Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
1.
Plant J ; 116(3): 690-705, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37494542

RESUMO

Spartina alterniflora is a halophyte that can survive in high-salinity environments, and it is phylogenetically close to important cereal crops, such as maize and rice. It is of scientific interest to understand why S. alterniflora can live under such extremely stressful conditions. The molecular mechanism underlying its high-saline tolerance is still largely unknown. Here we investigated the possibility that high-affinity K+ transporters (HKTs), which function in salt tolerance and maintenance of ion homeostasis in plants, are responsible for salt tolerance in S. alterniflora. To overcome the imprecision and unstable of the gene screening method caused by the conventional sequence alignment, we used a deep learning method, DeepGOPlus, to automatically extract sequence and protein characteristics from our newly assemble S. alterniflora genome to identify SaHKTs. Results showed that a total of 16 HKT genes were identified. The number of S. alterniflora HKTs (SaHKTs) is larger than that in all other investigated plant species except wheat. Phylogenetically related SaHKT members had similar gene structures, conserved protein domains and cis-elements. Expression profiling showed that most SaHKT genes are expressed in specific tissues and are differentially expressed under salt stress. Yeast complementation expression analysis showed that type I members SaHKT1;2, SaHKT1;3 and SaHKT1;8 and type II members SaHKT2;1, SaHKT2;3 and SaHKT2;4 had low-affinity K+ uptake ability and that type II members showed stronger K+ affinity than rice and Arabidopsis HKTs, as well as most SaHKTs showed preference for Na+ transport. We believe the deep learning-based methods are powerful approaches to uncovering new functional genes, and the SaHKT genes identified are important resources for breeding new varieties of salt-tolerant crops.


Assuntos
Aprendizado Profundo , Oryza , Genes de Plantas , Melhoramento Vegetal , Poaceae/genética , Poaceae/metabolismo , Oryza/genética , Oryza/metabolismo
2.
Funct Integr Genomics ; 24(2): 70, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565780

RESUMO

Salinization is one of the leading causes of arable land shrinkage and rice yield decline, recently. Therefore, developing and utilizing salt-tolerant rice varieties have been seen as a crucial and urgent strategy to reduce the effects of saline intrusion and protect food security worldwide. In the current study, the CRISPR/Cas9 system was utilized to induce targeted mutations in the coding sequence of the OsDSG1, a gene involved in the ubiquitination pathway and the regulation of biochemical reactions in rice. The CRISPR/Cas9-induced mutations of the OsDSG1 were generated in a local rice cultivar and the mutant inheritance was validated at different generations. The OsDSG1 mutant lines showed an enhancement in salt tolerance compared to wild type plants at both germination and seedling stages indicated by increases in plant height, root length, and total fresh weight as well as the total chlorophyll and relative water contents under the salt stress condition. In addition, lower proline and MDA contents were observed in mutant rice as compared to wild type plants in the presence of salt stress. Importantly, no effect on seed germination and plant growth parameters was recorded in the CRISRP/Cas9-induced mutant rice under the normal condition. This study again indicates the involvement of the OsDSG1 gene in the salt resistant mechanism in rice and provides a potential strategy to enhance the tolerance of local rice varieties to the salt stress.


Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/genética , Sistemas CRISPR-Cas , Oryza/metabolismo , Estresse Salino , Mutação
3.
BMC Plant Biol ; 24(1): 316, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654195

RESUMO

BACKGROUND: Salt stress significantly reduces soybean yield. To improve salt tolerance in soybean, it is important to mine the genes associated with salt tolerance traits. RESULTS: Salt tolerance traits of 286 soybean accessions were measured four times between 2009 and 2015. The results were associated with 740,754 single nucleotide polymorphisms (SNPs) to identify quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEIs) using three-variance-component multi-locus random-SNP-effect mixed linear model (3VmrMLM). As a result, eight salt tolerance genes (GmCHX1, GsPRX9, Gm5PTase8, GmWRKY, GmCHX20a, GmNHX1, GmSK1, and GmLEA2-1) near 179 significant and 79 suggested QTNs and two salt tolerance genes (GmWRKY49 and GmSK1) near 45 significant and 14 suggested QEIs were associated with salt tolerance index traits in previous studies. Six candidate genes and three gene-by-environment interactions (GEIs) were predicted to be associated with these index traits. Analysis of four salt tolerance related traits under control and salt treatments revealed six genes associated with salt tolerance (GmHDA13, GmPHO1, GmERF5, GmNAC06, GmbZIP132, and GmHsp90s) around 166 QEIs were verified in previous studies. Five candidate GEIs were confirmed to be associated with salt stress by at least one haplotype analysis. The elite molecular modules of seven candidate genes with selection signs were extracted from wild soybean, and these genes could be applied to soybean molecular breeding. Two of these genes, Glyma06g04840 and Glyma07g18150, were confirmed by qRT-PCR and are expected to be key players in responding to salt stress. CONCLUSIONS: Around the QTNs and QEIs identified in this study, 16 known genes, 6 candidate genes, and 8 candidate GEIs were found to be associated with soybean salt tolerance, of which Glyma07g18150 was further confirmed by qRT-PCR.


Assuntos
Interação Gene-Ambiente , Genes de Plantas , Glycine max , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tolerância ao Sal , Glycine max/genética , Glycine max/fisiologia , Tolerância ao Sal/genética , Locos de Características Quantitativas/genética , Fenótipo
4.
Proc Biol Sci ; 291(2016): 20231917, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38320606

RESUMO

Understanding the spatial scales at which organisms can adapt to strong natural and human-induced environmental gradients is important. Salinization is a key threat to biodiversity, ecosystem functioning and the provision of ecosystem services of freshwater systems. Clusters of naturally saline habitats represent ideal test cases to study the extent and scale of local adaptation to salinization. We studied local adaptation of the water flea Daphnia magna, a key component of pond food webs, to salinity in two contrasting landscapes-a dense cluster of sodic bomb crater ponds and a larger-scale cluster of soda pans. We show regional differentiation in salinity tolerance reflecting the higher salinity levels of soda pans versus bomb crater ponds. We found local adaptation to differences in salinity levels at the scale of tens of metres among bomb crater pond populations but not among geographically more distant soda pan populations. More saline bomb crater ponds showed an upward shift of the minimum salt tolerance observed across clones and a consequent gradual loss of less tolerant clones in a nested pattern. Our results show evolutionary adaptation to salinity gradients at different spatial scales, including fine-tuned local adaptation in neighbouring habitat patches in a natural landscape.


Assuntos
Ecossistema , Tolerância ao Sal , Animais , Biodiversidade , Daphnia , Água Doce , Salinidade
5.
Plant Biotechnol J ; 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39356169

RESUMO

Tetraspanins (TETs) are integral membrane proteins, characterized by four transmembrane domains and a unique signature motif in their large extracellular loop. They form dynamic supramolecular complexes called tetraspanin-enriched microdomains (TEMs), through interactions with partner proteins. In plants, TETs are involved in development, reproduction and immune responses, but their role in defining abiotic stress responses is largely underexplored. We focused on OsTET5, which is differentially expressed under various abiotic stresses and localizes to both plasma membrane and endoplasmic reticulum. Using overexpression and underexpression transgenic lines we demonstrate that OsTET5 contributes to salinity and drought stress tolerance in rice. OsTET5 can interact with itself in yeast, suggesting homomer formation. Immunoblotting of native PAGE of microsomal fraction enriched from OsTET5-Myc transgenic rice lines revealed multimeric complexes containing OsTET5, suggesting the potential formation of TEM complexes. Transcriptome analysis, coupled with quantitative PCR-based validation, of OsTET5-altered transgenic lines unveiled the differential expression patterns of several stress-responsive genes, as well as those coding for transporters under salt stress. Notably, OsTET5 plays a crucial role in maintaining the ionic equilibrium during salinity stress, particularly by preserving an elevated potassium-to-sodium (K+/Na+) ratio. OsTET5 also regulates reactive oxygen species homeostasis, primarily by modulating the gene expression and activities of antioxidant pathway enzymes and proline accumulation. Our comprehensive investigation underscores the multifaceted role of OsTET5 in rice, accentuating its significance in developmental processes and abiotic stress tolerance. These findings open new avenues for potential strategies aimed at enhancing stress resilience and making valuable contributions to global food security.

6.
Plant Cell Environ ; 47(3): 854-870, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37975319

RESUMO

Coping with water stress depends on maintaining cellular function and hydraulic conductance. Yet measurements of vulnerability to drought and salinity do not often focus on capacitance in branch organs that buffer hydraulic function during water stress. The relationships between branch water relations, stem hydraulic vulnerability and stem anatomy were investigated in two co-occurring mangroves Aegiceras corniculatum and Rhizophora stylosa growing at low and high salinity. The dynamics of branch water release acted to conserve water content in the stem at the expense of the foliage during extended drying. Hydraulic redistribution from the foliage to the stem increased stem relative water content by up to 21%. The water potentials at which 12% and 50% loss of stem hydraulic conductivity occurred decreased by ~1.7 MPa in both species between low and high salinity sites. These coordinated tissue adjustments increased hydraulic safety despite declining turgor safety margins at higher salinity sites. Our results highlight the complex interplay of plasticity in organ-level water relations with hydraulic vulnerability in the maintenance of stem hydraulic function in mangroves distributed along salinity gradients. These results emphasise the importance of combining water relations and hydraulic vulnerability parameters to understand vulnerability to water stress across the whole plant.


Assuntos
Desidratação , Salinidade , Secas , Folhas de Planta , Xilema , Árvores
7.
Plant Cell Environ ; 47(9): 3638-3653, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38757412

RESUMO

Salinity tolerance requires coordinated responses encompassing salt exclusion in roots and tissue/cellular compartmentation of salt in leaves. We investigated the possible control points for salt ions transport in roots and tissue tolerance to Na+ and Cl- in leaves of two contrasting mungbean genotypes, salt-tolerant Jade AU and salt-sensitive BARI Mung-6, grown in nonsaline and saline (75 mM NaCl) soil. Cryo-SEM X-ray microanalysis was used to determine concentrations of Na, Cl, K, Ca, Mg, P, and S in various cell types in roots related to the development of apoplastic barriers, and in leaves related to photosynthetic performance. Jade AU exhibited superior salt exclusion by accumulating higher [Na] in the inner cortex, endodermis, and pericycle with reduced [Na] in xylem vessels and accumulating [Cl] in cortical cell vacuoles compared to BARI Mung-6. Jade AU maintained higher [K] in root cells than BARI Mung-6. In leaves, Jade AU maintained lower [Na] and [Cl] in chloroplasts and preferentially accumulated [K] in mesophyll cells than BARI Mung-6, resulting in higher photosynthetic efficiency. Salinity tolerance in Jade AU was associated with shoot Na and Cl exclusion, effective regulation of Na and Cl accumulation in chloroplasts, and maintenance of high K in root and leaf mesophyll cells.


Assuntos
Cloretos , Cloroplastos , Células do Mesofilo , Folhas de Planta , Raízes de Plantas , Potássio , Tolerância ao Sal , Sódio , Vigna , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Cloroplastos/metabolismo , Sódio/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Células do Mesofilo/metabolismo , Potássio/metabolismo , Cloretos/metabolismo , Vigna/metabolismo , Vigna/fisiologia , Fotossíntese , Transporte Biológico
8.
Ann Bot ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39288301

RESUMO

BACKGROUND AND AIMS: Crithmum maritimum is a wild, edible halophyte with large potential as a cash crop for salinized soils. However, the tolerance during seed germination appears to be highly site-specific and contradictory, whereas little is known on salinity tolerance during early seedling growth. This study was aimed at characterizing variation in the responses of germination and early seedling growth in diverse C. maritimum populations along the Iberian Southwest coast. Specifically, we sought to distinguish between direct salinity effects and those influenced by the salinity of maternal environments. METHODS: Physicochemical properties, including salinity of maternal environments, were assessed across diverse habitats. A total of 3480 seeds from 58 mother plants were utilized. Seeds were subjected to germination assays under various salinity treatments (0-500 mM NaCl), with subsequent monitoring of germination parameters. Non-germinated seeds were tested for recovery germination, and viability was assessed using the tetrazolium test. Of germinated seeds, 1160 seedlings were monitored for survival and early growth metrics. General Linear Models were employed to analyze the effects of salinity and maternal environmental influence on germination and early growth. KEY RESULTS: Despite reduced and delayed germination under salinity, seeds showed remarkable tolerance up to 150 mM, surpassing prior reports, with consistent viability up to 500 mM, indicating substantial salinity-induced dormancy. Seedling growth was more sensitive to continued treatment; no plants survived above 150 mM. The salinity experienced by maternal plants had only a marginal effect on germination but significantly contributed to reduce seedling biomass production, both above and below ground. CONCLUSIONS: This study highlights the significance of maternal salinity on early growth in C. maritimum, emphasizing the species' resilience to salt stress during germination and recovery. These insights are crucial for optimizing cultivation techniques and informing research on other halophytes in saline environments.

9.
Environ Sci Technol ; 58(12): 5357-5371, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38491939

RESUMO

The salinity tolerance and osmoadaptation strategies in four phylogenetically distant anammox species, Brocadia, Jettenia, Kuenenia, and Scalindua, were investigated by using highly enriched cell cultures. The first-emerged "Ca. Scalindua sp." showed optimum growth at 1.5-3% salinity and was tolerant to ∼10% salinity (a slight halophile). The second-emerged "Ca. Kuenenia stuttgartiensis" was tolerant to ∼6% salinity with optimum growth at 0.25-1.5% (a halotolerant). These early-emerged "Ca. Scalindua sp." and ″Ca. K. stuttgartiensis" rapidly accumulated K+ ions and simultaneously synthesized glutamate as a counterion. Subsequently, part of the glutamate was replaced by trehalose. In contrast, the late-emerged "Ca. B. sinica" and "Ca. J. caeni" were unable to accumulate sufficient amounts of K+─glutamate and trehalose, resulting in a significant decrease in activity even at 1-2% salinity (nonhalophiles). In addition, the external addition of glutamate may increase anammox activity at high salinity. The species-dependent salinity tolerance and osmoadaptation strategies were consistent with the genetic potential required for the biosynthesis and transport of these osmolytes and the evolutionary history of anammox bacteria: Scalindua first emerged in marine environments and then Kuenenia and other two species gradually expanded their habitat to estuaries, freshwater, and terrestrial environments, while Brocadia and Jettenia likely lost their ability to accumulate K+─glutamate.


Assuntos
Compostos de Amônio , Oxidação Anaeróbia da Amônia , Tolerância ao Sal , Trealose , Bactérias/genética , Anaerobiose , Glutamatos , Oxirredução , RNA Ribossômico 16S/genética
10.
Mycorrhiza ; 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39367926

RESUMO

Coccoloba uvifera L. (Polygonacaeae), named also seagrape, is an ectomycorrhizal (ECM) Caribbean beach tree, introduced pantropically for stabilizing coastal soils and producing edible fruits. This review covers the pantropical distribution and micropropagation of seagrape as well as genetic diversity, functional traits and use of ECM symbioses in response to salinity, both in its native regions and areas where it has been introduced. The ECM fungal diversity associated with seagrape was found to be relatively low in its region of origin, with Scleroderma bermudense Coker being the predominant fungal species. In regions of introduction, seagrape predominantly associated with Scleroderma species, whereas S. bermudense was exclusively identified in Réunion and Senegal. The introduction of S. bermudense is likely through spores adhering to the seed coats of seagrape, suggesting a vertical transmission of ECM colonization in seagrape by S. bermudense. This ECM fungus demonstrated its capacity to enhance salt tolerance in seagrape seedlings by reducing Na concentration and increasing K and Ca levels, consequently promoting higher K/Na and Ca/Na ratios in the tissues of ECM seedlings vs. non-ECM plants in nursery conditions. Moreover, the ECM symbiosis positively influenced growth, photosynthetic and transpiration rates, chlorophyll fluorescence and content, stomatal conductance, intercellular CO2, and water status, which improved the performance of ECM seagrape exposed to salt stress in planting conditions. The standardization of seagrape micropropagation emerges as a crucial tool for propagating homogeneous plant material in nursery and planting conditions. This review also explores the use of the ECM symbiosis between seagrape and S. bermudense as a strategy for restoring degraded coastal ecosystems in the Caribbean, Indian Ocean, and West African regions.

11.
Plant Mol Biol ; 111(1-2): 73-88, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36372837

RESUMO

Sweet sorghum [Sorghum bicolor (L.) Moench], a C4 crop with high biomass and strong resistance to multiple stresses, can grow and reproduce in saline-alkaline soil and is an ideal raw material for biofuels. Under high-salinity conditions, sweet sorghum shows extensive salt exclusion. However, the specific molecular mechanism of the apoplastic barrier in salt exclusion is unknown. In this study, SbCASP-LP1C1 (a CASP-like protein1C1) was localized in the plasma membrane of sweet sorghum root endodermal cells, and its function was further studied by heterologous expression in Arabidopsis (35 S:SbCASP-LP1C1-GFP). When germinated and grown on 50 mM NaCl, the SbCASP-LP1C1-expressing lines had longer roots and a higher salinity threshold compared with wild-type (Col-0) plant and the casp-lp T-DNA insertion mutant in Arabidopsis. The 35 S:SbCASP-LP1C1-GFP lines also suffered less oxidative damage as determined by DAB and NBT staining, and the expression levels of several antioxidant genes were higher in these lines. Moreover, the stele of 35 S:SbCASP-LP1C1-GFP lines was less permeable to propidium iodide, and these plants contained less Na+ in their shoots and roots compared to wild type and casp-lp. In the 35 S:SbCASP-LP1C1-GFP lines, the expression levels of two Casparian strip synthesis genes, MYB36 and ESB1, were increased. These results indicate that SbCASP-LP1C1 may be involved in the polymerization of lignin monomers in the Casparian strip of sweet sorghum, thereby regulating salt tolerance. These results provide a theoretical basis to understand the role of plant roots in salt exclusion and a means by which to improve the salt tolerance of crops.


Assuntos
Sorghum , Arabidopsis/metabolismo , Parede Celular/metabolismo , Grão Comestível/metabolismo , Estresse Oxidativo , Raízes de Plantas/metabolismo , Tolerância ao Sal/genética , Sorghum/genética , Sorghum/metabolismo , Proteínas de Plantas
12.
New Phytol ; 238(3): 938-951, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36683447

RESUMO

Vegetated coastal ecosystems sequester carbon rapidly relative to terrestrial ecosystems. Coastal wetlands are poorly represented in land surface models, but work is underway to improve process-based, predictive modeling of these ecosystems. Here, we identify guiding questions, potential simulations, and data needs to make progress in improving representation of vegetation in terrestrial-aquatic interfaces, with a focus on coastal and estuarine ecosystems. We synthesize relevant plant traits and environmental controls on vegetation that influence carbon cycling in coastal ecosystems. We propose that models include separate plant functional types (PFTs) for mangroves, graminoid salt marshes, and succulent salt marshes to adequately represent the variation in aboveground and belowground productivity between common coastal wetland vegetation types. We also discuss the drivers and carbon storage consequences of shifts in dominant PFTs. We suggest several potential approaches to represent the diversity in vegetation tolerance and adaptations to fluctuations in salinity and water level, which drive key gradients in coastal wetland ecosystems. Finally, we discuss data needs for parameterizing and evaluating model implementations of coastal wetland vegetation types and function.


Assuntos
Ecossistema , Áreas Alagadas , Plantas , Carbono , Ciclo do Carbono
13.
Ann Bot ; 132(3): 485-498, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37665955

RESUMO

BACKGROUND AND AIMS: Islands, with their long coastlines and increased vulnerability to sea level rise, offer compelling opportunities to investigate the salinity tolerance of coastal plants. Seeds are generally more vulnerable than other plant stages to increased stressors. The aim of this study was to characterize salinity tolerance during germination across a diverse pool of 21 species from 14 plant families found in coastal communities throughout the Hawaiian Islands in order to increase our general understanding of coastal plant ecology for conservation and restoration. METHODS: Seeds of each species were exposed to unfiltered/untreated seawater (35 ppt total salinity) and two salinity treatments (10 and 20 ppt) in which the seawater was diluted with distilled water, and germination percent and timing were compared to seeds in a distilled water control. Non-germinated seeds were then tested for recovery germination. We quantified and compared germination percent, time and recovery among species and across salinity levels and tested for heterogeneity related to seed size, dormancy class, habit and threatened status. KEY RESULTS: Although salinity tolerance varied considerably among species, salinity exposure generally reduced and delayed germination. The greatest effects were detected at higher salinity levels. Recovery germination overall was higher for seeds that had been exposed to higher salinity. None of the factors we explored emerged as predictors of salinity tolerance except seed mass, which tended to enhance germination at higher salinity. CONCLUSIONS: Species responses to salinity exposure indicate high vulnerability of coastal systems to increased salinity stress, and variability among species could lead to shifts in community assembly and composition under sea level rise. These results can help guide coastal ecosystem conservation and restoration management decisions in the face of climate change.


Assuntos
Ecossistema , Tolerância ao Sal , Germinação , Sementes/fisiologia , Plantas , Salinidade , Água
14.
J Eukaryot Microbiol ; 70(1): e12930, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35712988

RESUMO

Percolomonads (Heterolobosea) are aquatic heterotrophic flagellates frequently found in saline waters up to hypersaline environments. We isolated and cultivated seven strains of percolomonad flagellates from marine waters and sediments as well as from a hypersaline inland lake in the Atacama Desert. Morphological characterizations, comprising light and scanning electron microscopy, revealed only slight differences between the strains mainly limited to the cell shape, length of flagella, and length of the ventral feeding groove. Phylogenetic analyses of the 18S and 28S rDNA genes showed the formation of three fully supported clades within the Percolomonadida: the Percolomonadidae, the Barbeliidae fam. nov. and the Lulaidae fam. nov. We describe two new families (Barbeliidae fam. nov., Lulaidae fam. nov.), a new genus (Nonamonas gen. nov.), and five new species (Percolomonas adaptabilis sp. nov., Lula levis sp. nov., Barbelia pacifica sp. nov., Nonamonas montiensis gen. et sp. nov., Nonamonas santamariensis gen. et sp. nov.). Salinity experiments showed that P. adaptabilis sp. nov. from the Atlantic was better adapted to high salinities than all other investigated strains. Moreover, comparisons of our cultivation-based approach with environmental sequencing studies showed that P. adaptabilis sp. nov. seems to be globally distributed in marine surface waters while other species seem to be more locally restricted.


Assuntos
Filogenia , Humanos , DNA Ribossômico/genética , Análise de Sequência de DNA , RNA Ribossômico 16S/genética
15.
J Appl Microbiol ; 134(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37777842

RESUMO

AIM: Organic fertilizer application significantly stimulates nitrous oxide (N2O) emissions from agricultural soils. Plant growth-promoting rhizobacteria (PGPR) strains are the core of bio-fertilizer or bio-organic fertilizer, while their beneficial effects are inhibited by environmental conditions, such as alkali and salt stress observed in organic manure or soil. This study aims to screen alkali- and salt-resistant PGPR that could mitigate N2O emission after applying strain-inoculated organic fertilizer. METHODS AND RESULTS: Among the 29 candidate strains, 11 (7 Bacillus spp., 2 Achromobacter spp., 1 Paenibacillus sp., and 1 Pseudomonas sp.) significantly mitigated N2O emissions from the organic fertilizer after inoculation. Seven strains were alkali tolerant (pH 10) and five were salt tolerant (4% salinity) in pure culture. Seven strains were selected for further evaluation in two agricultural soils. Five of these seven strains could significantly decrease the cumulative N2O emissions from Anthrosol, while six could significantly decrease the cumulative N2O emissions from Cambisol after the inoculation into the granular organic fertilizer compared with the non-inoculated control. CONCLUSIONS: Inoculating alkali- and salt-resistant PGPR into organic fertilizer can reduce N2O emissions from soils under microcosm conditions. Further studies are needed to investigate whether these strains will work under field conditions, under higher salinity, or at different soil pH.


Assuntos
Álcalis , Fertilizantes , Fertilizantes/análise , Plantas Tolerantes a Sal , Óxido Nitroso/análise , Agricultura , Solo
16.
Plant Cell Rep ; 42(2): 223-234, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36350394

RESUMO

KEY MESSAGE: OsWRKY28 confers salinity tolerance by directly binding to OsDREB1B promoter and increasing its transcriptional activity, and negatively regulates abscisic acid mediated seedling establishment in rice. WRKY transcription factors have been reported to play a vital role in plants growth, development, abiotic and biotic stress responses. In this study, we explored the functions of a transcription factor OsWRKY28 in rice. The transcript level of OsWRKY28 was strikingly increased under drought, chilling, salt and abscisic acid treatments. The OsWRKY28 overexpression lines showed enhanced salinity stress tolerance, whereas the oswrky28 mutants displayed salt sensitivity compared to wild-type plants. Under salt stress treatment, the expression levels of OsbZIP05, OsHKT1;1 and OsDREB1B were significantly lower yet the level of OsHKT2;1 was significantly higher in oswrky28 mutants than those in wide type plants. Our data of yeast one-hybrid assay and dual-luciferase assay supported that OsWRKY28 could directly bind to the promoter of OsDREB1B to enhance salinity tolerance in rice. In addition, OsWRKY28 overexpression lines displayed hyposensitivity and the oswrky28 mutants showed hypersensitivity compared to wild-type plants under exogenous abscisic acid treatment. Based on the results of yeast two-hybrid assay and GAL4-dependent chimeric transactivation assay, OsWRKY28 physically interacts with OsMPK11 and its transcriptional activity could be regulated by OsMPK11. Together, OsWRKY28 confers salinity tolerance through directly targeting OsDREB1B promoter and further activating its transcription in rice.


Assuntos
Oryza , Oryza/metabolismo , Tolerância ao Sal/genética , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética , Secas , Salinidade
17.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139418

RESUMO

Salinity stress is one of the major abiotic stresses affecting crop growth and production. Rice is an important food crop in the world, but also a salt-sensitive crop, and the rice seedling stage is the most sensitive to salt stress, which directly affects the final yield formation. In this study, two RIL populations derived from the crosses of CD (salt-sensitive)/WD (salt-tolerant) and KY131 (salt-sensitive)/XBJZ (salt-tolerant) were used as experimental materials, and the score of salinity toxicity (SST), the relative shoot length (RSL), the relative shoot fresh weight (RSFW), and the relative shoot dry weight (RSDW) were used for evaluating the degree of tolerance under salt stress in different lines. The genetic linkage map containing 978 and 527 bin markers were constructed in two RIL populations. A total of 14 QTLs were detected on chromosomes 1, 2, 3, 4, 7, 9, 10, 11, and 12. Among them, qSST12-1, qSST12-2, and qRSL12 were co-localized in a 140-kb overlap interval on chromosome 12, which containing 16 candidate genes. Furthermore, transcriptome sequencing and qRT-PCR were analyzed in CD and WD under normal and 120 mM NaCl stress. LOC_Os12g29330, LOC_Os12g29350, LOC_Os12g29390, and LOC_Os12g29400 were significantly induced by salt stress in both CD and WD. Sequence analysis showed that LOC_Os12g29400 in the salt-sensitive parents CD and KY131 was consistent with the reference sequence (Nipponbare), whereas the salt-tolerant parents WD and XBJZ differed significantly from the reference sequence both in the promoter and exon regions. The salt-tolerant phenotype was identified by using two T3 homozygous mutant plants of LOC_Os12g29400; the results showed that the score of salinity toxicity (SST) of the mutant plants (CR-3 and CR-5) was significantly lower than that of the wild type, and the seedling survival rate (SSR) was significantly higher than that of the wild type, which indicated that LOC_Os12g29400 could negatively regulate the salinity tolerance of rice at the seedling stage. The results lay a foundation for the analysis of the molecular mechanism of rice salinity tolerance and the cultivation of new rice varieties.


Assuntos
Oryza , Tolerância ao Sal , Tolerância ao Sal/genética , Oryza/genética , Plântula/genética , Transcriptoma , Salinidade , Análise de Sequência
18.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175730

RESUMO

Climate change has caused high salinity in many fields, particularly in the mud flats in coastal regions. The resulting salinity has become one of the most significant abiotic stresses affecting the world's rice crop productivity. Developing elite cultivars with novel salinity-tolerance traits is regarded as the most cost-effective and environmentally friendly approach for utilizing saline-alkali land. To develop a highly efficient green strategy and create novel rice germplasms for salt-tolerant rice breeding, this study aimed to improve rice salinity tolerance by combining targeted CRISPR/Cas9-mediated editing of the OsRR22 gene with heterosis utilization. The novel alleles of the genic male-sterility (GMS) and elite restorer line (733Srr22-T1447-1 and HZrr22-T1349-3) produced 110 and 1 bp deletions at the third exon of OsRR22 and conferred a high level of salinity tolerance. Homozygous transgene-free progeny were identified via segregation in the T2 generation, with osrr22 showing similar agronomic performance to wild-type (733S and HZ). Furthermore, these two osrr22 lines were used to develop a new promising third-generation hybrid rice line with novel salinity tolerance. Overall, the results demonstrate that combining CRISPR/Cas9 targeted gene editing with the "third-generation hybrid rice system" approach allows for the efficient development of novel hybrid rice varieties that exhibit a high level of salinity tolerance, thereby ensuring improved cultivar stability and enhanced rice productivity.


Assuntos
Edição de Genes , Oryza , Sistemas CRISPR-Cas/genética , Oryza/genética , Salinidade , Melhoramento Vegetal/métodos
19.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982522

RESUMO

Rice is one of the most economically important staple food crops in the world. Soil salinization and drought seriously restrict sustainable rice production. Drought aggravates the degree of soil salinization, and, at the same time, increased soil salinity also inhibits water absorption, resulting in physiological drought stress. Salt tolerance in rice is a complex quantitative trait controlled by multiple genes. This review presents and discusses the recent research developments on salt stress impact on rice growth, rice salt tolerance mechanisms, the identification and selection of salt-tolerant rice resources, and strategies to improve rice salt tolerance. In recent years, the increased cultivation of water-saving and drought-resistance rice (WDR) has shown great application potential in alleviating the water resource crisis and ensuring food and ecological security. Here, we present an innovative germplasm selection strategy of salt-tolerant WDR, using a population that is developed by recurrent selection based on dominant genic male sterility. We aim to provide a reference for efficient genetic improvement and germplasm innovation of complex traits (drought and salt tolerance) that can be translated into breeding all economically important cereal crops.


Assuntos
Oryza , Água , Secas , Tolerância ao Sal/genética , Melhoramento Vegetal , Solo , Salinidade
20.
Biochem Biophys Res Commun ; 596: 6-13, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35104663

RESUMO

Root hairs are cylindrical extensions of root epidermal cells that are important for the acquisition of water and minerals, interactions between plant and microbes. The deposition of cell wall materials in the tip enables root hairs to maintain elongation constantly. To date, our knowledge of the regulators that connect the architecture of cell wall and the root hair development remains very limited. Here, we demonstrated that COBL9 and COBL7, two genes of COBRA-Like family in Arabidopsis as well as their counterparts in rice, OsBC1L1 and OsBC1L8, regulate root hair growth. Single mutant cobl9, double mutants cobl7 cobl9 and double mutants osbc1l1 osbc1l8 all displayed prematurely terminated root hair elongation, though at varying levels. COBL7-YFP and COBL9-YFP accumulate prominently in the growing tips of newly emerged root hairs. Furthermore, cobl9, cobl7 cobl9 and osbc1l1 osbc1l8 mutants were defective in the enrichment of cellulose in the tips of the growing root hairs. We also discovered that overexpression of COBL9 could promote root hair elongation and salinity tolerance. Taken together, these results provide compelling evidence that the polarized COBL7 and COBL9 in the tip of the emerging root hairs have conserved roles in regulating root hair development and stress adaptation in dicots and monocots.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Celulose/metabolismo , Meristema/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Parede Celular/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Meristema/genética , Meristema/crescimento & desenvolvimento , Microscopia Confocal , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tolerância ao Sal/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA