Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
JHEP Rep ; 4(9): 100534, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36035363

RESUMO

Background & Aims: HBV has a narrow host restriction, with humans and chimpanzees representing the only known natural hosts. The molecular correlates of resistance in species that are commonly used in biomedical research, such as mice, are currently incompletely understood. Expression of human NTCP (hNTCP) in mouse hepatocytes enables HBV entry, but subsequently covalently closed circular (cccDNA) does not form in most murine cells. It is unknown if this blockade in cccDNA formation is due to deficiency in repair of relaxed circular DNA (rcDNA) to cccDNA. Methods: Here, we deployed both in vivo and in vitro virological and biochemical approaches to investigate if murine cells contain a complete set of repair factors capable of converting HBV rcDNA to cccDNA. Results: We demonstrate that HBV cccDNA does form in murine cell culture or in mice when recombinant rcDNA without a protein adduct is directly introduced into cells. We further show that the murine orthologues of core components in DNA lagging strand synthesis, required for the repair of rcDNA to cccDNA in human cells, can support this crucial step in the HBV life cycle. It is worth noting that recombinant HBV rcDNA substrates, either without a protein adduct or containing neutravidin to mimic HBV polymerase, were used in our study; it remains unclear if the HBV polymerase removal processes are the same in mouse and human cells. Conclusions: Collectively, our data suggest that the HBV life cycle is blocked post entry and likely before the repair stage in mouse cells, which yields critical insights that will aid in the construction of a mouse model with inbred susceptibility to HBV infection. Lay summary: Hepatitis B virus (HBV) is only known to infect humans and chimpanzees in nature. Mouse models are often used in modeling disease pathogenesis and preclinical research to assess the efficacy and safety of interventions before they are then tested in human participants. However, because mice are not susceptible to HBV infection it is difficult to accurately model human infection (and test potential treatments) in mouse models. Herein, we have shown that mice are able to perform a key step in the HBV life cycle, tightening the net around the possible reason why HBV can not efficiently infect and replicate in mice.

2.
JHEP Rep ; 4(4): 100449, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35295767

RESUMO

Background & Aims: HBV infects over 257 million people worldwide and is associated with the development of hepatocellular carcinoma (HCC). Integration of HBV DNA into the host genome is likely a key driver of HCC oncogenesis. Here, we utilise targeted long-read sequencing to determine the structure of HBV DNA integrations as well as full isoform information of HBV mRNA with more accurate quantification than traditional next generation sequencing platforms. Methods: DNA and RNA were isolated from fresh frozen liver biopsies collected within the GS-US-174-0149 clinical trial. A pan-genotypic panel of biotinylated oligos was developed to enrich for HBV sequences from sheared genomic DNA (∼7 kb) and full-length cDNA libraries from poly-adenylated RNA. Samples were sequenced on the PacBio long-read platform and analysed using a custom bioinformatic pipeline. Results: HBV-targeted long-read DNA sequencing generated high coverage data spanning entire integrations. Strikingly, in 13 of 42 samples (31%) we were able to detect HBV sequences flanked by 2 different chromosomes, indicating a chromosomal translocation associated with HBV integration. Chromosomal translocations were unique to each biopsy sample, suggesting that each originated randomly, and in some cases had evidence of clonal expansion. Using targeted long-read RNA sequencing, we determined that upwards of 95% of all HBV transcripts in patients who are HBeAg-positive originate from cccDNA. In contrast, patients who are HBeAg-negative expressed mostly HBsAg from integrations. Conclusions: Targeted lso-Seq allowed for accurate quantitation of the HBV transcriptome and assignment of transcripts to either cccDNA or integration origins. The existence of multiple unique HBV-associated inter-chromosomal translocations in non-HCC CHB patient liver biopsies suggests a novel mechanism with mutagenic potential that may contribute to progression to HCC. Lay summary: Fresh frozen liver biopsies from patients infected with HBV were subjected to targeted long-read RNA and DNA sequencing. Long-read RNA sequencing captures entire HBV transcripts in a single read, allowing for resolution of overlapping transcripts from the HBV genome. This resolution allowed us to quantify the burden of transcription from integrations vs. cccDNA origin in individual patients. Patients who were HBeAg-positive had a significantly larger fraction of the HBV transcriptome originating from cccDNA compared with those who were HBeAg-negative. Long-read DNA sequencing captured entire integrated HBV sequences including multiple kilobases of flanking host sequence within single reads. This resolution allowed us to describe integration events flanked by 2 different host chromosomes, indicating that integrated HBV DNA are associated with inter-chromosomal translocations. This may lead to significant transcriptional dysregulation and drive progression to HCC.

3.
JHEP Rep ; 3(5): 100330, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34409278

RESUMO

BACKGROUND & AIMS: HBV persists in the nucleus of infected hepatocytes as a covalently closed circular DNA (cccDNA) episome that constitutes the template for viral RNA and protein synthesis. Both HBx and HBc (core) viral proteins associate with cccDNA but, while HBx is required for viral transcription, the role of HBc is still unclear. The aim of this study was to determine if HBc derived from incoming nucleocapsid can associate with cccDNA before the onset of viral transcription and protein production. METHODS: Chromatin immunoprecipitation assays were performed in native conditions. In addition, differentiated HepaRG (dHepaRG) cells infected with HBx-deficient HBV were used to investigate if HBc delivered by incoming virions can associate with cccDNA. RESULTS: Our results indicate that HBc can associate with cccDNA in the absence of viral transcription and de novo protein synthesis. In dHepaRG cells, this association is stable for at least 6 weeks. CONCLUSION: These results suggest that virion-delivered HBc may participate at an early stage of cccDNA formation and/or transcription. LAY SUMMARY: The hepatitis B virus genome is released into the nucleoplasm of infected cells after disassembly of the viral nucleocapsids at the nuclear membrane. Herein, we show for the first time that virion-delivered hepatitis B core protein, a component of the viral capsid, can stably associate with integrated viral DNA.

4.
J Infect ; 83(5): 594-600, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34474058

RESUMO

BACKGROUND: Hepatitis B e antigen (HBeAg) seroconversion is an important intermediate outcome in HBeAg-positive chronic hepatitis B patients. This study aimed to explore whether hepatitis B virus (HBV) RNA serum levels can predict HBeAg seroconversion treated with entecavir. METHODS: Serum samples from HBeAg-positive children previously treated with entecavir were retrospectively analyzed. HBV RNA levels were measured at baseline, weeks 12, 24, 48, 72 of therapy. Ability of individual biomarkers to predict HBeAg seroconversion was evaluated using receiver operating characteristics (ROC) analyzes. RESULTS: Serum HBV RNA was detectable in 51 children with a median of 6.05 (4.04-8.29) log10 IU/mL at baseline. Patients with subsequent HBeAg seroconversion showed a significantly larger decline in median HBV RNA levels during treatment from baseline to week 12 of 1.96 (0.30-3.38) and to week 24 of 2.27 (1.20-3.38) log10 IU/mL, respectively, in comparison to HBeAg-positive patients without HBeAg seroconversion (P < 0.001). Levels of HBV RNA at treatment weeks 12 and 24 showed good ability to predict HBeAg seroconversion (area under ROC scores > 0.85, P < 0.001). CONCLUSION: On-treatment HBV RNA dynamic predicts entecavir-induced HBeAg seroconversion in children with chronic hepatitis B living in China.


Assuntos
Antígenos E da Hepatite B , Hepatite B Crônica , Antivirais/uso terapêutico , Criança , DNA Viral , Guanina/análogos & derivados , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Humanos , RNA/uso terapêutico , Estudos Retrospectivos , Soroconversão , Resultado do Tratamento
5.
JHEP Rep ; 3(1): 100195, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33385130

RESUMO

BACKGROUND & AIMS: Chronic HBV infection cannot be cured by current therapeutics owing to their limited ability to reduce covalently closed circular (ccc)DNA levels in the livers of infected individuals. Therefore, greater understanding of the molecular determinants of cccDNA formation and persistence is required. One key issue is the extent to which de novo nucleocapsid-mediated replenishment (reimport) contributes to cccDNA levels in an infected hepatocyte. METHODS: We engineered an infectious HBV mutant with a genome encoding a stop codon at position T67 in the HBV core open reading frame (ΔHBc HBV). Importantly, ΔHBc HBV virions cannot initiate nucleocapsid synthesis upon infection. Long-term in vitro HBV infection markers were followed for up for 9 weeks in HepG2-NTCP cells (A3 clone) and HBV DNA was quantified using a newly-developed, highly-precise PCR assay (cccDNA inversion quantitative PCR). RESULTS: ΔHBc and wild-type (WT) HBV resulted in comparable expression of HBV surface antigen (HBsAg), which could be blocked using the entry inhibitor Myrcludex B, confirming bona fide infection via the receptor sodium taurocholate cotransporting polypeptide (NTCP). In primary human hepatocytes, Huh7-NTCP, HepG2-NTCP, and HepaRG-NTCP cells, comparable copy numbers of cccDNA were formed. cccDNA levels, transcription of viral RNA, and HBsAg secretion remained comparably stable in WT and ΔHBc HBV-infected cells for at least 9 weeks. CONCLUSIONS: Our results imply that de novo synthesised HBc plays a minor role in transcriptional regulation of cccDNA. Importantly, we show that initially-formed cccDNA is stable in hepatocytes without requiring continuous replenishment in in vitro infection systems and contribution from de novo DNA-containing nucleocapsids is not required. Thus, short-term therapeutic targeting of capsid-reimport is likely an inefficient strategy in eliminating cccDNA in chronically infected hepatocytes. LAY SUMMARY: The hepatitis B virus can maintain itself in the liver for a patient's lifetime, causing liver injury and cancer. We have clarified exactly how it maintains itself in an infected cell. This now means we have a better idea at how to target the virus and cure a chronic infection.

6.
J Clin Exp Hepatol ; 3(2): 89-95, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25755481

RESUMO

BACKGROUND: High mobility group box1 (HMGB1) and poly(ADP-ribose) polymerase1 (PARP1) proteins repair cellular DNA damage. Reduced expression of the corresponding genes can lead to an impaired DNA damage repair mechanism. Intracellular replication of hepatitis B virus (HBV) in such conditions can favor the integration of viral DNA into host genome leading to the development of hepatocellular carcinoma (HCC). OBJECTIVE: This study was performed to assess the expression of HMGB1 and PARP1 mRNAs in conjunction with the estimation of HBV replication intermediate pregenomic RNA (PgRNA) in various phases of HBV infection. MATERIALS: Eighty eight patients and 26 voluntary blood donors as controls were included in the study. Patients were grouped in to acute (AHB; n = 15), inactive carriers (IC; n = 36), cirrhosis (Cirr; n = 25) and hepatocellular carcinoma (HCC; n = 12). Serum HBV DNA was quantified by real time polymerase chain reaction (PCR) assay. Expression of HMGB1, PARP1 and PgRNA were evaluated using peripheral blood mononuclear cells (PBMCs) derived RNA by reverse transcription PCR (RT-PCR) and densitometry. RESULTS: Significant reduction of HMGB1 and PARP1 gene expressions (P < 0.05) were observed in patients than controls with more explicit decline of PARP1 (P = 0.0002). Both genes were significantly downregulated (P < 0.001) in ICs than controls. In ICs, HMGB1 was significantly lowered than cirrhosis (P = 0.002) and HCC (P = 0.0006) while PARP1 declined significantly (P = 0.04) than HCC. Level of PgRNA was comparable in all the disease categories. CONCLUSION: In conclusion, our findings indicate impaired DNA damage repair mechanisms in HBV infected cells of ICs. This, along with low viral load but higher level of PgRNA in this group is suggestive of the diversion of HBV replication pathway that might facilitate viral DNA integration in to host genome. Intrusion of HBV PgRNA reverse transcription in early stage of infection might appear advantageous to thwart the development of HCC.

7.
J Clin Exp Hepatol ; 2(4): 353-65, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25755457

RESUMO

Hepatitis B virus (HBV) infection is one of the major global health problems, especially in economically under-developed or developing countries. HBV infection can lead to a number of clinical outcomes including chronic infection, cirrhosis and liver cancer. It ranks among the top 10 causes of death, being responsible for around 1 million deaths every year. Despite the availability of a highly efficient vaccine and potent antiviral agents, HBV infection still remains a significant clinical problem, particularly in those high endemicity areas where vaccination of large populations has not been possible due to economic reasons. Although HBV is among the smallest viruses in terms of virion and genome size, it has numerous unique features that make it completely distinct from other DNA viruses. It has a partially double stranded DNA with highly complex genome organization, life cycle and natural history. Remarkably distinct from other DNA viruses, it uses an RNA intermediate called pregenomic RNA (pgRNA) and reverse transcriptase for its genome replication. Genome replication is accomplished by a complex mechanism of primer shifting facilitated by direct repeat sequences encoded in the genome. Further, the genome has evolved in such a manner that every single nucleotide of the genome is used for either coding viral proteins or used as regulatory regions or both. Moreover, it utilizes internal in-frame translation initiation codons, as well as different reading frames from the same RNA to generate different proteins with diverse functions. HBV also shows considerable genetic variability which has been related with clinical outcomes, replication potential, therapeutic response etc. This review aims at reviewing fundamental events of the viral life cycle including viral replication, transcription and translation, from the molecular standpoint, as well as, highlights the clinical relevance of genetic variability of HBV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA