Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38097720

RESUMO

Bats rely on their hand-wings to execute agile flight maneuvers, to grasp objects, and cradle young. Embedded in the dorsal and ventral membranes of bat wings are microscopic hairs. Past research findings implicate dorsal wing hairs in airflow sensing for flight control, but the function of ventral wing hairs has not been previously investigated. Here, we test the hypothesis that ventral wing hairs carry mechanosensory signals for flight control, prey capture, and handling. To test this hypothesis, we used synchronized high-speed stereo video and audio recordings to quantify flight and echolocation behaviors of big brown bats (Eptesicus fuscus) engaged in an aerial insect capture task. We analyzed prey-capture strategy and performance, along with flight kinematics, before and after depilation of microscopic hairs from the bat's ventral wing and tail membranes. We found that ventral wing hair depilation significantly impaired the bat's prey-capture performance. Interestingly, ventral wing hair depilation also produced increases in the bat's flight speed, an effect previously attributed exclusively to airflow sensing along the dorsal wing surface. These findings demonstrate that microscopic hairs embedded in the ventral wing and tail membranes of insectivorous bats provide mechanosensory feedback for prey handling and flight control.


Assuntos
Quirópteros , Ecolocação , Voo Animal , Cabelo , Comportamento Predatório , Asas de Animais , Animais , Quirópteros/fisiologia , Asas de Animais/fisiologia , Asas de Animais/anatomia & histologia , Voo Animal/fisiologia , Ecolocação/fisiologia , Comportamento Predatório/fisiologia , Cabelo/fisiologia , Fenômenos Biomecânicos , Tato/fisiologia , Masculino , Retroalimentação Sensorial/fisiologia
2.
J Theor Biol ; 530: 110871, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34411607

RESUMO

We study the mechanics of mechanoreceptor hairs in response to electro- and acousto-stimuli to expand the theory of tuning within filiform mechano-sensory systems and show the physical, biological and parametric feasibility of electroreception in comparison to aerodynamic sensing. We begin by analysing two well-known mechanosensory systems, the MeD1 spider trichobothria and the cricket cercal hair, offering a systematic appraisal of the physics of mechanosensory hair motion. Then we explore the biologically relevant parameter space of mechanoreceptor hairs by varying each oscillator parameter, thereby extending the theory to general arthropods. In doing so, we readily identify combinations of parameters for which a hair shows an enhanced or distinct response to either electric or aerodynamic stimuli. Overall, we find distinct behaviours in the two systems with novel insight provided through the parameter-space analysis. We show how the parameter space and balance of parameters therein of the resonant spider system are organised to produce a highly tuneable hair system through variation of hair length, whilst the broader parameter space of the non-resonant cricket system responds equally to a wider range of driving frequencies with increased capacity for high temporal resolution. From our analysis, we hypothesise the existence of two distinct types of mechanoreceptive system: the general system where hairs of all lengths are poised to detect both electro- and acousto- stimuli, and a stimuli-specific system where the sensitivity and specificity of the hairs to the different stimuli changes with length.


Assuntos
Artrópodes , Animais , Cabelo , Mecanorreceptores , Movimento (Física) , Eletricidade Estática
3.
Sensors (Basel) ; 21(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34640694

RESUMO

Biological mechanosensation has been a source of inspiration for advancements in artificial sensory systems. Animals rely on sensory feedback to guide and adapt their behaviors and are equipped with a wide variety of sensors that carry stimulus information from the environment. Hair and hair-like sensors have evolved to support survival behaviors in different ecological niches. Here, we review the diversity of biological hair and hair-like sensors across the animal kingdom and their roles in behaviors, such as locomotion, exploration, navigation, and feeding, which point to shared functional properties of hair and hair-like structures among invertebrates and vertebrates. By reviewing research on the role of biological hair and hair-like sensors in diverse species, we aim to highlight biological sensors that could inspire the engineering community and contribute to the advancement of mechanosensing in artificial systems, such as robotics.


Assuntos
Robótica , Vertebrados , Animais , Retroalimentação Sensorial , Locomoção
4.
J R Soc Interface ; 20(205): 20230177, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553992

RESUMO

With increasing evidence of electroreception in terrestrial arthropods, an understanding of receptor level processes is vital to appreciating the capabilities and limits of this sense. Here, we examine the spatio-temporal sensitivity of mechanoreceptive filiform hairs in detecting electrical fields. We first present empirical data, highlighting the time-varying characteristics of biological electrical signals. After which, we explore how electrically sensitive hairs may respond to such stimuli. The main findings are: (i) oscillatory signals (elicited by wingbeats) influence the spatial sensitivity of hairs, unveiling an inextricable spatio-temporal link; (ii) wingbeat direction modulates spatial sensitivity; (iii) electrical wingbeats can be approximated by sinusoidally modulated DC signals; and (iv) for a moving point charge, maximum sensitivity occurs at a faster timescale than a hair's frequency-based tuning. Our results show that electro-mechanical sensory hairs may capture different spatio-temporal information, depending on an object's movement and wingbeat and in comparison with aero-acoustic stimuli. Crucially, we suggest that electrostatic and aero-acoustic signals may provide distinguishable channels of information for arthropods. Given the pervasiveness of electric fields in nature, our results suggest further study to understand electrostatics in the ecology of arthropods and to reveal unknown ecological relationships and novel interactions between species.


Assuntos
Artrópodes , Animais , Movimento , Eletricidade , Cabelo , Eletricidade Estática
5.
J R Soc Interface ; 19(188): 20220053, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35317646

RESUMO

Recent investigations highlight the possibility of electroreception within arthropods through charged mechanosensory hairs. This discovery raises questions about the influence of electrostatic interaction between hairs and surrounding electrical fields within this sensory modality. Here, we investigate these questions by studying electrostatic coupling in arrays of hairs. We establish the notion of sensitivity contours that indicate regions within which point charges deflect hairs beyond a given threshold. We then examine how the contour's shape and size and the overall hair behaviour change in response to variations in the coupling between hairs. This investigation unveils synergistic behaviours whereby the sensitivity of hairs is enhanced or inhibited by neighbouring hairs. The hair spacing and ratio of a system's electrical parameters to its mechanical parameters influence this behaviour. Our results indicate that electrostatic interaction between hairs leads to emergent sensory properties for biologically relevant parameter values. The analysis raises new questions around the impact of electrostatic interaction on the current understanding of sensory hair processes, such as acoustic sensing, unveiling new sensory capabilities within electroreception such as amplification of hair sensitivity and location detection of charges in the environment.


Assuntos
Artrópodes , Animais , Eletricidade , Cabelo , Mecanorreceptores/fisiologia
6.
Anat Rec (Hoboken) ; 305(3): 577-591, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122671

RESUMO

North Atlantic right whales (NARWs; Eubalaena glacialis) possess an arrangement of fine hairs on the rostrum and chin that may be used for hydrodynamic sensing during feeding. These hairs occur across mysticete species and are known to possess adequate innervation in the subdermal follicle to support their consideration as sensory hairs (vibrissae). However, the small size of the hair structure with respect to the enormous scale of the animal's body has caused doubts regarding their utility and prompted speculation that the hairs may be vestigial or minimally functional. Here we show that NARW hairs occur in abundance on the leading surface of the head in a unique and characteristic arrangement. We consider the sensory hairs in context of the fluid environment in which this species forages and argue that the size of the hair is scaled to the size of the animal's small planktonic prey, thus suggesting that the hairs play an important role in the sensory ecology of these animals.


Assuntos
Sinais (Psicologia) , Baleias , Animais , Cabelo , Hidrodinâmica
7.
J Morphol ; 279(11): 1654-1664, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30350373

RESUMO

Groups of mechanoreceptive sensilla form small sensory fields on the ventral rim of the most distal tarsomeres in insects. Within these fields two or three sensilla are located closely together. Anterior and posterior fields are found in all three pairs of legs with only a few exceptions. The composition, exact location, and morphology of the fields were studied in representative species of several insect orders using light and scanning electron microscopy. There was no obvious correlation between field morphology and insect phylogenetic relationships.


Assuntos
Extremidades/anatomia & histologia , Insetos/anatomia & histologia , Sensilas/fisiologia , Animais , Insetos/ultraestrutura , Filogenia , Sensilas/anatomia & histologia , Sensilas/citologia , Sensilas/ultraestrutura
8.
Commun Integr Biol ; 2(6): 497-500, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20195455

RESUMO

The escape response of the cockroach is a well-studied example of sensorimotor behavior. Cockroaches respond to wind puffs, which may signal a predator attack, by making a swift turn followed by a forward acceleration. We have recently shown that their escape trajectories, measured relative to the position of the threatening stimulus, show preferred directions.1 Previous work has often distinguished between the most common type of escape turn, which begins as a rotation away from the stimulus, and the relatively rare turns initiated towards the stimulus. Here, we analyze these "away" and "towards" responses in light of our recent work on preferred escape trajectories (ETs). We find that the ETs of towards responses show a pattern of frequency distribution similar to that of away responses. The range of the bodyturn angles of towards responses, however, is much smaller than that of away responses, being <30 degrees in most cases, which approximately corresponds to the angular distance between ET peaks. This suggests that cockroaches minimize their turn when making a towards response, which could represent an effective anti-predator behavior that allows cockroaches to reach one of the preferred ETs within a relatively short time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA