AIP knockout mice have revealed various physiological roles of AIP. Emerging studies have established the regulatory roles of AIP in both innate and adaptive immunity. AIP interacts with and inhibits the nuclear translocation of the transcription factor IRF7 to inhibit type I interferon production. AIP also interacts with the CARMA1-BCL10-MALT1 complex in T cells to enhance IKK/NF-κB signaling and T cell activation. Taken together, AIP has diverse functions that vary considerably depending on the client protein, the tissue, and the species.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias , Receptores de Hidrocarboneto Arílico , Animais , Humanos , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Camundongos , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/imunologia , Imunidade Inata
6.
Annu Rev Med ; 74: 75-88, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36151047

RESUMO

The multifaceted interaction between coronavirus disease 2019 (COVID-19) and the endocrine system has been a major area of scientific research over the past two years. While common endocrine/metabolic disorders such as obesity and diabetes have been recognized among significant risk factors for COVID-19 severity, several endocrine organs were identified to be targeted by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). New-onset endocrine disorders related to COVID-19 were reported while long-term effects, if any, are yet to be determined. Meanwhile, the "stay home" measures during the pandemic caused interruption in the care of patients with pre-existing endocrine disorders and may have impeded the diagnosis and treatment of new ones. This review aims to outline this complex interaction between COVID-19 and endocrine disorders by synthesizing the current scientific knowledge obtained from clinical and pathophysiological studies, and to emphasize considerations for future research.


Assuntos
COVID-19 , Diabetes Mellitus , Humanos , SARS-CoV-2 , Diabetes Mellitus/epidemiologia , Diabetes Mellitus/terapia , Fatores de Risco
7.
Am J Hum Genet ; 109(4): 553-570, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35202564

RESUMO

X-linked acrogigantism (X-LAG) is the most severe form of pituitary gigantism and is characterized by aggressive growth hormone (GH)-secreting pituitary tumors that occur in early childhood. X-LAG is associated with chromosome Xq26.3 duplications (the X-LAG locus typically includes VGLL1, CD40LG, ARHGEF6, RBMX, and GPR101) that lead to massive pituitary tumoral expression of GPR101, a novel regulator of GH secretion. The mechanism by which the duplications lead to marked pituitary misexpression of GPR101 alone was previously unclear. Using Hi-C and 4C-seq, we characterized the normal chromatin structure at the X-LAG locus. We showed that GPR101 is located within a topologically associating domain (TAD) delineated by a tissue-invariant border that separates it from centromeric genes and regulatory sequences. Next, using 4C-seq with GPR101, RBMX, and VGLL1 viewpoints, we showed that the duplications in multiple X-LAG-affected individuals led to ectopic interactions that crossed the invariant TAD border, indicating the existence of a similar and consistent mechanism of neo-TAD formation in X-LAG. We then identified several pituitary active cis-regulatory elements (CREs) within the neo-TAD and demonstrated in vitro that one of them significantly enhanced reporter gene expression. At the same time, we showed that the GPR101 promoter permits the incorporation of new regulatory information. Our results indicate that X-LAG is a TADopathy of the endocrine system in which Xq26.3 duplications disrupt the local chromatin architecture forming a neo-TAD. Rewiring GPR101-enhancer interaction within the new regulatory unit is likely to cause the high levels of aberrant expression of GPR101 in pituitary tumors caused by X-LAG.


Assuntos
Acromegalia , Doenças Genéticas Ligadas ao Cromossomo X , Gigantismo , Neoplasias Hipofisárias , Acromegalia/complicações , Acromegalia/genética , Acromegalia/patologia , Pré-Escolar , Cromatina/genética , Comunicação , Proteínas de Ligação a DNA/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Gigantismo/complicações , Gigantismo/genética , Gigantismo/patologia , Humanos , Neoplasias Hipofisárias/genética , Receptores Acoplados a Proteínas G/genética , Fatores de Transcrição/genética
8.
FASEB J ; 38(13): e23744, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885031

RESUMO

The hypothalamic-pituitary-gonadal axis (HPG) is the key neuroendocrine axis involved in reproductive regulation. Brain and muscle ARNT-like protein 1 (Bmal1) participates in regulating the metabolism of various endocrine hormones. However, the regulation of Bmal1 on HPG and female fertility is unclear. This study aims to explore the regulation of female reproduction by Bmal1 via the HPG axis in mice. Bmal1-knockout (Ko) mice were generated using the CRISPR/Cas9 technology. The structure, function, and estrous cycle of ovarian in Bmal1 Ko female mice were measured. The key genes and proteins of the HPG axis involved in regulating female reproduction were examined through transcriptome analysis and then verified by RT-PCR, immunohistochemistry, and western blot. Furthermore, the fertility of female mice was detected after intervening prolactin (PRL) and progesterone (Pg) in Bmal1 ko mice. The number of offspring and ovarian weight were significantly lower in Bmal1-Ko mice than in wild-type (Wt) mice. In Bmal1-Ko mice, ovarian cells were arranged loosely and irregularly, and the total number of follicles was significantly reduced. No corpus luteum was found in the ovaries. Vaginal smears revealed that Bmal1-Ko mice had an irregular estrus cycle. In Bmal1-Ko mice, Star expression was decreased, PRL and luteinizing hormone (LH) levels were increased, and dopamine (DA) and Pg levels were decreased. Inhibition of PRL partially recovered the estrous cycle, corpus luteum formation, and Star expression in the ovaries. Pg supplementation promoted embryo implantation in Bmal1-Ko female mice. Bmal1 Ko increases serum PRL levels in female mice likely by reducing DA levels, thus affecting luteal formation, resulting in decreased Star expression and Pg production, hindering female reproduction. Inhibition of PRL or restoration of Pg can partially restore reproductive capacity in female Bmal1-Ko mice. Thus, Bmal1 may regulate female reproduction via the HPG axis in mice, suggesting that Bmal1 is a potential target to treat female infertility.


Assuntos
Fatores de Transcrição ARNTL , Sistema Hipotálamo-Hipofisário , Ovário , Reprodução , Animais , Feminino , Camundongos , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/genética , Ciclo Estral , Fertilidade , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovário/metabolismo , Progesterona/metabolismo , Prolactina/metabolismo
9.
FASEB J ; 38(4): e23469, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38358361

RESUMO

The adenopituitary secretes follicle-stimulating hormone (FSH), which plays a crucial role in regulating the growth, development, and reproductive functions of organisms. Investigating the process of FSH synthesis and secretion can offer valuable insights into potential areas of focus for reproductive research. Epidermal growth factor (EGF) is a significant paracrine/autocrine factor within the body, and studies have demonstrated its ability to stimulate FSH secretion in animals. However, the precise mechanisms that regulate this action are still poorly understood. In this research, in vivo and in vitro experiments showed that the activation of epidermal growth factor receptor (EGFR) by EGF induces the upregulation of miR-27b-3p and that miR-27b-3p targets and inhibits Foxo1 mRNA expression, resulting in increased FSH synthesis and secretion. In summary, this study elucidates the precise molecular mechanism through which EGF governs the synthesis and secretion of FSH via the EGFR/miR-27b-3p/FOXO1 pathway.


Assuntos
Fator de Crescimento Epidérmico , MicroRNAs , Animais , Ratos , Transporte Biológico , Receptores ErbB/genética , Hormônio Foliculoestimulante , MicroRNAs/genética
10.
Exp Cell Res ; 439(1): 114011, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531506

RESUMO

Sex determination embodies a dynamic and intricate developmental process wielding significant influence over the destiny of bipotential gonads, steering them towards male or female gonads. Gonadal differentiation and the postnatal manifestation of the gonadal phenotype involve a sophisticated interplay of transcription factors such as SOX9 and FOXL2. Central to this interplay are chromatin modifiers regulating the mutual antagonism during this interplay. In this review, the key findings and knowledge gaps in DNA methylation, histone modification, and non-coding RNA-mediated control throughout mammalian gonadal development are covered. Furthermore, it explores the role of the developing brain in playing a pivotal role in the initiation of gonadogenesis and the subsequent involvement of gonadal hormone/hormone receptor in fine-tuning sexual differentiation. Based on promising facts, the role of the developing brain through the hypothalamic pituitary gonadal axis is explained and suggested as a novel hypothesis. The article also discusses the potential impact of ecological factors on the human epigenome in relation to sex determination and trans-generational epigenetics in uncovering novel genes and mechanisms involved in sex determination and gonadal differentiation. We have subtly emphasized the disruptions in epigenetic regulations contributing to sexual disorders, which further allows us to raise certain questions, decipher approaches for handling these questions and setting up the direction of future research.


Assuntos
Epigênese Genética , Mamíferos , Processos de Determinação Sexual , Processos de Determinação Sexual/genética , Humanos , Epigênese Genética/genética , Animais , Mamíferos/genética , Gônadas/metabolismo , Metilação de DNA/genética , Diferenciação Sexual/genética , Feminino , Masculino
11.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38610089

RESUMO

The pituitary gland plays an important role in the stress response mechanism. Given the direct link between adjustment disorder and stress, we hypothesized that there might be changes in the pituitary gland in these patients. The study comprised a patient group of 19 individuals with adjustment disorder according to the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition, and 18 healthy controls. The mean pituitary gland volumes of the patient group were not statistically significantly different from those of the healthy control group (80.81 ± 1.82 mm3 in patients with adjustment disorder vs. 81.10 ± 7.04 mm3 in healthy controls, with a statistically nonsignificant difference of P > 0.05). This finding is contrary to our previous findings in anxiety-related disorders. In this regard, adjustment disorder is not similar to anxiety-related disorders in terms of pituitary gland volumes. We should also clearly state that our study is a pioneering study and that studies with large samples are needed to support our findings. The limitations of our study can be attributed to the small sample size, the utilization of a cross-sectional design, and the inclusion of patients using psychotropic drugs.


Assuntos
Transtornos de Adaptação , Hipófise , Humanos , Estudos Transversais , Hipófise/diagnóstico por imagem , Manual Diagnóstico e Estatístico de Transtornos Mentais , Nível de Saúde
12.
BMC Biol ; 22(1): 104, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702712

RESUMO

BACKGROUND: Gonadotropin precisely controls mammalian reproductive activities. Systematic analysis of the mechanisms by which epigenetic modifications regulate the synthesis and secretion of gonadotropin can be useful for more precise regulation of the animal reproductive process. Previous studies have identified many differential m6A modifications in the GnRH-treated adenohypophysis. However, the molecular mechanism by which m6A modification regulates gonadotropin synthesis and secretion remains unclear. RESULTS: Herein, it was found that GnRH can promote gonadotropin synthesis and secretion by promoting the expression of FTO. Highly expressed FTO binds to Foxp2 mRNA in the nucleus, exerting a demethylation function and reducing m6A modification. After Foxp2 mRNA exits the nucleus, the lack of m6A modification prevents YTHDF3 from binding to it, resulting in increased stability and upregulation of Foxp2 mRNA expression, which activates the cAMP/PKA signaling pathway to promote gonadotropin synthesis and secretion. CONCLUSIONS: Overall, the study reveals the molecular mechanism of GnRH regulating the gonadotropin synthesis and secretion through FTO-mediated m6A modification. The results of this study allow systematic interpretation of the regulatory mechanism of gonadotropin synthesis and secretion in the pituitary at the epigenetic level and provide a theoretical basis for the application of reproductive hormones in the regulation of animal artificial reproduction.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Hormônio Liberador de Gonadotropina , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/genética , Animais , Gonadotropinas/metabolismo , Camundongos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Metilação de RNA
13.
BMC Genomics ; 25(1): 392, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649819

RESUMO

BACKGROUND: The pituitary directly regulates the reproductive process through follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Transcriptomic research on the pituitaries of ewes with different FecB (fecundity Booroola) genotypes has shown that some key genes and lncRNAs play an important role in pituitary function and sheep fecundity. Our previous study found that ewes with FecB + + genotypes (without FecB mutation) still had individuals with more than one offspring per birth. It is hoped to analyze this phenomenon from the perspective of the pituitary transcriptome. RESULTS: The 12 Small Tail Han Sheep were equally divided into polytocous sheep in the follicular phase (PF), polytocous sheep in the luteal phase (PL), monotocous sheep in the follicular phase (MF), and monotocous sheep in the luteal phase (ML). Pituitary tissues were collected after estrus synchronous treatment for transcriptomic analysis. A total of 384 differentially expressed genes (DEGs) (182 in PF vs. MF and 202 in PL vs. ML) and 844 differentially expressed lncRNAs (DELs) (427 in PF vs. MF and 417 in PL vs. ML) were obtained from the polytocous-monotocous comparison groups in the two phases. Functional enrichment analysis showed that the DEGs in the two phases were enriched in signaling pathways known to play an important role in sheep fecundity, such as calcium ion binding and cAMP signaling pathways. A total of 1322 target relationship pairs (551 pairs in PF vs. MF and 771 pairs in PL vs. ML) were obtained for the target genes prediction of DELs, of which 29 DEL-DEG target relationship pairs (nine pairs in PF vs. MF and twenty pairs in PL vs. ML). In addition, the competing endogenous RNA (ceRNA) networks were constructed to explore the regulatory relationships of DEGs, and some important regulatory relationship pairs were obtained. CONCLUSION: According to the analysis results, we hypothesized that the pituitary first receives steroid hormone signals from the ovary and uterus and that VAV3 (Vav Guanine Nucleotide Exchange Factor 3), GABRG1 (Gamma-Aminobutyric Acid A Receptor, Gamma 1), and FNDC1 (Fibronectin Type III Domain Containing 1) played an important role in this process. Subsequently, the reproductive process was regulated by gonadotropins, and IGFBP1 (Insulin-like Growth Factor Binding Protein 1) was directly involved in this process, ultimately affecting litter size. In addition, TGIF1 (Transforming Growth Factor-Beta-Induced Factor 1) and TMEFF2 (Transmembrane Protein With EGF Like And Two Follistatin Like Domains 2) compensated for the effect of the FecB mutation and function by acting on TGF-ß/SMAD signaling pathway, an important pathway for sheep reproduction. These results provided a reference for understanding the mechanism of multiple births in Small Tail Han Sheep without FecB mutation.


Assuntos
Hipófise , RNA Longo não Codificante , RNA Mensageiro , Animais , Ovinos/genética , Hipófise/metabolismo , Feminino , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fertilidade/genética , Reprodução/genética , Perfilação da Expressão Gênica , Transcriptoma
14.
BMC Genomics ; 25(1): 309, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528494

RESUMO

BACKGROUND: Incubation behaviour, an instinct for natural breeding in poultry, is strictly controlled by the central nervous system and multiple neuroendocrine hormones and neurotransmitters, and is closely associated with the cessation of egg laying. Therefore, it is essential for the commercial poultry industry to clarify the molecular regulation mechanism of incubation behaviour. Here, we used high-throughput sequencing technology to examine the pituitary transcriptome of Changshun green-shell laying hen, a local breed from Guizhou province, China, with strong broodiness, in two reproductive stages, including egg-laying phase (LP) and incubation phase (BP). We also analyze the differences in gene expression during the transition from egg-laying to incubation, and identify critical pathways and candidate genes involved in controlling the incubation behaviour in the pituitary. RESULTS: In this study, we demonstrated that a total of 2089 differently expressed genes (DEGs) were identified in the pituitary, including 842 up-regulated and 1247 down-regulated genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that steroid biosynthesis pathway and neuroactive ligand-receptor interaction were significantly enriched based on DEGs commonly identified in pituitary. Further analysis revealed that SRC, ITGB4, ITGB3, PIK3R3 and DRD2 may play crucial roles in the regulation of incubation behaviour. CONCLUSIONS: We identified 2089 DEGs and the key signaling pathways which may be closely correlated with incubation in Changshun green-shell laying hens, and clarified the molecular regulation mechanism of incubation behaviour. Our results indicate the complexity and variety of differences in reproductive behaviour of different chicken breeds.


Assuntos
Galinhas , Transcriptoma , Animais , Feminino , Galinhas/metabolismo , Perfilação da Expressão Gênica , Hipófise/metabolismo , Hormônios/metabolismo
15.
Curr Issues Mol Biol ; 46(6): 5337-5351, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38920991

RESUMO

Sexual maturation of Atlantic salmon males is marked by dramatic endocrine changes and rapid growth of the testes, resulting in an increase in the gonad somatic index (GSI). We examined the association of gonadal growth with serum sex steroids, as well as pituitary and testicular gene expression levels, which were assessed with a DNA oligonucleotide microarray. The testes transcriptome was stable in males with a GSI < 0.08% despite the large difference between the smallest and the largest gonads. Fish with a GSI ≥ 0.23% had 7-17 times higher serum levels of five male steroids and a 2-fold increase in progesterone, without a change in cortisol and related steroids. The pituitary transcriptome showed an upregulation of the hormone-coding genes that control reproduction and behavior, and structural rearrangement was indicated by the genes involved in synaptic transmission and the differentiation of neurons. The observed changes in the abundance of testicular transcripts were caused by the regulation of transcription and/or disproportional growth, with a greater increase in the germinative compartment. As these factors could not be separated, the transcriptome results are presented as higher or lower specific activities (HSA and LSA). LSA was observed in 4268 genes, including many genes involved in various immune responses and developmental processes. LSA also included genes with roles in female reproduction, germinal cell maintenance and gonad development, responses to endocrine and neural regulation, and the biosynthesis of sex steroids. Two functional groups prevailed among HSA: structure and activity of the cilia (95 genes) and meiosis (34 genes). The puberty of A. salmon testis is marked by the predominance of spermatogenesis, which displaces other processes; masculinization; and the weakening of external regulation. Results confirmed the known roles of many genes involved in reproduction and pointed to uncharacterized genes that deserve attention as possible regulators of sexual maturation.

16.
Am J Epidemiol ; 193(3): 454-468, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-37846096

RESUMO

Results of toxicological studies indicate that phthalates and per-/polyfluoroalkyl substances (PFAS), 2 classes of endocrine-disrupting chemicals, may alter the functioning of the hypothalamic-pituitary-adrenocortical (HPA) axis. We evaluated the associations of urinary phthalate metabolites and serum PFAS during gestation and childhood with adolescent hair cortisol concentrations (pg/mg hair) at age 12 years, an integrative marker of HPA axis activity (n = 205 mother-child pairs; Cincinnati, Ohio; enrolled 2003-2006). We used quantile-based g-computation to estimate associations between mixtures of urinary phthalate metabolites or serum PFAS and hair cortisol. We also examined whether associations of individual phthalate metabolites or PFAS with cortisol varied by the timing of exposure. We found that a 1-quartile increase in all childhood phthalate metabolites was associated with 35% higher adolescent hair cortisol (phthalate mixture ψ = 0.13; 95% confidence interval: 0.03, 0.22); these associations were driven by monoethyl phthalate, monoisobutyl phthalate, and monobenzyl phthalate. We did not find evidence that phthalate metabolites during gestation or serum PFAS mixtures were related to adolescent hair cortisol concentrations. We found suggestive evidence that higher childhood concentrations of individual PFAS were related to higher and lower adolescent hair cortisol concentrations. Our results suggest that phthalate exposure during childhood may contribute to higher levels of chronic HPA axis activity.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Ácidos Ftálicos , Humanos , Adolescente , Criança , Poluentes Ambientais/urina , Hidrocortisona , Sistema Hipotálamo-Hipofisário/química , Sistema Hipófise-Suprarrenal/química , Fluorocarbonos/toxicidade , Exposição Ambiental/efeitos adversos
17.
Front Neuroendocrinol ; 71: 101084, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37506886

RESUMO

Gonadal hormone actions in the brain can both worsen and alleviate symptoms of neurological disorders. Although neurological conditions and reproductive endocrine function are seemingly disparate, compelling evidence indicates that reciprocal interactions exist between certain disorders and hypothalamic-pituitary-gonadal (HPG) axis irregularities. Epilepsy is a neurological disorder that shows significant reproductive endocrine dysfunction (RED) in clinical populations. Seizures, particularly those arising from temporal lobe structures, can drive HPG axis alterations, and hormones produced in the HPG axis can reciprocally modulate seizure activity. Despite this relationship, mechanistic links between seizures and RED, and vice versa, are still largely unknown. Here, we review clinical evidence alongside recent investigations in preclinical animal models into the contributions of seizures to HPG axis malfunction, describe the effects of HPG axis hormonal feedback on seizure activity, and discuss how epilepsy research can offer insight into mechanisms linking neurological disorders to HPG axis dysfunction, an understudied area of neuroendocrinology.


Assuntos
Epilepsia , Sistema Hipotálamo-Hipofisário , Animais , Reprodução , Encéfalo , Convulsões
18.
Eur J Neurosci ; 59(12): 3256-3272, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644789

RESUMO

Social buffering is the phenomenon in which the presence of an affiliative conspecific mitigates stress responses. We previously demonstrated that social buffering completely ameliorates conditioned fear responses in rats. However, the neuromodulators involved in social buffering are poorly understood. Given that opioids, dopamine, oxytocin and vasopressin play an important role in affiliative behaviour, here, we assessed the effects of the most well-known antagonists, naloxone (opioid receptor antagonist), haloperidol (dopamine D2 receptor antagonist), atosiban (oxytocin receptor antagonist) and SR49059 (vasopressin V1a receptor antagonist), on social buffering. In Experiment 1, fear-conditioned male subjects were intraperitoneally administered one of the four antagonists 25 min prior to exposure to a conditioned stimulus with an unfamiliar non-conditioned rat. Naloxone, but not the other three antagonists, increased freezing and decreased walking and investigation as compared with saline administration. In Experiment 2, identical naloxone administration did not affect locomotor activity, anxiety-like behaviour or freezing in an open-field test. In Experiment 3, after confirming that the same naloxone administration again increased conditioned fear responses, as done in Experiment 1, we measured Fos expression in 16 brain regions. Compared with saline, naloxone increased Fos expression in the paraventricular nucleus of the hypothalamus and decreased Fos expression in the nucleus accumbens shell, anterior cingulate cortex and insular cortex and tended to decrease Fos expression in the nucleus accumbens core. Based on these results, we suggest that naloxone blocks social buffering of conditioned fear responses in male rats.


Assuntos
Medo , Naloxona , Antagonistas de Entorpecentes , Animais , Masculino , Medo/efeitos dos fármacos , Medo/fisiologia , Naloxona/farmacologia , Ratos , Antagonistas de Entorpecentes/farmacologia , Comportamento Social , Condicionamento Clássico/efeitos dos fármacos , Ratos Wistar , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo
19.
Eur J Neurosci ; 59(11): 3134-3146, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602078

RESUMO

Early life stress (ELS) exposure alters stress susceptibility in later life and affects vulnerability to stress-related disorders, but how ELS changes the long-lasting responsiveness of the stress system is not well understood. Zebrafish provides an opportunity to study conserved mechanisms underlying the development and function of the stress response that is regulated largely by the neuroendocrine hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis, with glucocorticoids (GC) as the final effector. In this study, we established a method to chronically elevate endogenous GC levels during early life in larval zebrafish. To this end, we employed an optogenetic actuator, beggiatoa photoactivated adenylyl cyclase, specifically expressed in the interrenal cells of zebrafish and demonstrate that its chronic activation leads to hypercortisolaemia and dampens the acute-stress evoked cortisol levels, across a variety of stressor modalities during early life. This blunting of stress-response was conserved in ontogeny at a later developmental stage. Furthermore, we observe a strong reduction of proopiomelanocortin (pomc)-expression in the pituitary as well as upregulation of fkbp5 gene expression. Going forward, we propose that this model can be leveraged to tease apart the mechanisms underlying developmental programming of the HPA/I axis by early-life GC exposure and its implications for vulnerability and resilience to stress in adulthood.


Assuntos
Glucocorticoides , Sistema Hipotálamo-Hipofisário , Larva , Optogenética , Peixe-Zebra , Animais , Optogenética/métodos , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/metabolismo , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Hidrocortisona/metabolismo , Estresse Psicológico/metabolismo , Adenilil Ciclases/metabolismo , Adenilil Ciclases/genética , Glândula Inter-Renal/metabolismo , Glândula Inter-Renal/efeitos dos fármacos , Pró-Opiomelanocortina/metabolismo , Pró-Opiomelanocortina/genética
20.
Biol Reprod ; 110(4): 761-771, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38374691

RESUMO

Reproduction is a high energy consuming process, so long-term malnutrition can significantly inhibit gonadal development. However, little is known about the molecular mechanism by which fasting inhibits reproduction. Our present study found that fasting could dramatically induce insulin-like growth factor binding protein 1 (IGFBP1) expression in the liver, hypothalamus, pituitary and ovaries of grass carp. In addition, IGFBP1a in the hypothalamus-pituitary-gonad axis could inhibit the development of gonads. These results indicated that fasting may participate in the regulation of fish gonadal development through the mediation of IGFBP1a. Further studies found that IGFBP1a could markedly inhibit gonadotropin-releasing hormone 3 expressions in hypothalamus cells. At the pituitary level, IGFBP1a could significantly reduce the gonadotropin hormones (LH and FSH) expression by blocking the action of pituitary insulin-like growth factor 1. Interestingly, IGFBP1a could also directly inhibit the expression of lhr, fshr, and sex steroid hormone synthase genes (cyp11a, cyp17a, and cyp19a1) in the ovary. These results indicated that IGFBP1a should be a nutrient deficient response factor that could inhibit fish reproduction through the hypothalamus-pituitary-ovary axis.


Assuntos
Carpas , Ovário , Animais , Feminino , Ovário/metabolismo , Hipófise/metabolismo , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA