Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Plant Res ; 134(6): 1335-1349, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34477986

RESUMO

Although anthocyanins are widely distributed in higher plants, betalains have replaced anthocyanins in most species of the order Caryophyllales. The accumulation of flavonols in Caryophyllales plants implies that the late step of anthocyanin biosynthesis from dihydroflavonols to anthocyanins may be blocked in Caryophyllales. The isolation and characterization of functional dihydroflavonol 4-reductase (DFR) and anthocyanidin synthase (ANS) from Caryophyllales plants has indicated a lack of anthocyanins due to suppression of DFR and ANS. In this study, we demonstrated that overexpression of DFR and ANS from Spinacia oleracea (SoDFR and SoANS, respectively) with PhAN9, which encodes glutathione S-transferase (required for anthocyanin sequestration) from Petunia induces ectopic anthocyanin accumulation in yellow tepals of the cactus Astrophytum myriostigma. A promoter assay of SoANS showed that the Arabidopsis MYB transcription factor PRODUCTION OF ANTHOCYANIN PIGMENT1 (PAP1) activated the SoANS promoter in Arabidopsis leaves. The overexpression of Arabidopsis transcription factors with PhAN9 also induced ectopic anthocyanin accumulation in yellow cactus tepals. PAP homologs from betalain-producing Caryophyllales did not activate the promoter of ANS. In-depth characterization of Caryophyllales PAPs and site-directed mutagenesis in the R2R3-MYB domains identified the amino acid residues affecting transactivation of Caryophyllales PAPs. The substitution of amino acid residues recovered the transactivation ability of Caryophyllales PAPs. Therefore, loss of function in MYB transcription factors may suppress expression of genes involved in the late stage of anthocyanin synthesis, resulting in a lack of anthocyanin in betalain-producing Caryophyllales plants.


Assuntos
Arabidopsis , Caryophyllales , Antocianinas , Arabidopsis/genética , Arabidopsis/metabolismo , Betalaínas/metabolismo , Caryophyllales/genética , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
2.
Plant J ; 98(1): 153-164, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30548978

RESUMO

Cell-, tissue- or organ-specific inducible expression systems are powerful tools for functional analysis of changes to the pattern, level or timing of gene expression. However, plant researchers lack standardised reagents that promote reproducibility across the community. Here, we report the development and functional testing of a Gateway-based system for quantitatively, spatially and temporally controlling inducible gene expression in Arabidopsis that overcomes several drawbacks of the legacy systems. We used this modular driver/effector system with intrinsic reporting of spatio-temporal promoter activity to generate 18 well-characterised homozygous transformed lines showing the expected expression patterns specific for the major cell types of the Arabidopsis root; seed and plasmid vectors are available through the Arabidopsis stock centre. The system's tight regulation was validated by assessing the effects of diphtheria toxin A chain expression. We assessed the utility of Production of Anthocyanin Pigment 1 (PAP1) as an encoded effector mediating cell-autonomous marks. With this shared resource of characterised reference driver lines, which can be expanded with additional promoters and the use of other fluorescent proteins, we aim to contribute towards enhancing reproducibility of qualitative and quantitative analyses.


Assuntos
Arabidopsis/genética , Genes Reporter , Antocianinas/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estradiol/metabolismo , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Plant Cell Rep ; 36(4): 557-569, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28275852

RESUMO

KEY MESSAGE: DELLA proteins positively regulate nitrogen deficiency-induced anthocyanin accumulation through directly interaction with PAP1 to enhance its transcriptional activity on anthocyanin biosynthetic gene expressions. Plants can survive a limiting nitrogen supply by undergoing adaptive responses, including induction of anthocyanin production. However, the detailed mechanism is still unclear. In this study, we found that this process was impaired and enhanced, respectively, by exogenous GA3 (an active form of GAs) and paclobutrazol (PAC, a specific GA biosynthesis inhibitor) in Arabidopsis seedlings. Consistently, the nitrogen deficiency-induced transcript levels of several key genes involved in anthocyanin biosynthesis, including F3'H, DFR, LDOX, and UF3GT, were decreased and enhanced by exogenous GA3 and PAC, respectively. Moreover, the nitrogen deficiency-induced anthocyanin accumulation and biosynthesis gene expressions were impaired in the loss-of-function mutant gai-t6/rga-t2/rgl1-1/rgl2-1/rgl3-1 (della) but enhanced in the GA-insensitive mutant gai, suggesting that DELLA proteins, known as repressors of GA signaling, are necessary for fully induction of nitrogen deficiency-driven anthocyanin biosynthesis. Using yeast two-hybrid (Y2H) assay, pull-down assay, and luciferase complementation assay, it was found that RGA, a DELLA of Arabidopsis, could strongly interact with PAP1, a known regulatory transcription factor positively involved in anthocyanin biosynthesis. Furthermore, transient expression assays indicated that RGA and GAI could enhance the transcriptional activities of PAP1 on its downstream genes, including F3'H and DFR. Taken together, this study suggests that DELLAs are necessary regulators for nitrogen deficiency-induced anthocyanin accumulation through interaction with PAP1 and enhancement of PAP1's transcriptional activity on its target genes. GA-DELLA-involved anthocyanin accumulation is important for plant adaptation to nitrogen deficiency.


Assuntos
Antocianinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Nitrogênio/deficiência , Transdução de Sinais , Antocianinas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Giberelinas/farmacologia , Nitrogênio/metabolismo , Proteínas Associadas a Pancreatite , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Plant Cell Environ ; 38(7): 1333-46, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25402319

RESUMO

Increasing temperatures due to changing global climate are interfering with plant-pollinator mutualism, an interaction facilitated mainly by floral colour and scent. Gas chromatography-mass spectroscopy analyses revealed that increasing ambient temperature leads to a decrease in phenylpropanoid-based floral scent production in two Petunia × hybrida varieties, P720 and Blue Spark, acclimated at 22/16 or 28/22 °C (day/night). This decrease could be attributed to down-regulation of scent-related structural gene expression from both phenylpropanoid and shikimate pathways, and up-regulation of a negative regulator of scent production, emission of benzenoids V (EOBV). To test whether the negative effect of increased temperature on scent production can be reduced in flowers with enhanced metabolic flow in the phenylpropanoid pathway, we analysed floral volatile production by transgenic 'Blue Spark' plants overexpressing CaMV 35S-driven Arabidopsis thaliana production of anthocyanin pigments 1 (PAP1) under elevated versus standard temperature conditions. Flowers of 35S:PAP1 transgenic plants produced the same or even higher levels of volatiles when exposed to a long-term high-temperature regime. This phenotype was also evident when analysing relevant gene expression as inferred from sequencing the transcriptome of 35S:PAP1 transgenic flowers under the two temperature regimes. Thus, up-regulation of transcription might negate the adverse effects of temperature on scent production.


Assuntos
Proteínas de Arabidopsis/metabolismo , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Petunia/metabolismo , Fatores de Transcrição/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Antocianinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação para Baixo , Flores/genética , Flores/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Expressão Gênica , Temperatura Alta , Proteínas Associadas a Pancreatite , Petunia/genética , Petunia/crescimento & desenvolvimento , Fenótipo , Plantas Geneticamente Modificadas , Propanóis/metabolismo , Ácido Chiquímico/metabolismo , Fatores de Transcrição/genética , Ativação Transcricional , Transcriptoma , Regulação para Cima
5.
Cell Rep ; 36(2): 109348, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260932

RESUMO

CINV1, converting sucrose into glucose and fructose, is a key entry of carbon into cellular metabolism, and HXK1 functions as a pivotal sensor for glucose. Exogenous sugars trigger the Arabidopsis juvenile-to-adult phase transition via a miR156A/SPL module. However, the endogenous factors that regulate this process remain unclear. In this study, we show that sucrose specifically induced the PAP1 transcription factor directly and positively controls CINV1 activity. Furthermore, we identify a glucose feed-forward loop (sucrose-CINV1-glucose-HXK1-miR156-SPL9-PAP1-CINV1-glucose) that controls CINV1 activity to convert sucrose into glucose signaling to dynamically control the juvenile-to-adult phase transition. Moreover, PAP1 directly binds to the SPL9 promoter, activating SPL9 expression and triggering the sucrose-signaling-mediated juvenile-to-adult phase transition. Therefore, a glucose-signaling feed-forward loop and a sucrose-signaling pathway synergistically regulate the Arabidopsis juvenile-to-adult phase transition. Collectively, we identify a molecular link between the major photosynthate sucrose, the entry point of carbon into cellular metabolism, and the plant juvenile-to-adult phase transition.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Glucose/metabolismo , Transdução de Sinais , Sacarose/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transcrição Gênica
6.
Antioxidants (Basel) ; 9(10)2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32993165

RESUMO

The development of genetically engineered cell cultures has been suggested as a potential approach for the production of target compounds from medicinal plants. In this study, we generated PAP1 (production of anthocyanin pigment 1)-overexpressing ginseng (Panax ginseng C.A. Meyer) hairy roots to improve the production of anthocyanins, as well as the bioactivity (e.g., antioxidant and whitening activities) of ginseng. Based on differentially expressed gene analysis, we found that ectopic expression of PAP1 induced the expression of genes involved in the 'phenylpropanoid biosynthesis' (24 genes), and 'flavonoid biosynthesis' (17 genes) pathways, resulting in 191- to 341-fold increases in anthocyanin production compared to transgenic control (TC) hairy roots. Additionally, PAP1-overexpressing ginseng hairy roots exhibited an approximately seven-fold higher DPPH-free radical scavenging activity and 10-fold higher ORAC value compared to the TC. In α-melanocyte-stimulating hormone-stimulated B16F10 cells, PAP1-overexpressing ginseng hairy roots strongly inhibited the accumulation of melanin by 50 to 59% compared to mock-control. Furthermore, results obtained by quantitative real-time PCR, western blot, and tyrosinase inhibition assay suggested that the anti-melanogenic activity of PAP1-overexpressing ginseng hairy roots is mediated by tyrosinase activity inhibition. Taken together, our results suggested that the ectopic expression of PAP1 is an effective strategy for the enhancement of anthocyanin production, which improves the biological activities of ginseng root cultures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA