Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.179
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 209(4): 427-443, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37971785

RESUMO

Rationale: Microplastics are a pressing global concern, and inhalation of microplastic fibers has been associated with interstitial and bronchial inflammation in flock workers. However, how microplastic fibers affect the lungs is unknown. Objectives: Our aim was to assess the effects of 12 × 31 µm nylon 6,6 (nylon) and 15 × 52 µm polyethylene terephthalate (polyester) textile microplastic fibers on lung epithelial growth and differentiation. Methods: We used human and murine alveolar and airway-type organoids as well as air-liquid interface cultures derived from primary lung epithelial progenitor cells and incubated these with either nylon or polyester fibers or nylon leachate. In addition, mice received one dose of nylon fibers or nylon leachate, and, 7 days later, organoid-forming capacity of isolated epithelial cells was investigated. Measurements and Main Results: We observed that nylon microfibers, more than polyester, inhibited developing airway organoids and not established ones. This effect was mediated by components leaching from nylon. Epithelial cells isolated from mice exposed to nylon fibers or leachate also formed fewer airway organoids, suggesting long-lasting effects of nylon components on epithelial cells. Part of these effects was recapitulated in human air-liquid interface cultures. Transcriptomic analysis revealed upregulation of Hoxa5 after exposure to nylon fibers. Inhibiting Hoxa5 during nylon exposure restored airway organoid formation, confirming Hoxa5's pivotal role in the effects of nylon. Conclusions: These results suggest that components leaching from nylon 6,6 may especially harm developing airways and/or airways undergoing repair, and we strongly encourage characterization in more detail of both the hazard of and the exposure to microplastic fibers.


Assuntos
Caprolactama/análogos & derivados , Microplásticos , Plásticos , Polímeros , Camundongos , Humanos , Animais , Nylons , Têxteis , Poliésteres
2.
Small ; : e2401308, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773889

RESUMO

Incorporating ultralow loading of nanoparticles into polymers has realized increases in dielectric constant and breakdown strength for excellent energy storage. However, there are still a series of tough issues to be dealt with, such as organic solvent uses, which face enormous challenges in scalable preparation. Here, a new strategy of dual in situ synthesis is proposed, namely polymerization of polyethylene terephthalate (PET) synchronizes with growth of calcium borate nanoparticles, making polyester nanocomposites from monomers directly. Importantly, this route is free of organic solvents and surface modification of nanoparticles, which is readily accessible to scalable synthesis of polyester nanocomposites. Meanwhile, uniform dispersion of as ultralow as 0.1 wt% nanoparticles and intense bonding at interfaces have been observed. Furthermore, the PET-based nanocomposite displays obvious increases in both dielectric constant and breakdown strength as compared to the neat PET. Its maximum discharged energy density reaches 15 J cm-3 at 690 MV m-1 and power density attains 218 MW cm-3 under 150 Ω resistance at 300 MV m-1, which is far superior to the current dielectric polymers that can be produced at large scales. This work presents a scalable, safe, low-cost, and environment-friendly route toward polymer nanocomposites with superior capacitive performance.

3.
Small ; 20(28): e2400491, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38456574

RESUMO

Multiresponsive materials with reversible and durable characteristics are indispensable because of their promising applications in environmental change detections. To fabricate multiresponsive materials in mass production, however, complex reactions and impractical situations are often involved. Herein, a dual responsive (light and pH) spiropyran-based smart sensor fabricated by a simple layer-by-layer (LbL) assembly process from upcycled thermoplastic polyester elastomer (TPEE) materials derived from recycled polyethylene terephthalate (r-PET) is proposed. Positively charged chitosan solutions and negatively charged merocyanine-COOH (MC-COOH) solutions are employed in the LbL assembly technique, forming the chitosan-spiropyran deposited TPEE (TPEE-CH-SP) film. Upon UV irradiation, the spiropyran-COOH (SP-COOH) molecules on the TPEE-CH-SP film undergo the ring-opening isomerization, along with an apparent color change from colorless to purple, to transform into the MC-COOH molecules. By further exposing the TPEE-CH-MC film to hydrogen chloride (HCl) and nitric acid (HNO3) vapors, the MC-COOH molecules can be transformed into protonated merocyanine-COOH (MCH-COOH) with the simultaneous color change from purple to yellow.

4.
Small ; : e2400580, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529758

RESUMO

During synthetic textile washing, rubbing between fibres or against the washing machine, exacerbated by the elevated temperature, initiates the release of millions of microplastic fibres into the environment. A general tribological strategy is reported that practically eliminates the release of microplastic fibres from laundered apparel. The two-layer fabric finishes combine low-friction, liquidlike polymer brushes with "molecular primers", that is, molecules that durably bond the low-friction layers to the surface of the polyester or nylon fabrics. It is shown that when the coefficient of friction is below a threshold of 0.25, microplastic fibre release is substantially reduced, by up to 96%. The fabric finishes can be water-wicking or water-repellent, and their comfort properties are retained after coating, indicating a tunable and practical strategy toward a sustainable textile industry and plastic-free oceans and marine foodstuffs.

5.
Small ; : e2402842, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38923165

RESUMO

The nacre-inspired multi-nanolayer structure offers a unique combination of advanced mechanical properties, such as strength and crack tolerance, making them highly versatile for various applications. Nevertheless, a significant challenge lies in the current fabrication methods, which is difficult to create a scalable manufacturing process with precise control of hierarchical structure. In this work, a novel strategy is presented to regulate nacre-like multi-nanolayer films with the balance mechanical properties of stiffness and toughness. By utilizing a co-continuous phase structure and an extensional stress field, the hierarchical nanolayers is successfully constructed with tunable sizes using a scalable processing technique. This strategic modification allows the robust phase to function as nacre-like platelets, while the soft phase acts as a ductile connection layer, resulting in exceptional comprehensive properties. The nanolayer-structured films demonstrate excellent isotropic properties, including a tensile strength of 113.5 MPa in the machine direction and 106.3 MPa in a transverse direction. More interestingly, these films unprecedentedly exhibit a remarkable puncture resistance at the same time, up to 324.8 N mm-1, surpassing the performance of other biodegradable films. The scalable fabrication strategy holds significant promise in designing advanced bioinspired materials for diverse applications.

6.
Appl Environ Microbiol ; 90(5): e0169423, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38624219

RESUMO

Given the multitude of extracellular enzymes at their disposal, many of which are designed to degrade nature's polymers (lignin, cutin, cellulose, etc.), fungi are adept at targeting synthetic polyesters with similar chemical composition. Microbial-influenced deterioration of xenobiotic polymeric surfaces is an area of interest for material scientists as these are important for the conservation of the underlying structural materials. Here, we describe the isolation and characterization of the Papiliotrema laurentii 5307AH (P. laurentii) cutinase, Plcut1. P. laurentii is basidiomycete yeast with the ability to disperse Impranil-DLN (Impranil), a colloidal polyester polyurethane, in agar plates. To test whether the fungal factor involved in this clearing was a secreted enzyme, we screened the ability of P. laurentii culture supernatants to disperse Impranil. Using size exclusion chromatography (SEC), we isolated fractions that contained Impranil-clearing activity. These fractions harbored a single ~22 kD band, which was excised and subjected to peptide sequencing. Homology searches using the peptide sequences identified, revealed that the protein Papla1 543643 (Plcut1) displays similarities to serine esterase and cutinase family of proteins. Biochemical assays using recombinant Plcut1 confirmed that this enzyme has the capability to hydrolyze Impranil, soluble esterase substrates, and apple cutin. Finally, we confirmed the presence of the Plcut1 in culture supernatants using a custom antibody that specifically recognizes this protein. The work shown here supports a major role for the Plcut1 in the fungal degradation of natural polyesters and xenobiotic polymer surfaces.IMPORTANCEFungi play a vital role in the execution of a broad range of biological processes that drive ecosystem function through production of a diverse arsenal of enzymes. However, the universal reactivity of these enzymes is a current problem for the built environment and the undesired degradation of polymeric materials in protective coatings. Here, we report the identification and characterization of a hydrolase from Papiliotrema laurentii 5307AH, an aircraft-derived fungal isolate found colonizing a biodeteriorated polymer-coated surface. We show that P. laurentii secretes a cutinase capable of hydrolyzing soluble esters as well as ester-based compounds forming solid surface coatings. These findings indicate that this fungus plays a significant role in biodeterioration through the production of a cutinase adept at degrading ester-based polymers, some of which form the backbone of protective surface coatings. The work shown here provides insights into the mechanisms employed by fungi to degrade xenobiotic polymers.


Assuntos
Hidrolases de Éster Carboxílico , Proteínas Fúngicas , Poliésteres , Proteínas Recombinantes , Hidrolases de Éster Carboxílico/metabolismo , Hidrolases de Éster Carboxílico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Poliésteres/metabolismo , Hidrólise
7.
J Vasc Surg ; 79(1): 24-33, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37734570

RESUMO

OBJECTIVE: Type II endoleak is the most frequent complication after endovascular abdominal aneurysm repair. Polytetrafluoroethylene and polyester (PE) are the two most commonly used graft materials in endovascular aneurysm repair (EVAR) devices. Biological properties of the material might influence the appearance and persistence of type II endoleak (T2EL). Therefore, the aim of this study was to evaluate potential differences in the prevalence of T2EL after EVAR between polytetrafluoroethylene (PTFE) and PE endografts in patients electively treated for an infrarenal abdominal aortic aneurysm. METHODS: A single-center, retrospective, observational study was conducted between January 2011 and January 2022. Preoperative, procedural, and follow-up data were derived from electronic health records. Imaging included computed tomography scans, and/or duplex ultrasound examination. The primary end point was the prevalence of T2EL diagnosed within 1 year after EVAR. Secondary end points included the prevalence of T2EL throughout follow-up, early (≤30 days) and late (>30 days) T2EL, the rate of T2EL disappearance during the follow-up period, the prevalence of type I and III endoleak, and T2EL-related reinterventions. RESULTS: Follow-up was available for 394 patients, 245 in the PE and 149 in the PTFE group. The prevalence of T2EL diagnosed within 1 year after endovascular repair was 11.8% in the PE group and 21.5% in the PTFE group (P = .010). There was no significant difference in early (≤30 days) and late (>30 days) T2EL between groups (P = .270 and P = .311). There was no difference in the freedom from endoleak type II reinterventions between groups (P = .877). CONCLUSIONS: The prevalence of T2EL after elective EVAR is significantly higher with the use of PTFE-based endografts compared with PE-based endografts. This difference is mostly based on T2EL diagnosed after 30 days of follow-up.


Assuntos
Aneurisma da Aorta Abdominal , Implante de Prótese Vascular , Procedimentos Endovasculares , Humanos , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/cirurgia , Aneurisma da Aorta Abdominal/complicações , Correção Endovascular de Aneurisma , Implante de Prótese Vascular/efeitos adversos , Endoleak/diagnóstico por imagem , Endoleak/epidemiologia , Endoleak/etiologia , Estudos Retrospectivos , Prevalência , Resultado do Tratamento , Fatores de Risco , Procedimentos Endovasculares/efeitos adversos , Politetrafluoretileno
8.
Eur J Vasc Endovasc Surg ; 67(3): 446-453, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37717814

RESUMO

OBJECTIVE: To analyse explanted endografts (EGs) and describe fabric degradation responsible for type IIIb endoleaks. METHODS: As part of the European collaborative retrieval programme, 32 EGs with fabric defects on macroscopic evaluation were selected. The explanted EGs were processed and studied based on the ISO 9001 certified standard protocol. It includes instructions on the collection, transportation, cleaning, and examination of explanted material. The precise analysis was performed with a digital microscope of 20 - 200 times magnification. Possible perforation mechanisms were assessed in stress tests. RESULTS: The median time to explantation of the 32 EGs was 54 months. The explants included 65 separate EG modules, with 46 (70.8%) having a combined 388 fabric perforations. Each EG had a median of 4.79 mm2 (interquartile range [IQR] 9.86 mm2) of cumulated hole area (an average of 0.13% of an EG's area). There were 239 (61.6%) expanded polytetrafluoroethylene (ePTFE; 11 EGs) and 149 (38.4%) polyethylene terephthalate (PET; 21 EGs) fabric ruptures, with no difference in hole distribution between these types of material. Overall, 126 (32.5%) stent related and 262 (67.5%) non-stent related fabric perforations were identified. Perforations caused by fabric fatigue in ePTFE (151, 63.2%) and material kinking in PET (41, 27.5%) were the most common. The stent related perforations were larger in size (0.80 mm2) than non-stent related perforations (0.19 mm2); p < .001. Wider interstent spaces and prolonged implantation duration were associated with an increased risk of stent related perforation development; p < .001 and p = .004, respectively. Large stent related perforations were also detected in the short term, suggesting mechanical issues as underlying causes. CONCLUSION: The fabric of EGs may degrade and lead to the development of perforations. The largest perforations are stent related. Their occurrence and size depend on the implantation time and the EG shape affected by arterial tortuosity. The conclusions are limited to the samples from a select explant group.

9.
Environ Sci Technol ; 58(5): 2293-2302, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38277479

RESUMO

To reduce the global CO2 footprint of plastics, bio- and CO2-based feedstock are considered the most important design features for plastics. Oxalic acid from CO2 and isosorbide from biomass are interesting rigid building blocks for high Tg polyesters. The biodegradability of a family of novel fully renewable (bio- and CO2-based) poly(isosorbide-co-diol) oxalate (PISOX-diol) copolyesters was studied. We systematically investigated the effects of the composition on biodegradation at ambient temperature in soil for PISOX (co)polyesters. Results show that the lag phase of PISOX (co)polyester biodegradation varies from 0 to 7 weeks. All (co)polyesters undergo over 80% mineralization within 180 days (faster than the cellulose reference) except one composition with the cyclic codiol 1,4-cyclohexanedimethanol (CHDM). Their relatively fast degradability is independent of the type of noncyclic codiol and results from facile nonenzymatic hydrolysis of oxalate ester bonds (especially oxalate isosorbide bonds), which mostly hydrolyzed completely within 180 days. On the other hand, partially replacing oxalate with terephthalate units enhances the polymer's resistance to hydrolysis and its biodegradability in soil. Our study demonstrates the potential for tuning PISOX copolyester structures to design biodegradable plastics with improved thermal, mechanical, and barrier properties.


Assuntos
Isossorbida , Oxalatos , Isossorbida/química , Dióxido de Carbono , Poliésteres/química , Poliésteres/metabolismo , Solo , Biodegradação Ambiental
10.
Macromol Rapid Commun ; : e2400125, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514097

RESUMO

In this study, a seamless, self-transformation system of linear thermoplastic polyesters into the sustainable cross-linked polymers, vitrimers, is demonstrated. The key is the use of polyesters bearing abundant hydroxyl side groups, which are synthesized via the reaction using dithiol molecules bearing ester units and diepoxy molecules. The polymerization reaction progresses efficiently at relatively low temperature due to the click nature of the thiol-epoxy reaction, which provides the hydroxyl side groups along the polyester chain. The tin catalyst (stannous octoate) is added in the initial polymerization, and the catalyst also works to cross-link the polyesters via intermolecular transesterification bond exchange simply by heating at high temperatures. By adjusting the degrees of cross-linking, the mechanical properties as well as the thermal properties are well tuned. The bond exchange can still be activated in the final cross-linked sample; and thus, the material behaves as vitrimers, exhibiting mechanical recyclability. The application of a new type of hot melt adhesive, where the post-coating tuning/enhancement of adhesion strength is realized, is also demonstrated. On the whole, the present system is very simple but proposes a new application window of bond exchange concept into self-transformation polymers.

11.
Macromol Rapid Commun ; 45(11): e2400010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458610

RESUMO

This work presents a new method for 4D fabrication of two-way shape memory materials that are capable of reversible shapeshifting right after manufacturing, upon application of proper heating and cooling cycles. The innovative solution presented here consists in the combination of highly stretched electrospun shape memory polymer (SMP) nanofibers with a melt electrowritten elastomer. More specifically, the stretched nanofibers are made of a biocompatible thermoplastic polyurethane (TPU) with crystallizable soft segments, undergoing melt-induced contraction and crystallization-induced elongation upon heating and cooling, respectively. Reversible actuation during crystallization becomes possible due to the elastic recovery of the elastomer component, obtained by melt electrowriting of a commercial TPU filament. Thanks to the design freedom offered by additive manufacturing, the elastomer structure also has the role of guiding the shape transformation. Electrospinning and melt electrowriting process parameters are set up so to obtain smart 4D objects capable of two-way shape memory effect (SME), and the possibility of reversible and repeatable actuation is demonstrated. The two components are then combined in different proportions with the aim of tailoring the two-way SME, taking into account the effect of design parameters such as the SMP content, the elastomer pattern, and the composite thickness.


Assuntos
Nanofibras , Polímeros , Polímeros/química , Nanofibras/química , Poliuretanos/química , Elastômeros/química , Materiais Inteligentes/química , Materiais Biocompatíveis/química
12.
Macromol Rapid Commun ; : e2400163, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690806

RESUMO

Synthesis of monomer-recyclable polyesters solely from CO2 and bulk olefins holds great potential in significantly reducing CO2 emissions and addressing the issue of plastic pollution. Due to the kinetic disadvantage of direct copolymerization of CO2 and bulk olefins compared to homopolymerization of bulk olefins, considerable research attention has been devoted to synthesis of polyester via the ring-opening polymerization (ROP) of a six-membered disubstituted lactone intermediate, 1,2-ethylidene-6-vinyl-tetrahydro-2H-pyran-2-one (𝜹-L), obtained from telomerization of CO2 and 1,3-butadiene. However, the conjugate olefin on the six-membered ring of 𝜹-L leads to serious Michael addition side reactions. Thus, the selective ROP of 𝜹-L, which can precisely control the repeating unit for the production of polyesters potentially amenable to efficient monomer recycling, remains an unresolved challenge. Herein, the first example of selective ROP of 𝜹-L is reported using a combination of organobase and N,N'-Bis[3,5-bis(trifluoromethyl)phenyl]urea as the catalytic system. Systematic modifications of the substituent of the urea show that the presence of electron-deficient 3,5-bis(trifluoromethyl)-phenyl groups is the key to the extraordinary selectivity of ring opening over Michael addition. Efficient monomer recovery of oligo(𝜹-L) is also achieved under mild catalytic conditions.

13.
Environ Res ; 256: 119269, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815720

RESUMO

Although bag sampling is a common quantification tool for volatile organic compounds (VOCs), it can serve as a major source of experimental bias, when storing even over a short duration (<24 h). To learn more about the reliability of the bag sampling method, the temporal stability of 27 VOCs (classified into five groups (i.e., aldehydes, nonpolar aromatic hydrocarbons, aliphatic carboxylic acids, phenol and methylphenols, and miscellaneous odorants) is assessed using poly-ester aluminum (PEA) bags at five intervals over a day (0.17, 1, 2, 6, and 24 h). In terms of reproducibility (e.g., relative standard error [RSEt, %]), nonpolar aromatic hydrocarbons (BTXS) exhibit the highest consistency (e.g., average RSE <1.55%). Considerable loss of VOCs is observed in the preparation of gaseous standards from a liquid phase standard when assessed by gas/liquid (G/L) ratio. Further, VOCs with lower molecular weights (e.g., propionaldehyde: 77%-94.4%) and branched molecular structures (e.g., isovaleraldehyde: 67.2%-78.9%) tend to have high G/L ratio (e.g., relative to valeraldehyde: 55.1%-66%). The overall relative recovery (RR; %) values of VOCs indicate an exponential decrease over 24 h. BTXS maintain fairly good RR values (above 94.3% at all intervals), possibly due to the nonpolar structure with uniform distribution of π electrons. In contrast, indole and skatole show the least preservation after 24 h (e.g., RR4 values of 10.9% and 24.6%, respectively) due to their highly reactive characteristics. The storability of VOCs appears to be affected by a number of variables (e.g., molecular weight, presence of ethyl branch, and time: e.g., R2 > 0.9). The results of this study offer valuable guidelines for the accurate quantification of VOC levels in air.


Assuntos
Monitoramento Ambiental , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Reprodutibilidade dos Testes , Fatores de Tempo
14.
Environ Res ; 245: 118016, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154563

RESUMO

Recovery of carbon fibres and resin from wind turbine blade waste (WTB) composed of carbon fibres (CF)-reinforced unsaturated polyester resin (UPR) has been environmentally challenging due to its complex structure that is not biodegradable and that is rich in highly toxic styrene (main component of UPR). Within this framework, this paper aims to liberate CF and UPR from WTB using a pyrolysis process. The treatment was performed on commercial WTB (CF/UPR) up to 600 °C using a 250 g reactor. The UPR fraction was decomposed into liquid and gaseous phases, while CF remained as a residue. The composition of gaseous phase was monitored during the entire treatment using a digital gas analyser, while gas chromatography-mass spectrometry (GC-MS) was used to characterize the collected liquid phase. CF fraction was collected and exposed to additional oxidation process after treatment at 450 °C for purification propose, then it was analysed using FTIR and SEM-EDX. Finally, the life cycle assessment (LCA) of the CF/UPR pyrolysis was studied using SimaPro software and the results were compared with landfill disposal practices. The pyrolysis results manifested that 500 °C was sufficient for UPR decomposition into styrene-rich oil and gaseous products with yields of 15.23 wt% and 6.83 wt%, respectively, accompanied by 77.93 wt% solid residue including CF. The LCA results showed that pyrolysis with oxidation process has high environmental potential in WTB recycling with significant reduction in several impact categories compared to landfill. However, the pyrolysis scenario revealed several additional environmental burdens related to ecosystems, acidification, Ozone formation, and fine particulate matter formation that must be overcome before upscaling.


Assuntos
Ecossistema , Pirólise , Fibra de Carbono , Poliésteres , Estireno , Carbono
15.
World J Surg ; 48(3): 758-766, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38323728

RESUMO

BACKGROUND: Currently, the type of patch used for carotid endarterectomy closure depends on the preference of the operating surgeon. Various materials are available, including autologous venous patches, bovine pericardial patches (BPP), and synthetic patches. The purpose of this study was to compare the long-term outcomes. METHODS: All patients who underwent primary carotid endarterectomy with patch angioplasty using a venous, bovine, or polyester patch between 2010 and 2020 at two high-volume medical centers were included in this retrospective analysis on largely prospectively collected data. Study endpoints included long-term ipsilateral transient ischemic attack or cerebrovascular accident, restenosis, reintervention, and all-cause mortality. Cox proportional hazard models were fitted to assess the effect of patch type to each outcome. RESULTS: In total, 1481 CEAs were performed with a follow-up of 32 (13-65) months. Venous patch was used in 309 patients (20.9%), BPP in 1000 patients (67.5%), and polyester patch in 172 patients (11.6%). A preoperative symptomatic carotid artery stenosis of >50% was observed in 91.9% (n = 284) of the patients who received a venous patch, 92.1% (n = 921) of the patients who received BPP, and 90.7% (n = 156) of the patients who received a polyester patch (p = 0.799). Only in selected patients with an asymptomatic stenosis of >70% surgery was considered. Multivariable analyses showed no significant differences between the three patch types regarding long-term outcomes after adjusting for confounders. CONCLUSIONS: In patients undergoing primary carotid endarterectomy, the use of venous, bovine pericardial, or polyester patches seems equally safe and durable in terms of comparability in long-term outcomes.


Assuntos
Estenose das Carótidas , Endarterectomia das Carótidas , Acidente Vascular Cerebral , Humanos , Bovinos , Animais , Endarterectomia das Carótidas/efeitos adversos , Poliésteres , Estudos Retrospectivos , Resultado do Tratamento , Estenose das Carótidas/cirurgia , Acidente Vascular Cerebral/etiologia , Recidiva
16.
Artif Organs ; 48(7): 753-762, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38404240

RESUMO

BACKGROUND: New versions of the polyester polymer alloy (PEPA) membrane have appeared over the years, with increases in both the pore size and the amount of polyvinylpyrrolidone (PVP) to optimize hydrophilicity performance. This study aimed to assess the efficacy of the most recently developed PEPA dialyzer, the FDY series, in hemodialysis (HD) modality in terms of uremic toxin removal and albumin loss and to compare it with that of several high-flux dialyzers currently used in HD and post-dilution hemodiafiltration (HDF) treatments. METHODS: A prospective study was carried out in 21 patients. All patients underwent six dialysis sessions with the same routine dialysis parameters; only the dialyzer and/or the dialysis modality varied: FX80 in HD, FDY 180 in HD, Clearum HS17 in HDF, Elisio 19H in HDF, Vitapes 180 in HDF, and FX80 in post-dilution HDF. The reduction ratios (RR) of urea, creatinine, ß2-microglobulin, myoglobin, κFLC, prolactin, α1-microglobulin, α1-acid glycoprotein, λFLC, and albumin were compared intraindividually. Dialysate albumin loss was also measured. RESULTS: Both membranes FDY and FX80 are high-flux dialyzers and are applied here in high-flux HD. The average RR of ß2-microglobulin was slightly lower in the two HD treatments than in the HDF treatments. Comparison of dialysis treatments revealed that the PEPA FDY dialyzer in the HD modality was more effective than the FX80 dialyzer in high-flux HD and was as effective as post-dilution HDF, especially in terms of myoglobin, κFLC, prolactin, α1-microglobulin, and λFLC RRs. The FDY treatments obtained similar albumin RR in blood and slightly higher dialysate albumin loss, although the values were clinically acceptable. CONCLUSIONS: The most recently developed PEPA dialyzers in the HD modality were as effective as all treatments in the HDF modality and were clearly superior to high-flux helixone HD treatment. These results confirm that this dialyzer should be categorized within the medium cut-off (MCO) membrane classification.


Assuntos
Membranas Artificiais , Poliésteres , Diálise Renal , Humanos , Masculino , Diálise Renal/instrumentação , Diálise Renal/métodos , Pessoa de Meia-Idade , Feminino , Idoso , Estudos Prospectivos , Poliésteres/química , Ligas/química , Idoso de 80 Anos ou mais , Hemodiafiltração/instrumentação , Hemodiafiltração/métodos , Adulto , Polímeros/química
17.
BMC Musculoskelet Disord ; 25(1): 23, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166834

RESUMO

BACKGROUND: Stable upper limb fractures, such as radius, ulna, or distal humerus fractures, are common pediatric orthopedic traumas that are traditionally managed with cast immobilization. The commonly used synthetic fiberglass cast is light and water resistant but may promote skin itchiness during casting, which is a common complaint of patients. In addition, these diisocyanate-based casts have been proven to be toxic and may cause asthma. Herein, we introduce a novel biobased polyester cast to compare its clinical outcomes and patient satisfaction with conventional synthetic fiberglass casts. METHODS: From Feb 2022 to Nov 2022, we undertook a single-center prospective randomized trial involving 100 children with cast-immobilized stable upper limb fractures. These patients were randomized into either biobased polyester or synthetic fiberglass groups. All patients were regularly followed up till the cast removal which occurred approximately 3-4 weeks after immobilizing. Objective clinical findings and subjective patient questionnaire were all collected and analyzed. RESULTS: According to the radiographs taken on the day of cast removal, there was no loss of reduction in both groups. The incidence of skin problems was 3.4 times higher in the synthetic fiberglass group than in the biobased polyester group. For the subjective questionnaire, the biobased polyester cast was preferred in every sub-item. CONCLUSIONS: Our study strongly suggested that the novel biobased polyester cast provides matching stability to conventional fiberglass casts and improves patient satisfaction in an eco-friendlier and safer way. TRIAL REGISTRATION: ClinicalTrials.gov Protocol Registration and Results System ( https://www. CLINICALTRIALS: gov/ ; ID: NCT06102603; Date: 26/10/2023).


Assuntos
Fraturas do Rádio , Criança , Humanos , Fraturas do Rádio/terapia , Moldes Cirúrgicos/efeitos adversos , Estudos Prospectivos , Extremidade Superior
18.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38928377

RESUMO

Bacterial contamination is a hazard in many industries, including food, pharmaceuticals, and healthcare. The availability of a rapid and simple method for detecting this type of contamination in sterile areas enables immediate intervention to avoid or reduce detrimental effects. Among these methods, colorimetric indicators are becoming increasingly popular due to their affordability, ease of use, and quick visual interpretation of the signal. In this article, a bacterial contamination indicator system was designed by incorporating MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) into an electrospun PADAS matrix, which is a biodegradable poly(ester amide) synthesized from L-alanine, 1,12-dodecanediol, and sebacic acid. Uniaxial stress testing, thermogravimetric analysis and scanning electron microscopy were used to examine the mechanical properties, thermal stability, and morphology of the mats, respectively. The capacity for bacterial detection was not only analyzed with agar and broth assays but also by replicating important environmental conditions. Among the MTT concentrations tested in this study (0.2%, 2%, and 5%), it was found that only with a 2% MTT content the designed system produced a color response visible to the naked eye with optimal intensity, a sensitivity limit of 104 CFU/mL, and 86% cell viability, which showed the great potential for its use to detect bacterial contamination. In summary, by means of the process described in this work, it was possible to obtain a simple, low-cost and fast-response bacterial contamination indicator that can be used in mask filters, air filters, or protective clothing.


Assuntos
Colorimetria , Poliésteres , Sais de Tetrazólio , Sais de Tetrazólio/química , Poliésteres/química , Colorimetria/métodos , Tiazóis/química , Bactérias , Humanos
19.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000109

RESUMO

Surface modification of drug-loaded particles with polyethylene glycol (PEG) chains is a powerful tool that promotes better transport of therapeutic agents, provides stability, and avoids their detection by the immune system. In this study, we used a new approach to synthesize a biodegradable poly(ester amide) (PEA) and PEGylating surfactant. These were employed to fabricate micro/nanoparticles with a core-shell structure. Nanoparticle (NP)-protein interactions and self-assembling were subsequently studied by synchrotron radiation-based FTIR microspectroscopy (SR-FTIRM) and transmission electron microscopy (TEM) techniques. The core-shell structure was identified using IR absorption bands of characteristic chemical groups. Specifically, the stretching absorption band of the secondary amino group (3300 cm-1) allowed us to identify the poly(ester amide) core, while the band at 1105 cm-1 (C-O-C vibration) was useful to demonstrate the shell structure based on PEG chains. By integration of absorption bands, a 2D intensity map of the particle was built to show a core-shell structure, which was further supported by TEM images.


Assuntos
Nanopartículas , Poliésteres , Polietilenoglicóis , Síncrotrons , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Nanopartículas/química , Poliésteres/química , Microscopia Eletrônica de Transmissão/métodos , Amidas/química
20.
J Environ Manage ; 363: 121363, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850911

RESUMO

The footwear industry significantly impacts the environment, from raw material extraction to waste disposal. Transforming waste into new products is a viable option to mitigate the environmental consequences, reducing the reliance on virgin raw materials. This work aims to develop thermal and acoustic insulation materials using polyester waste from footwear industry. Two nonwoven and two compressed nonwoven structures, comprising 80% polyester waste and 20% commercial recycled polyester (matrix), were produced. The materials were created through needle-punching and compression molding techniques. The study included the production of sandwich and monolayer nonwoven structures, which were evaluated considering area weight, thickness, air permeability, mechanical properties, morphology using field emission scanning electron microscopy, and thermal and acoustic properties. The nonwoven samples presented high tensile strength (893 kPa and 629 kPa) and the highest strain (79.7% and 73.3%) and compressed nonwoven structures showed higher tensile strength (2700 kPa and 1291 kPa) but reduced strain (25.8% and 40.8%). Nonwoven samples showed thermal conductivity of 0.041 W/K.m and 0.037 W/K.m. Compressed nonwoven samples had higher values at 0.060 W/K.m and 0.070 W/K.m. While the sample with the highest conductivity exceeds typical insulation levels, other samples are suitable for thermal insulation. Nonwoven structures exhibited good absorption coefficients (0.640-0.644), suitable for acoustic insulation. Compressed nonwoven structures had lower values (0.291-0.536), unsuitable for this purpose. In summary, this study underscores the potential of 100% recycled polyester structures derived from footwear and textile industry waste, showcasing remarkable acoustic and thermal insulation properties ideal for the construction sector.


Assuntos
Acústica , Sapatos , Resistência à Tração , Poliésteres/química , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA