Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 603
Filtrar
1.
Mol Pharm ; 21(8): 3967-3978, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39018110

RESUMO

The metastability of amorphous formulations poses barriers to their safe and widespread commercialization. The propensity of amorphous solid dispersions (ASDs) to crystallize is directly linked to their molecular structure. Amorphous structures are inherently complex and thus difficult to fully characterize by experiments, which makes structural simulations an attractive route for investigating which structural characteristics correlate with ASD stability. In this study, we use empirical potential structure refinement (EPSR) to create molecular models of ketoprofen-poly(vinylpyrrolidone) (KTP/PVP) ASDs with 0-75 wt % drug loading. The EPSR technique uses X-ray total scattering measurements as constraints, yielding models that are consistent with the X-ray data. We perform several simulations to assess the sensitivity of the EPSR approach to input parameters such as intramolecular bond rotations, PVP molecule length, and PVP tacticity. Even at low drug loading (25 wt %), ∼40% of KTP molecules participate in KTP-KTP hydrogen bonding. The extent of KTP-PVP hydrogen bonding does not decrease significantly at higher drug loadings. However, the models' relative uncertainties are too large to conclude whether ASDs' lower stabilities at high drug loadings are due to changes in drug-excipient hydrogen bonding or a decrease in steric hindrance of KTP molecules. This study illustrates how EPSR, combined with total scattering measurements, can be a powerful tool for investigating structural characteristics in amorphous formulations and developing ASDs with improved stability.


Assuntos
Cetoprofeno , Povidona , Difração de Raios X , Cetoprofeno/química , Povidona/química , Difração de Raios X/métodos , Cristalização , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Modelos Moleculares , Estabilidade de Medicamentos
2.
Mol Pharm ; 21(6): 3027-3039, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38755753

RESUMO

This study presents a novel approach by utilizing poly(vinylpyrrolidone)s (PVPs) with various topologies as potential matrices for the liquid crystalline (LC) active pharmaceutical ingredient itraconazole (ITZ). We examined amorphous solid dispersions (ASDs) composed of ITZ and (i) self-synthesized linear PVP, (ii) self-synthesized star-shaped PVP, and (iii) commercial linear PVP K30. Differential scanning calorimetry, X-ray diffraction, and broad-band dielectric spectroscopy were employed to get a comprehensive insight into the thermal and structural properties, as well as global and local molecular dynamics of ITZ-PVP systems. The primary objective was to assess the influence of PVPs' topology and the composition of ASD on the LC ordering, changes in the temperature of transitions between mesophases, the rate of their restoration, and finally the solubility of ITZ in the prepared ASDs. Our research clearly showed that regardless of the PVP type, both LC transitions, from smectic (Sm) to nematic (N) and from N to isotropic (I) phases, are effectively suppressed. Moreover, a significant difference in the miscibility of different PVPs with the investigated API was found. This phenomenon also affected the solubility of API, which was the greatest, up to 100 µg/mL in the case of starPVP 85:15 w/w mixture in comparison to neat crystalline API (5 µg/mL). Obtained data emphasize the crucial role of the polymer's topology in designing new pharmaceutical formulations.


Assuntos
Varredura Diferencial de Calorimetria , Itraconazol , Cristais Líquidos , Povidona , Solubilidade , Difração de Raios X , Itraconazol/química , Cristais Líquidos/química , Povidona/química , Varredura Diferencial de Calorimetria/métodos , Difração de Raios X/métodos , Polímeros/química , Antifúngicos/química , Composição de Medicamentos/métodos , Cristalização , Química Farmacêutica/métodos
3.
Mol Pharm ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39360744

RESUMO

Using the time-temperature-transformation diagrams, we demonstrated a correlation between molecular mobility and crystallization in amorphous solid dispersions of nifedipine (NIF) with each polyvinylpyrrolidone vinyl acetate (PVPVA64) and polyvinyl caprolactam polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus). The behavior was compared with the NIF dispersions prepared with each polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) [Lalge et al., Mol. Pharmaceutics 2023, 20(3), 1806-1817]. Each system was characterized by a unique temperature at which the crystallization onset time was the shortest. Below this temperature, a coupling was observed between the α-relaxation time determined by dielectric spectroscopy and crystallization onset time. Above this temperature, the activation barrier for crystallization had a more significant role than molecular mobility. In the solid state, PVP and PVPVA64 dispersion exhibited higher resistance to crystallization than HPMCAS and Soluplus. The role of polymers in inhibiting crystal growth in nucleated systems was discerned by monitoring crystallization following wetting of the amorphous dispersion with the dissolution medium. PVPVA64 and Soluplus dispersions exhibited higher resistance to crystal growth than PVP and HPMCAS.

4.
Cryobiology ; 114: 104852, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295927

RESUMO

Cryopreserved semen is routinely shipped in liquid nitrogen. Dry ice could serve as an alternative coolant, however, frozen storage above liquid nitrogen temperatures (LN2, -196 °C) may negatively affect shelf-life and cryosurvival. In this study, we determined critical temperatures for storage of cryopreserved stallion sperm. We evaluated: (i) effects of cooling samples to different subzero temperatures (-10 °C to -80 °C) prior to storing in LN2, (ii) stability at different storage temperatures (i.e., in LN2, dry ice, -80 °C and -20 °C freezers, 5 °C refrigerator), and (iii) sperm cryosurvival during storage on dry ice (i.e., when kept below -70 °C and during warming). Furthermore, (iv) we analyzed if addition of synthetic polymers (PVP-40, Ficoll-70) modulates ice crystallization kinetics and improves stability of cryopreserved specimens. Sperm motility and membrane intactness were taken as measures of cryosurvival, and an artificial insemination trial was performed to confirm fertilizing capacity. We found that adding PVP-40 or Ficoll-70 to formulations containing glycerol reduced ice crystal sizes and growth during annealing. Post-thaw sperm viability data indicated that samples need to be cooled below -40 °C before they can be safely plunged and stored in LN2. No negative effects of relocating specimens from dry ice to LN2 and vice versa became apparent. However, sample warming above -50 °C during transport in dry ice should be avoided to ensure preservation of viability and fertility. Moreover, addition of PVP-40 or Ficoll-70 was found to increase sperm cryosurvival, especially under non-ideal storage conditions where ice recrystallization may occur.


Assuntos
Criopreservação , Preservação do Sêmen , Masculino , Animais , Cavalos , Criopreservação/métodos , Sêmen , Gelo-Seco , Gelo , Polímeros , Cristalização , Ficoll , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides , Nitrogênio , Povidona
5.
Artif Organs ; 48(7): 753-762, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38404240

RESUMO

BACKGROUND: New versions of the polyester polymer alloy (PEPA) membrane have appeared over the years, with increases in both the pore size and the amount of polyvinylpyrrolidone (PVP) to optimize hydrophilicity performance. This study aimed to assess the efficacy of the most recently developed PEPA dialyzer, the FDY series, in hemodialysis (HD) modality in terms of uremic toxin removal and albumin loss and to compare it with that of several high-flux dialyzers currently used in HD and post-dilution hemodiafiltration (HDF) treatments. METHODS: A prospective study was carried out in 21 patients. All patients underwent six dialysis sessions with the same routine dialysis parameters; only the dialyzer and/or the dialysis modality varied: FX80 in HD, FDY 180 in HD, Clearum HS17 in HDF, Elisio 19H in HDF, Vitapes 180 in HDF, and FX80 in post-dilution HDF. The reduction ratios (RR) of urea, creatinine, ß2-microglobulin, myoglobin, κFLC, prolactin, α1-microglobulin, α1-acid glycoprotein, λFLC, and albumin were compared intraindividually. Dialysate albumin loss was also measured. RESULTS: Both membranes FDY and FX80 are high-flux dialyzers and are applied here in high-flux HD. The average RR of ß2-microglobulin was slightly lower in the two HD treatments than in the HDF treatments. Comparison of dialysis treatments revealed that the PEPA FDY dialyzer in the HD modality was more effective than the FX80 dialyzer in high-flux HD and was as effective as post-dilution HDF, especially in terms of myoglobin, κFLC, prolactin, α1-microglobulin, and λFLC RRs. The FDY treatments obtained similar albumin RR in blood and slightly higher dialysate albumin loss, although the values were clinically acceptable. CONCLUSIONS: The most recently developed PEPA dialyzers in the HD modality were as effective as all treatments in the HDF modality and were clearly superior to high-flux helixone HD treatment. These results confirm that this dialyzer should be categorized within the medium cut-off (MCO) membrane classification.


Assuntos
Membranas Artificiais , Poliésteres , Diálise Renal , Humanos , Masculino , Diálise Renal/instrumentação , Diálise Renal/métodos , Pessoa de Meia-Idade , Feminino , Idoso , Estudos Prospectivos , Poliésteres/química , Ligas/química , Idoso de 80 Anos ou mais , Hemodiafiltração/instrumentação , Hemodiafiltração/métodos , Adulto , Polímeros/química
6.
Photodermatol Photoimmunol Photomed ; 40(1): e12919, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37882104

RESUMO

BACKGROUND/OBJECTIVES: Favipiravir is an antiviral agent, recently used for COVID-19 infections. Several reports associate favipiravir intake with Wood's lamp fluorescence of hair, nails, and sclera. The present study was designed to elucidate the positivity rates, and sites of favipiravir-related fluorescence and to unravel the site-specific changes in fluorescence positivity rates by a function of time past exposure. METHODS: The study population comprised 50 patients and 50 control individuals. All patients in the patient group had received a full dose of favipiravir for COVID-19 infection. Fifty volunteers served as the control group. Wood's lamp examination was performed in a completely darkened room, and the positivity rate, extent, pattern, and distribution of fluorescence were recorded. RESULTS: Wood's light revealed fluorescence of the fingernails, toenails, sclera, and hair in 35 (70%), 35 (70%), 22 (44%), and 8 (16%) patients, respectively. No control individual tested positive by Wood's lamp. Statistical analysis revealed significant differences between patient and control groups in terms of Wood's light luminescence in the fingernails (p = .000), toenails (p = .000), sclera (p = .000) and hair (p = .003). Although fingernail, toenail, and hair fluorescence positivity rates declined or ceased at or after 91 days of favipiravir exposure, ocular fluorescence positivity rates were prolonged up to 188 days. CONCLUSIONS: These findings confirm that favipiravir may produce fluorescence of nails, sclera, and hair, detectable by Wood's light starting from the initial month and peaking at second- and third months following exposure to the medication. Although nail and hair fluorescence tend to abate after 3 months, ocular fluorescence may persist even longer than 6 months after cessation of the medication.


Assuntos
Amidas , COVID-19 , Luminescência , Pirazinas , Humanos , Esclera , Raios Ultravioleta
7.
Int J Toxicol ; 43(4_suppl): 5-41, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39045851

RESUMO

The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of 30 vinylpyrrolidone polymers as used in cosmetic products; most of these ingredients have the reported cosmetic function of film former in common. The Panel reviewed data relevant to the safety of these ingredients, and determined that 27 vinylpyrrolidone polymers are safe in cosmetics in the present practices of use and concentration described in the safety assessment. The Panel also concluded that the available data are insufficient to make a determination that 3 vinylpyrrolidone polymers (all urethanes) are safe under the intended conditions of use in cosmetic formulations.


Assuntos
Qualidade de Produtos para o Consumidor , Cosméticos , Polímeros , Pirrolidinonas , Cosméticos/toxicidade , Cosméticos/química , Humanos , Animais , Polímeros/toxicidade , Polímeros/química , Pirrolidinonas/toxicidade , Pirrolidinonas/química , Pirrolidinonas/farmacocinética , Testes de Toxicidade , Medição de Risco
8.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396975

RESUMO

The results of the synthesis of microcrystalline calcium phosphates such as hydroxoapatite, pyrophosphate, and tricalcium phosphate are presented herein. The influence of the addition of polyvinylpyrrolidone (PVP) on the phase characteristics of the resulting high-temperature ceramic sample is considered. The X-ray results show that hydroxyapatite (HAp) consists of a Ca5(PO4)3(OH) phase, while the sample with the addition of polyvinylpyrrolidone contains ß-Ca3(PO4)2 (65.5%) and ß-Ca2P2O7 (34.5%) phases calcium phosphates (CPs). IR spectroscopy was used to characterize the compositions of the samples. An important characteristic of the obtained samples is the elemental Ca/P ratio, which was determined via energy-dispersive analysis. The data obtained are consistent with the composition of dental enamel apatites, namely, in the CPs (1.27) and HAp (1.40). SEM was used to study the morphology of the surfaces of hydroxyapatite particles. Polyvinylpyrrolidone polymer fibers were obtained using the electroforming method with the inclusion of CPs in the composition. The fibers were oriented randomly, and nanoscale hydroxyapatite particles were incorporated into the fiber structure. Solubility data of the HAp, CPs, and Fibers in a physiological solution at room temperature and human body temperature were obtained. The solubility of the resulting HAp turned out to be higher than the solubility of the CPs. In turn, the concentration of Ca2+ in a physiological solution of PVP composite fibers with the inclusion of CPs was lower than that in powdered CPs.


Assuntos
Fosfatos , Povidona , Humanos , Temperatura , Fosfatos de Cálcio/química , Durapatita/química , Apatitas , Difração de Raios X
9.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791388

RESUMO

The use of targeted drug delivery systems, including those based on selective absorption by certain receptors on the surface of the target cell, can lead to a decrease in the minimum effective dose and the accompanying toxicity of the drug, as well as an increase in therapeutic efficacy. A fullerene C60 conjugate (FA-PVP-C60) with polyvinylpyrrolidone (PVP) as a biocompatible spacer and folic acid (FA) as a targeting ligand for tumor cells with increased expression of folate receptors (FR) was obtained. Using 13C NMR spectroscopy, FT-IR, UV-Vis spectrometry, fluorometry and thermal analysis, the formation of the conjugate was confirmed and the nature of the binding of its components was established. The average particle sizes of the conjugate in aqueous solutions and cell culture medium were determined using dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). The FA-PVP-C60 showed antiradical activity against •DPPH, •OH and O2•-, but at the same time, it was shown to generate 1O2. It was found that the conjugate in the studied concentration range (up to 200 µg/mL) is non-toxic in vitro and does not affect the cell cycle. To confirm the ability of the conjugate to selectively accumulate through folate-mediated endocytosis, its uptake into cells was analyzed by flow cytometry and confocal microscopy. It was shown that the conjugate is less absorbed by A549 cells with low FR expression than by HeLa, which has a high level of expression of this receptor.


Assuntos
Sistemas de Liberação de Medicamentos , Ácido Fólico , Fulerenos , Povidona , Ácido Fólico/química , Ácido Fólico/farmacologia , Humanos , Povidona/química , Fulerenos/química , Fulerenos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral , Células A549 , Células HeLa , Tamanho da Partícula
10.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474022

RESUMO

In this study, amorphous solid dispersions (ASDs) of pterostilbene (PTR) with polyvinylpyrrolidone polymers (PVP K30 and VA64) were prepared through milling, affirming the amorphous dispersion of PTR via X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC). Subsequent analysis of DSC thermograms, augmented using mathematical equations such as the Gordon-Taylor and Couchman-Karasz equations, facilitated the determination of predicted values for glass transition (Tg), PTR's miscibility with PVP, and the strength of PTR's interaction with the polymers. Fourier-transform infrared (FTIR) analysis validated interactions maintaining PTR's amorphous state and identified involved functional groups, namely, the 4'-OH and/or -CH groups of PTR and the C=O group of PVP. The study culminated in evaluating the impact of amorphization on water solubility, the release profile in pH 6.8, and in vitro permeability (PAMPA-GIT and BBB methods). In addition, it was determined how improving water solubility affects the increase in antioxidant (ABTS, DPPH, CUPRAC, and FRAP assays) and neuroprotective (inhibition of cholinesterases: AChE and BChE) properties. The apparent solubility of the pure PTR was ~4.0 µg·mL-1 and showed no activity in the considered assays. For obtained ASDs (PTR-PVP30/PTR-PVPVA64, respectively) improvements in apparent solubility (410.8 and 383.2 µg·mL-1), release profile, permeability, antioxidant properties (ABTS: IC50 = 52.37/52.99 µg·mL-1, DPPH: IC50 = 163.43/173.96 µg·mL-1, CUPRAC: IC0.5 = 122.27/129.59 µg·mL-1, FRAP: IC0.5 = 95.69/98.57 µg·mL-1), and neuroprotective effects (AChE: 39.1%/36.2%, BChE: 76.9%/73.2%) were confirmed.


Assuntos
Antioxidantes , Benzotiazóis , Povidona , Ácidos Sulfônicos , Resveratrol , Povidona/química , Polímeros/química , Solubilidade , Difração de Raios X , Água , Varredura Diferencial de Calorimetria , Espectroscopia de Infravermelho com Transformada de Fourier
11.
Molecules ; 29(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39275029

RESUMO

Although titanium and its alloys are widely used as dental implants, they cannot induce the formation of new bone around the implant, which is a basis for the functional integrity and long-term stability of implants. This study focused on the functionalization of the titanium/titanium oxide surface as the gold standard for dental implants, with electrospun composite fibers consisting of polyvinylpyrrolidone and Ca2+ ions. Polymer fibers as carriers of Ca2+ ions should gradually dissolve, releasing Ca2+ ions into the environment of the implant when it is immersed in a model electrolyte of artificial saliva. Scanning electron microscopy, energy dispersive X-ray spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy confirmed the successful formation of a porous network of composite fibers on the titanium/titanium oxide surface. The mechanism of the formation of the composite fibers was investigated in detail by quantum chemical calculations at the density functional theory level based on the simulation of possible molecular interactions between Ca2+ ions, polymer fibers and titanium substrate. During the 7-day immersion of the functionalized titanium in artificial saliva, the processes on the titanium/titanium oxide/composite fibers/artificial saliva interface were monitored by electrochemical impedance spectroscopy. It can be concluded from all the results that the composite fibers formed on titanium have application potential for the development of osteoinductive and thus more biocompatible dental implants.


Assuntos
Cálcio , Implantes Dentários , Titânio , Titânio/química , Cálcio/química , Cálcio/metabolismo , Povidona/química , Humanos , Íons/química , Espectroscopia de Infravermelho com Transformada de Fourier , Saliva Artificial/química , Materiais Biocompatíveis/química , Espectrometria por Raios X , Osteogênese/efeitos dos fármacos
12.
Molecules ; 29(10)2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38792144

RESUMO

Peripheral nerve injuries (PNI) impact millions of individuals in the United States, prompting thousands of nerve repair procedures annually. Nerve conduits (NC) are commonly utilized to treat nerve injuries under 3 cm but larger gaps still pose a challenge for successful peripheral nerve regeneration (PNR) and functional recovery. This is partly attributed to the absence of bioactive agents such as stem cells or growth factors in FDA-approved conduits due to safety, harvesting, and reproducibility concerns. Therefore, curcumin, a bioactive phytochemical, has emerged as a promising alternative bioactive agent due to its ability to enhance PNR and overcome said challenges. However, its hydrophobicity and rapid degradation in aqueous solutions are considerable limitations. In this work, a nanoscale delivery platform with tannic acid (TA) and polyvinylpyrrolidone (PVP) was developed to encapsulate curcumin for increased colloidal and chemical stability. The curcumin nanoparticles (CurNPs) demonstrate significantly improved stability in water, reduced degradation rates, and controlled release kinetics when compared to free curcumin. Further, cell studies show that the CurNP is biocompatible when introduced to neuronal cells (SH-SY5Y), rat Schwann cells (RSC-S16), and murine macrophages (J774 A.1) at 5 µM, 5 µM, and 10 µM of curcumin, respectively. As a result of these improved physicochemical properties, confocal fluorescence microscopy revealed superior delivery of curcumin into these cells when in the form of CurNPs compared to its free form. A hydrogen peroxide-based oxidative stress study also demonstrated the CurNP's potential to protect J774 A.1 cells against excessive oxidative stress. Overall, this study provides evidence for the suitability of CurNPs to be used as a bioactive agent in NC applications.


Assuntos
Curcumina , Nanopartículas , Curcumina/farmacologia , Curcumina/química , Animais , Ratos , Nanopartículas/química , Camundongos , Humanos , Sistemas de Liberação de Medicamentos , Regeneração Nervosa/efeitos dos fármacos , Polímeros/química , Células de Schwann/efeitos dos fármacos , Liberação Controlada de Fármacos , Taninos/química , Taninos/farmacologia , Linhagem Celular , Estresse Oxidativo/efeitos dos fármacos , Povidona/química
13.
AAPS PharmSciTech ; 25(2): 28, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302687

RESUMO

Cyclosporine A (CsA) is a cyclic peptide immunosuppressant drug that is beneficial in the treatment of various ocular diseases. However, its ocular bioavailability in the posterior eye is limited due to its poor aqueous solubility. Conventional CsA formulations such as a solution or emulsion permeate poorly across the eye due to various static and dynamic barriers of the eye. Dissolvable microneedle (MN)-based patches can be used to overcome barrier properties and, thus, enhance the ocular bioavailability of CsA in the posterior eye. CsA-loaded dissolvable MN patches were fabricated using polyvinylpyrrolidone (PVP) and characterized for MN uniformity and sharpness using SEM. Further characterization for its failure force, penetration force, and depth of penetration were analyzed using a texture analyzer. Finally, the dissolution time, ex vivo permeation, and ocular distribution of cyclosporine were determined in isolated porcine eyes. PVP MNs were sharp, uniform with good mechanical properties, and dissolved within 5 min. Ocular distribution of CsA in a whole porcine eye perfusion model showed a significant increase of CsA levels in various posterior segment ocular tissues as compared to a topically applied ophthalmic emulsion (Restasis®) (P < 0.001). Dissolving MNs of CsA were prepared, and the MN arrays can deliver CsA to the back of the eye offering potential for treating various inflammatory diseases.


Assuntos
Ciclosporina , Olho , Animais , Suínos , Emulsões , Imunossupressores , Sistemas de Liberação de Medicamentos
14.
AAPS PharmSciTech ; 25(4): 81, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600252

RESUMO

MALCORE®, a novel manufacturing technology for drug-containing particles (DCPs), relies on the melt granulation method to produce spherical particles with high drug content. The crucial aspect of particle preparation through MALCORE® involves utilizing polymers that dissolve in the melt component, thereby enhancing viscosity upon heating. However, only aminoalkyl methacrylate copolymer E (AMCE) has been previously utilized. Therefore, this study aims to discover other polymers and comprehend the essential properties these polymers need to possess. The results showed that polyvinylpyrrolidone (PVP) was soluble in the stearic acid (SA) melt component. FTIR examination revealed no interaction between SA and polymer. The phase diagram was used to analyze the state of the SA and polymer mixture during heating. It revealed the mixing ratio and temperature range where the mixture remained in a liquid state. The viscosity of the mixture depended on the quantity and molecular weight of the polymer dissolved in SA. Furthermore, the DCPs prepared using PVP via MALCORE® exhibited similar pharmaceutical properties to those prepared with AMCE. In conclusion, understanding the properties required for polymers in the melt granulation process of MALCORE® allows for the optimization of manufacturing conditions, such as temperature and mixing ratios, for efficient and consistent drug layering.


Assuntos
Polímeros , Povidona , Tecnologia Farmacêutica/métodos , Temperatura , Excipientes , Tecnologia , Metacrilatos , Composição de Medicamentos/métodos , Solubilidade
15.
AAPS PharmSciTech ; 25(5): 134, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862663

RESUMO

Inclusion complexes require higher concentration of Beta cyclodextrins (ßCD) resulting in increased formulation bulk, toxicity, and production costs. This systematic review offers a comprehensive analysis using Quality by design (QbD) as a tool to predict potential applications of Polyvinylpyrrolidone (PVP) as a ternary substance to address issues of inclusion complexes. We reviewed 623 documents from 2013 to 2023 and Eighteen (18) research papers were selected for statistical and meta-analysis using the QbD concept to identify the most critical factors for selecting drugs and effect of PVP on inclusion complexes. The QbD analysis revealed that Molecular weight (MW), Partition coefficient (Log P), and the auxiliary substance ratio directly affected complexation efficiency (CE), thermodynamic stability in terms of Gibbs free energy (ΔG), and percent drug release. However, Stability constant (Ks) remained unaffected by any of these parameters. The results showed that low MW (250), median Log P (6), and a ßCD: PVP ratio of 2:3 would result in higher CE, lower G, and improved drug release. PVP improves drug solubility, enhances delivery and therapeutic outcomes, and counteracts increased drug ionization due to decreased pH. In certain cases, its bulky nature and hydrogen bonding with CD molecules can form non-inclusion complexes. The findings of the study shows that there is potential molecular interaction between PVP and ß-cyclodextrins, which possibly enhances the stability of inclusion complexes for drug with low MW and log P values less than 9. The systematic review shows a comprehensive methodology based on QbD offers a replicable template for future investigations into drug formulation research.


Assuntos
Ciclodextrinas , Povidona , Solubilidade , beta-Ciclodextrinas , beta-Ciclodextrinas/química , Química Farmacêutica/métodos , Ciclodextrinas/química , Liberação Controlada de Fármacos , Excipientes/química , Peso Molecular , Projetos Piloto , Povidona/química , Termodinâmica
16.
BMC Plant Biol ; 23(1): 385, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563739

RESUMO

BACKGROUND: Fagopyrum tataricum (Tartary buckwheat) is a valuable crop of great nutritional importance due to its high level of bioactive compounds. Excellent opportunities to obtain plants with the high level or the desired profile of valuable metabolites may be provided by in vitro cultures. Among known in vitro techniques, protoplast technology is an exciting tool for genetic manipulation to improve crop traits. In that context, protoplast fusion may be applied to generate hybrid cells between different species of Fagopyrum. To apply protoplast cultures to the aforementioned approaches in this research, we established the protoplast-to-plant system in Tartary buckwheat. RESULTS: In this work, cellulase and pectinase activity enabled protoplast isolation from non-morphogenic and morphogenic callus (MC), reaching, on average, 2.3 × 106 protoplasts per g of fresh weight. However, to release protoplasts from hypocotyls, the key step was the application of driselase in the enzyme mixture. We showed that colony formation could be induced after protoplast embedding in agarose compared to the alginate matrix. Protoplasts cultured in a medium based on Kao and Michayluk supplemented with phytosulfokine (PSK) rebuilt cell walls, underwent repeated mitotic division, formed aggregates, which consequently led to callus formation. Plating efficiency, expressing the number of cell aggregate formed, in 10-day-old protoplast cultures varied from 14% for morphogenic callus to 30% for hypocotyls used as a protoplast source. However plant regeneration via somatic embryogenesis and organogenesis occurred only during the cultivation of MC-derived protoplasts. CONCLUSIONS: This study demonstrated that the applied protoplast isolation approach facilitated the recovery of viable protoplasts. Moreover, the embedding of protoplasts in an agarose matrix and supplementation of a culture medium with PSK effectively stimulated cell division and further development of Tartary buckwheat protoplast cultures along with the plant regeneration. Together, these results provide the first evidence of developing a protoplast-to-plant system from the MC of Fagopyrum tataricum used as source material. These findings suggest that Tartary buckwheat's protoplast cultures have potential implications for the species' somatic hybridization and genetic improvement.


Assuntos
Fagopyrum , Fagopyrum/genética , Protoplastos , Sefarose/farmacologia , Peptídeos , Peptídeos e Proteínas de Sinalização Intercelular
17.
Chemistry ; 29(20): e202203510, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36597693

RESUMO

This study demonstrates a simple and reproducible approach to synthesize green core-shell copper sub-microparticles stabilized by poly(n-vinyl)pyrrolidone (PVP). Cu@PVP colloids were here prepared using copper sulfate pentahydrate as precursor and glucose as reducing agent. The presence of PVP in the synthetic medium eliminates the need for an inert atmosphere during the process, thus simplifying the whole method. Both the morphology and the spectroscopic properties of Cu@PVP colloids were investigated by transmission electron microscopy, and infrared, UV-Vis and X-ray photoelectron spectroscopies. Size distributions and average shell thickness were obtained by statistical analysis on TEM micrographs, and spectroscopies demonstrated the formation of a PVP layer around the copper core. The produced colloids were employed in composite thin films for potential antimicrobial application, in association with a highly-recyclable polymer: polycarbonate (4,4'-(1-methylethylidene)bis(phenol)).

18.
Anal Biochem ; 675: 115225, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364681

RESUMO

An efficient method of genomic DNA extraction that provides high quality and yield is a crucial pre-requisite and limiting factor in plant genetic analysis. However, pure genomic DNA can be challenging to obtain from some plant species due to their sugar and secondary metabolite contents. Lippia alba is an important aromatic and medicinal plant, chemically characterized by the presence of tannins, flavonoids, anthocyanins, and essential oils, which interfere with the extraction of pure genomic DNA. In this scenario, optimizing the extraction methods and minimizing the effects of these compounds are necessary. This study compares six plant DNA extraction protocols based on the CTAB method. The quality and quantity of DNA samples obtained were determined by physical appearance by electrophoresis in agarose gels and spectrophotometry. The results highlight the difficulty in obtaining pure and clear bands for all tested methods, except for the polyvinylpyrrolidone (PVP)-based protocol created by our team, which was the better option for obtaining high-quality genomic DNA of L. alba. We conclude that adding PVP-40 into DNA extraction buffers can optimize the DNA extraction of L. alba and indicate this protocol for DNA extraction from other aromatic plants.


Assuntos
Lippia , Óleos Voláteis , Plantas Medicinais , Lippia/genética , Lippia/química , Antocianinas , Óleos Voláteis/química , DNA de Plantas/genética
19.
Mol Pharm ; 20(7): 3645-3652, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37306254

RESUMO

PVP is a hydrophilic polymer commonly used as an excipient in pharmaceutical formulations. Here we have performed time-resolved high-energy X-ray scattering experiments on pellets of PVP at different humidity conditions for 1-2 days. A two-phase exponential decay in water sorption is found with a peak in the differential pair distribution function at 2.85 Å, which is attributed to the average (hydrogen bonded) carbonyl oxygen-water oxygen distance. Additional scattering measurements on powders with fixed compositions ranging from 2 to 12.3 wt % H2O were modeled with Empirical Potential Structure Refinement (EPSR). The models reveal approximately linear relations between the carbonyl oxygen-water oxygen coordination number (nOC-OW) and the water oxygen-water oxygen coordination number (nOW-OW) versus water content in PVP. A stronger preference for water-water hydrogen bonding over carbonyl-water bonding is found. At all the concentrations studied the majority of water molecules were found to be randomly isolated, but a wide distribution of coordination environments of water molecules is found within the PVP polymer strands at the highest concentrations. Overall, the EPSR models indicate a continuous evolution in structure versus water content with nOW-OW=1 occurring at ∼12 wt % H2O, i.e., the composition where, on average, each water molecule is surrounded by one other water molecule.


Assuntos
Povidona , Água , Povidona/química , Água/química , Difração de Raios X , Polímeros/química , Oxigênio
20.
Mol Pharm ; 20(3): 1806-1817, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36744878

RESUMO

The critical cooling rate (CRcrit) to prevent drug crystallization during the preparation of nifedipine amorphous solid dispersions (ASDs) was determined through the time-temperature-transformation (TTT) diagram. ASDs were prepared with polyvinylpyrrolidone, hydroxypropylmethyl cellulose acetate succinate, and poly(acrylic acid). ASDs were subjected to isothermal crystallization over a wide temperature range, and the time and temperature dependence of nifedipine crystallization onset time (tC) was determined by differential scanning calorimetry (DSC) and synchrotron X-ray diffractometry. TTT diagrams were generated for ASDs, which provided the CRcrit for the dispersions prepared with each polymer. The observed differences in CRcrit could be explained in terms of differences in the strength of interactions. Stronger drug-polymer interactions led to longer tC and decreased CRcrit. The effect of polymer concentrations (4-20% w/w) was also influenced by the strength of the interaction. The CRcrit of amorphous NIF was ∼17.5 °C/min. Addition of 20% w/w polymer resulted in a CRcrit of ∼0.05, 0.2, and 11 °C/min for the dispersions prepared with PVP, HPMCAS, and PAA, respectively.


Assuntos
Nifedipino , Polímeros , Polímeros/química , Cristalização , Temperatura , Nifedipino/química , Povidona/química , Solubilidade , Varredura Diferencial de Calorimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA