Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(22): 6585-6591, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785400

RESUMO

The gallium-doped hafnium oxide (Ga-HfO2) films with different Ga doping concentrations were prepared by adjusting the HfO2/Ga2O3 atomic layer deposition cycle ratio for high-speed and low-voltage operation in HfO2-based ferroelectric memory. The Ga-HfO2 ferroelectric films reveal a finely modulated coercive field (Ec) from 1.1 (HfO2/Ga2O3 = 32:1) to an exceptionally low 0.6 MV/cm (HfO2/Ga2O3 = 11:1). This modulation arises from the competition between domain nucleation and propagation speed during polarization switching, influenced by the intrinsic domain density and phase dispersion in the film with specific Ga doping concentrations. Higher Ec samples exhibit a nucleation-dominant switching mechanism, while lower Ec samples undergo a transition from a nucleation-dominant to a propagation-dominant reversal mechanism as the electric field increases. This work introduces Ga as a viable dopant for low Ec and offers insights into material design strategies for HfO2-based ferroelectric memory applications.

2.
Small ; 20(22): e2307346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38213011

RESUMO

α-In2Se3 semiconductor crystals realize artificial synapses by tuning in-plane and out-of-plane ferroelectricity with diverse avenues of electrical and optical pulses. While the electrically induced ferroelectricity of α-In2Se3 shows synaptic memory operation, the optically assisted synaptic plasticity in α-In2Se3 has also been preferred for polarization flipping enhancement. Here, the synaptic memory behavior of α-In2Se3 is demonstrated by applying electrical gate voltages under white light. As a result, the induced internal electric field is identified at a polarization flipped conductance channel in α-In2Se3/hexagonal boron nitride (hBN) heterostructure ferroelectric field effect transistors (FeFETs) under white light and discuss the contribution of this built-in electric field on synapse characterization. The biased dipoles in α-In2Se3 toward potentiation polarization direction by an enhanced internal built-in electric field under illumination of white light lead to improvement of linearity for long-term depression curves with proper electric spikes. Consequently, upon applying appropriate electric spikes to α-In2Se3/hBN FeFETs with illuminating white light, the recognition accuracy values significantly through the artificial learning simulation is elevated for discriminating hand-written digit number images.

3.
Nanotechnology ; 35(13)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939482

RESUMO

By adjusting the rising time in annealing ferroelectric HfO2-based films, the grain size of the film can be controlled. In this study, we found that increasing the rising time from 10 to 30 s at an annealing temperature of 700 °C in N2atmosphere resulted in improved ferroelectric switching speed. This is because the larger grain size reduces the internal resistance components, such as the grain bulk resistance and grain boundary resistance, of the HZO film. This in turn lowers the overall equivalent resistance. By minimizing the RC time constants, increasing the grain size plays a key role in improving the polarization switching speed of ferroelectric films.

4.
Nano Lett ; 23(23): 10922-10929, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-37965921

RESUMO

Despite its prevalence in experiments, the influence of complex strain on material properties remains understudied due to the lack of effective simulation methods. Here, the effects of bending, rippling, and bubbling on the ferroelectric domains are investigated in an In2Se3 monolayer by density functional theory and deep learning molecular dynamics simulations. Since the ferroelectric switching barrier can be increased (decreased) by tensile (compressive) strain, automatic polarization reversal occurs in α-In2Se3 with a strain gradient when it is subjected to bending, rippling, or bubbling deformations to create localized ferroelectric domains with varying sizes. The switching dynamics depends on the magnitude of curvature and temperature, following an Arrhenius-style relationship. This study not only provides a promising solution for cross-scale studies using deep learning but also reveals the potential to manipulate local polarization in ferroelectric materials through strain engineering.

5.
Nanotechnology ; 33(15)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-34959226

RESUMO

A large coercive fieldECof HfO2based ferroelectric devices poses critical performance issues in their applications as ferroelectric memories and ferroelectric field effect transistors. A new design to reduceECby fabricating nanolaminate Hf0.5Zr0.5O2/ZrO2(HZZ) thin films is used, followed by an ensuing annealing process at a comparatively high temperature 700 °C. High-resolution electron microscopy imaging detects tetragonal-like domain walls between orthorhombic polar regions. These walls decrease the potential barrier of polarization reversal in HfO2based films compared to the conventional domain walls with a single non-polar spacer, causing about a 40% decrease inEC. Capacitance versus electric field measurements on HZZ thin film uncovered a substantial increase of dielectric permittivity near theECcompared to the conventional Hf0.5Zr0.5O2thin film, justifying the higher mobility of domain walls in the developed HZZ film. The tetragonal-like regions served as grease easing the movement of the domain wall and reducingEC.

6.
Nano Lett ; 21(1): 144-150, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33306405

RESUMO

Materials with reduced dimensions have been shown to host a wide variety of exotic properties and novel quantum states that often defy textbook wisdom. Polarization switching and metallic screening are well-known examples of mutually exclusive properties that cannot coexist in bulk solids. Here we report the fabrication of (SrRuO3)1/(BaTiO3)10 superlattices that exhibits reversible polarization switching in an atomically thin metallic layer. A multipronged investigation combining structural analyses, electrical measurements, and first-principles electronic structure calculations unravels the coexistence of two-dimensional (2D) metallicity in the SrRuO3 layer accompanied by the breaking of inversion symmetry, supporting electric polarization along the out-of-plane direction. Such a 2D ferroelectric-like metal paves a novel way to engineer a quantum multistate with unusual coexisting properties, such as ferroelectrics and metals, manipulated by external fields.

7.
Nano Lett ; 21(1): 445-452, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33264026

RESUMO

Mechanical switching of ferroelectric polarization, typically realized via a scanning probe, holds promise in (multi)ferroic device applications. Whereas strain gradient-associated flexoelectricity has been regarded to be accountable for mechanical switching in ultrathin (<10 nm) films, such mechanism can hardly be extended to thicker materials due to intrinsic short operating lengths of flexoelectricity. Here, we demonstrate robust mechanical switching in ∼100 nm thick Pb(Zr0.2Ti0.8)O3 epitaxial films with a characteristic microstructure consisting of nanosized ferroelastic domains. Through a combination of multiscale structural characterizations, piezoresponse force microscopy, and phase-field simulations, we reveal that the ferroelastic nanodomains effectively mediate the 180° switching nucleation in a dynamical manner during tip scanning. Coupled with microstructure engineering, this newly revealed mechanism could boost the utility of mechanical switching through extended material systems. Our results also provide insight into competing polarization switching pathways in complex ferroelectric materials, essential for understanding their electromechanical response.

8.
Angew Chem Int Ed Engl ; 61(22): e202200135, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35166001

RESUMO

Organic ferroelectrics are flexible, lightweight, and bio-friendly, promising for bio-harmonized electronic devices, while their ferroelectric lithography remains relatively unexplored. Here, by introducing homochirality and ZE photoisomerization, we obtained a pair of organic enantiomorphic ferroelectrics, di(benzylamino)-substituted derivatives of muconic acids, the first ferroelectrics in the muconic family. Their ferroelectric and chiral features were confirmed by the polarization-electric field hysteresis loops and circular dichroism spectra, respectively. Piezoresponse force microscopy measurements demonstrate that the desired domain structure can be precisely achieved by applying a local electric field on a predefined pattern in their thin films. Moreover, thermogravimetric analyses reveal that their ferroelectricity can persist up to above 550 K. The precise pattern lithography and excellent thermal stability make them competitive candidates for ferroelectric lithography.

9.
Nanotechnology ; 32(37)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34098542

RESUMO

For a given three different Si doping concentrations at room and high temperatures, the threshold voltage shift (ΔVth) on silicon-doped hafnium-oxide-based ferroelectric field effect transistor (FeFET) is experimentally investigated. It turned out that charge trapping in the gate stack of FeFET (versus polarization switching in the gate stack of FeFET) adversely affects ΔVth. Charge trapping causes the positive ΔVth, while polarization switching causes the negative ΔVth. The dominance of polarization switching is predominantly determined by the total remnant polarization (2Pr), which can be controlled by adjusting Si doping concentration in the hafnium-oxide layer. As the Si doping concentration increases from 2.5% to 3.6%, and 5.0%, 2Prdecreases 19.8µC cm-2to 15.25µC cm-2, and 12.5µC cm-2, which leads to ΔVthof -0.8 V, -0.09 V, and +0.1 V, respectively, at room temperature. At high temperature, the effect of polarization switching is degraded due to the decreasedPr, while the effect of charge trapping is very independent of temperature. For those three different Si doping concentrations (i.e. 2.5%, 3.6%, and 5.0%), at the high temperature, ΔVthof FeFET is -0.675 V, -0.075 V, and +0.15 V, respectively. This experimental work should provide an insight for designing FeFET for memory and logic applications.

10.
Nanotechnology ; 32(49)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34433137

RESUMO

Scandium-doped aluminum nitride, Al1-xScxN, represents a new class of displacive ferroelectric materials with high polarization and sharp hysteresis along with high-temperature resilience, facile synthesizability and compatibility with standard CMOS fabrication techniques. The fundamental physics behind the transformation of unswitchable piezoelectric AlN into switchable Al-Sc-N ferroelectrics depends upon important atomic properties such as local structure, dopant distributions and the presence of competing mechanism of polarization switching in the presence of an applied electric-field that have not been understood. We computationally synthesize Al1-xScxN to quantify the inhomogeneity of Sc distribution and phase segregation, and characterize its crystal and electronic structure as a function of Sc-doping. Nudged elastic band calculations of the potential energy surface and quantum molecular dynamics simulations of direct electric-field-driven ferroelectric switching reveal a crossover between two polarization reversal mechanisms-inhomogeneous nucleation-and-growth mechanism originating near Sc-rich regions in the limit of low applied fields and nucleation-limited-switching in the high-field regime. Understanding polarization reversal pathways for these two mechanisms as well as the role of local Sc concentration on activation barriers provides design rules to identify other combinations of dopant elements, such as Zr, Mg etc. to synthesize superior AlN-based ferroelectric materials.

11.
Angew Chem Int Ed Engl ; 60(15): 8198-8202, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33480082

RESUMO

Organic ferroelectrics are highly desirable for their light weight, mechanical flexibility and biocompatibility. However, the rational design of organic ferroelectrics has always faced great challenges. Anilinium bromide (AB) has two structures reported in the Cambridge Crystallographic Data Centre, which might be an mmmF2/m type ferroelastic (AB-1). When we studied its ferroelasticity, we were surprised to discover that there was another crystal (AB-2) in H2 O besides this one, and they were very difficult to separate. By changing the solvent, we found that AB-1 crystals could be formed in ethanol, where ferroelastic domains were visualized by polarized light microscopy, and AB-2 crystals could be obtained from various crystallization solvents of methanol, isopropanol, N-butanol, acetonitrile, dimethyl sulfoxide, and N,N-dimethylformamide, which undergo a ferroelectric phase transition with mm2Fm, showing clear ferroelectricity in two phases. To our knowledge, the regulation of ferroelasticity to ferroelectricity by solvent selective effect is unprecedented in the field of ferroelectrics. This work reveals the important role of solvent effect in organic ferroelectrics.

12.
Angew Chem Int Ed Engl ; 59(37): 15865-15869, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32432809

RESUMO

Capability to control macroscopic molecular properties with external stimuli offers the possibility to exploit molecules as switching devices of various types. However, application of such molecular-level switching has often been limited by its speed and thus efficiency. Herein, we demonstrate ultrafast, photoinduced polarization switching in the crystal of a [CrCo] dinuclear complex by ultrafast pump-probe spectroscopy in the visible and mid-infrared regions. The photoinduced polarization switching was found to have a time constant of 280 fs, which makes the [CrCo] complex crystal the fastest polarization-switching material realized using the metastable state. Moreover, the pump-probe data in the visible region reveal the pronounced appearance of coherent nuclear wavepacket motion with a frequency as low as 22 cm-1 , which we attribute to a lattice vibrational mode. The pronounced non-Condon effect for its resonance Raman enhancement implies that this mode couples the relevant electronic states, thereby facilitating the ultrafast polarization switching.

13.
Angew Chem Int Ed Engl ; 59(40): 17477-17481, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32621317

RESUMO

1,4-Diazabicyclo[2.2.2]octane (dabco) and its derivatives have been extensively utilized as building units of excellent molecular ferroelectrics for decades. However, the homochiral dabco-based ferroelectric remains a blank. Herein, by adding a methyl (Me) group accompanied by the introduction of homochirality to the [H2 dabco]2+ in the non-ferroelectric [H2 dabco][TFSA]2 (TFSA=bis(trifluoromethylsulfonyl)ammonium), we successfully designed enantiomeric ferroelectrics [R and S-2-Me-H2 dabco][TFSA]2 . The two enantiomers show two sequential phase transitions with transition temperature (Tc ) as high as 405.8 K and 415.8 K, which is outstanding in both dabco-based ferroelectrics and homochiral ferroelectrics. To our knowledge, [R and S-2-Me-H2 dabco][TFSA]2 are the first examples of dabco-based homochiral ferroelectrics. This finding opens an avenue to construct dabco-based homochiral ferroelectrics and will inspire the exploration of more eminent enantiomeric molecular ferroelectrics.

14.
Angew Chem Int Ed Engl ; 57(31): 9833-9837, 2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-29893503

RESUMO

Fast switching of spontaneous polarization (Ps ) is one of the most essential requirements for ferroelectrics used in the field of data storage. However, in contrast to inorganic counterparts, the low operating frequency (<500 Hz) for molecular ferroelectrics severely hinders their large-scale applications. Herein, for the first time, we achieved the room-temperature fastest switching of the Ps in a new molecular ferroelectric, N-methylmorpholinium trinitrophenolate (1), which displays notable ferroelectricity (Ps =3.2 µc cm-2 ). Strikingly, electric polarizations of 1 have been switched under a record-high frequency of 263 kHz, and this performance remains stable without any obvious fatigue after ca. 2×105 switching cycles. To our knowledge, 1 is the first organic ferroelectric to switch polarization at such a high operating frequency, exceeding the majority of organic ferroelectrics, which opens up new possibilities for its potential in the field of non-volatile memory.

15.
Nano Lett ; 16(8): 5228-34, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27454612

RESUMO

We report deterministic selection of polarization variant in bismuth BiFeO3 nanoislands via a two-step scanning probe microscopy procedure. The polarization orientation in a nanoisland is toggled to the desired variant after a reset operation by scanning a conductive atomic force probe in contact over the surface while a bias is applied. The final polarization variant is determined by the direction of the inhomogeneous in-plane trailing field associated with the moving probe tip. This work provides the framework for better control of switching in rhombohedral ferroelectrics and for a deeper understanding of exchange coupling in multiferroic nanoscale heterostructures toward the realization of magnetoelectric devices.

16.
Nano Lett ; 16(1): 68-73, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26685053

RESUMO

The velocity of individual 180° domain walls in thin ferroelectric films of PbZr0.1Ti0.9O3 is strongly dependent on the thickness of the top Pt electrode made by electron-beam induced deposition (EBID). We show that when the thickness is varied in the range <100 nm the domain wall velocity is seen to change by 7 orders of magnitude. We attribute this huge range of velocities to the similarly large range of resistivities for the EBID Pt electrode as extrapolated from four-point probe measurements. The domain wall motion is governed by the supply of charges to the domain wall, determined by the top electrode resistivity, and which is described using a modified Stefan Problem model. This has significant implications for the feasibility of ferroelectric domain wall nanoelectronics, wherein the speed of operation will be limited by the maximum velocity of the propagating domain wall front. Furthermore, by introducing sections of either modified thickness or width along the length of a "line" electrode, the domain wall velocity can be changed at these locations, opening up possibilities for dynamic regimes.

17.
J Synchrotron Radiat ; 23(Pt 3): 751-7, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27140155

RESUMO

A simple scheme to quickly switch the polarity of circular radiation is proposed, which is based on spectrum splitting of undulator radiation. In this scheme, two helical undulators with opposite helicities are placed tandem in one straight section, both of which are divided into several segments. The optical phases between segments are tuned so that light waves from one of the two undulators are out of phase, while those from the other are in phase. Then the radiation spectrum of the former is split and the intensity at the fundamental photon energy vanishes. As a consequence, the monochromated photon beam at the fundamental energy is circularly polarized with the helicity specified by the in-phase undulator, which can be quickly flipped by tuning the optical phase. Numerical calculations carried out to demonstrate the feasibility of the proposed scheme show that a relatively high degree of circular polarization is expected if the angular acceptance of the beamline is not too large.

18.
J Synchrotron Radiat ; 23(2): 436-42, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26917130

RESUMO

Fast switching of X-ray polarization with a lock-in amplifier is a good method for acquiring weak signals from background noise for X-ray magnetic circular dichroism (XMCD) experiments. The usual way to obtain a beam with fast polarization switching is to use two series of elliptically polarized undulators (tandem twin EPUs). The two EPUs generate two individual beams. Each beam has a different polarization and is fast switched into the beamline. It is very important to ensure that the energy resolution, the flux and the spot size at the sample of the two beams are equal in XMCD experiments. However, it is difficult in beamline design because the distances from the two EPUs to the beamline optics are different and the beamline is not switchable. In this work, a beamline design without an entrance slit for fast polarization switching EPUs is discussed. The energy resolution of the two beams can be tuned to be equal by minor rotation of the optics in the monochromator. The flux of the two beams can be balanced through separation blades X, Y in the exit slit, and by adjusting the position of the X blades along the beam. The spot size of the two beams can be adjusted to be equal by shifting the sample as well.

19.
Angew Chem Int Ed Engl ; 53(42): 11242-7, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25196506

RESUMO

Hybrid organo-metal halide perovskite materials, such as CH3NH3PbI3, have been shown to be some of the most competitive candidates for absorber materials in photovoltaic (PV) applications. However, their potential has not been completely developed, because a photovoltaic effect with an anomalously large voltage can be achieved only in a ferroelectric phase, while these materials are probably ferroelectric only at temperatures below 180 K. A new hexagonal stacking perovskite-type complex (3-pyrrolinium)(CdCl3) exhibits above-room-temperature ferroelectricity with a Curie temperature T(c)=316 K and a spontaneous polarization P(s)=5.1 µC cm(-2). The material also exhibits antiparallel 180°â€…domains which are related to the anomalous photovoltaic effect. The open-circuit photovoltage for a 1 mm-thick bulky crystal reaches 32 V. This finding could provide a new approach to develop solar cells based on organo-metal halide perovskites in photovoltaic research.

20.
Adv Sci (Weinh) ; : e2409827, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39439242

RESUMO

In the previous study, the existence of an unidentified ferroelectric smectic phase is demonstrated in the low-temperature region of the ferroelectric smectic A phase, where the layer spacing decreases with decreasing temperature. In the present study, the phase is identified by taking 2D X-ray diffraction images of a magnetically oriented sample while allowing it to rotate and constructed a 3D reciprocal space with the sample rotation angle as the third axis for the whole picture of the reciprocal lattice vectors originating from the smectic structure. Consequently, circular diffraction images are obtained when the reciprocal lattice vectors are evenly distributed on the conical surface at a certain inclination angle in the reciprocal space. This result provides clear evidence that the phase in question is smectic C. The polarization properties also showed that the observed smectic C phase has spontaneous polarization in the direction parallel to the director and is identified as ferroelectric smectic C. These results provide a new type of classification for liquid crystalline phases that has been established over many years and is a significant contribution to the basic science of soft matter research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA