Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 227(6): 1676-1680, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31868932

RESUMO

In just a decade, Brachypodium distachyon (Brachypodium) has fulfilled its initial promise as a key tool for realizing new strategies for understanding host and pathogen biology during virus infections of the Poaceae. For this Tansley Insight, I have identified four areas - from the laboratory to the field - that may be particularly fruitful to explore, with a particular focus on Brachypodium-virus infections. These focus areas include: mechanisms of RNA modification of host plants and viruses; coevolution of virus-host interactions; viruses as tools of discovery; and how to explicate the complex outcomes during multivirus infections. Here, I broadly frame our current knowledge of Brachypodium-virus interactions and how these findings may inform virus studies of grasses in the laboratory, field and natural settings.


Assuntos
Brachypodium , Vírus de Plantas
3.
Microorganisms ; 8(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272765

RESUMO

Despite their simplicity, viruses can display social-like interactions such as cooperation, communication, and cheating. Focusing on bacteriophages, here we review features including viral product sharing, cooperative evasion of antiviral defenses, prudent host exploitation, superinfection exclusion, and inter-phage peptide-mediated signaling. We argue that, in order to achieve a better understanding of these processes, their mechanisms of action need to be considered in the context of social evolution theory, paying special attention to key population-level factors such as genetic relatedness and spatial structure.

4.
mSystems ; 4(3)2019 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-31164405

RESUMO

Virus-host interactions have received much attention in virology. Virus-virus interactions can occur when >1 virus infects a host and can be deemed social when one virus affects the fitness of another virus, as in the well-known case of superinfection exclusion. Coinfection and subsequent social interactions can change viral pathogenicity, host range, and genetic composition, with implications for human health and viral evolution. I propose that this field can be advanced by bringing new perspectives into virology (e.g., social evolution theory) and uniting disciplinary divides within virology (classical, host-focused, and ecoevolutionary). The development of novel high-throughput tools that meld molecular and evolutionary approaches can harness viral diversity as an experimental asset to understand complex viral social interactions. A greater knowledge of virus-virus interactions will lead to the reformulation of basic concepts of virology and advances in applied virology, with new treatments that harness interactions between viruses to fight viral and bacterial infections.

5.
Microb Genom ; 5(11)2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31738702

RESUMO

dsRNA is the genetic material of important viruses and a key component of RNA interference-based immunity in eukaryotes. Previous studies have noted difficulties in determining the sequence of dsRNA molecules that have affected studies of immune function and estimates of viral diversity in nature. DMSO has been used to denature dsRNA prior to the reverse-transcription stage to improve reverse transcriptase PCR and Sanger sequencing. We systematically tested the utility of DMSO to improve the sequencing yield of a dsRNA virus (Φ6) in a short-read next-generation sequencing platform. DMSO treatment improved sequencing read recovery by over two orders of magnitude, even when RNA and cDNA concentrations were below the limit of detection. We also tested the effects of DMSO on a mock eukaryotic viral community and found that dsRNA virus reads increased with DMSO treatment. Furthermore, we provide evidence that DMSO treatment does not adversely affect recovery of reads from a ssRNA viral genome (influenza A/California/07/2009). We suggest that up to 50 % DMSO treatment be used prior to cDNA synthesis when samples of interest are composed of or may contain dsRNA.


Assuntos
Dimetil Sulfóxido/química , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Bacteriófago phi 6/genética , Genoma Viral , Vírus de RNA , RNA de Cadeia Dupla/genética , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA