Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 554
Filtrar
1.
Chemistry ; 30(26): e202400451, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38407368

RESUMO

Beyond previously described carbo-naphthalene and carbo-biphenyl, a novel type of bis-carbo-benzenic molecules is envisaged from the stilbene parent. The synthesis, structure, spectroscopic and electrochemical properties of two such carbo-stilbenes are described at complementary experimental and computational DFT levels. In the selected targets, the bare skeletal carbo-mer of carbo-stilbene is decorated by 8 or 10 phenyl groups, 0 or 2 tert-butyl groups, and 2 n-octyl chains, the later substituents being introduced to compensate anticipated solubility issues. As in the parent stilbene series, isomers of the phenylated carbo-stilbenes are characterized. The cis- and trans-isomers are, however, formed in almost equal amounts and could not be separated by either chromatography or crystallization. Nevertheless, due to a slow interconversion at the NMR time scale (up to 55 °C) the 1H NMR signals of both isomers of the two carbo-stilbenes could be tentatively assigned. The calculated structure of the cis-isomer exhibits a helical shape, consistent with the observed magnetic shielding of phenyl p-CH nuclei residing inside the shielding cone of the facing C18 ring. The presence of the two isomers in solution also gives rise to quite broad UV-vis absorption spectra with main bands at ca 460, 560 and 710 nm, and a significant bathochromic shift for the decaphenylated carbo-stilbene vs the di-tert-butyl-octaphenylated counterpart. Square wave voltammograms do not show any resolution of the two isomers, giving a reversible reduction wave at -0.65 or -0.58 V/SCE, and an irreversible oxidation peak at 1.11 V/SCE, those values being classical for most carbo-benzene derivatives. Calculated NICS values (NICS(1)=-12.5±0.2 ppm) also indicate that the aromatic nature of the C18 rings is not markedly affected by the dialkynylbutatriene (DAB) connector between them.

2.
Chemistry ; 30(35): e202400337, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38644351

RESUMO

A terminal [NiII-OH] complex 1, supported by triflamide-functionalized NHC ligands, showed divergent reactivity for the reaction of sulfone with alcohol, contingent on base concentration, temperature, and time. Julia-type olefination of alcohols with sulfones was achieved using one equiv. of base, whereas lowering base loading to 0.5 equiv. afforded α-alkylated sulfones. Besides excellent substrate scope and selectivity, biologically active stilbene derivatives DMU-212, pinosylvin, resveratrol, and piceatannol were synthesized in high yield under Julia-type olefination conditions. An extensive array of controlled experiments and DFT calculations provide valuable insight on the reaction pathway.

3.
Int Microbiol ; 27(2): 535-544, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37505307

RESUMO

Cajaninstilbene acid (CSA), longistylin A (LLA), and longistylin C (LLC) are three characteristic stilbenes isolated from pigeon pea. The objective of this study was to evaluate the antibacterial activity of these stilbenes against Staphylococcus aureus and even methicillin-resistant Staphylococcus aureus (MRSA) and test the possibility of inhibiting biofilm formation. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of these stilbenes were evaluated. And the results showed that LLA was most effective against tested strains with MIC and MBC values of 1.56 µg/mL followed by LLC with MIC and MBC values of 3.12 µg/mL and 6.25 µg/mL as well as CSA with MIC and MBC values of 6.25 µg/mL and 6.25-12.5 µg/mL. Through growth curve and cytotoxicity analysis, the concentrations of these stilbenes were determined to be set at their respective 1/4 MIC in the follow-up research. In an anti-biofilm formation assay, these stilbenes were found to be effectively inhibited bacterial proliferation, biofilm formation, and key gene expressions related to the adhesion and virulence of MRSA. It is the first time that the anti-S. aureus and MRSA activities of the three stilbenes have been systematically reported. Conclusively, these findings provide insight into the anti-MRSA mechanism of stilbenes from pigeon pea, indicating these compounds may be used as antimicrobial agents or additives for food with health functions, and contribute to the development as well as application of pigeon pea in food science.


Assuntos
Cajanus , Staphylococcus aureus Resistente à Meticilina , Estilbenos , Antibacterianos/farmacologia , Estilbenos/farmacologia , Testes de Sensibilidade Microbiana , Anticorpos/farmacologia , Biofilmes
4.
J Fluoresc ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319521

RESUMO

Thiophene core V-shaped rotor-stilbene derivatives have been synthesized utilizing two-fold Heck coupling reaction. These compounds are blue emitters with moderate quantum yield in dilute solution. Rotor nature of the synthesized stilbenes supports aggregation induced emission (AIE) behaviour and they show substituent dependent emission behavior in aggregate state. In presence of donating groups (e.g., tert-butyl, methoxy, diphenylamine group) in stilbenes, they exhibit AIE property. But with the introduction of electron withdrawing group (nitro group), they shows aggregation caused quenching (ACQ) behavior. Different types of nano-aggregates formation is observed in aggregated state, which was confirmed by dynamic light scattering (DLS) and scanning electron microscopy (SEM) studies. The details photophysical (absorption, fluorescence, and lifetime), electrochemical property (cyclic voltammetry) and thermal stability have been investigated. Optimized structure, energy and electronic distribution of molecular orbitals have been studied by theoretical calculation.

5.
Bioorg Chem ; 150: 107615, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38986420

RESUMO

A series of stilbene analogues, in which a phenyl ring was replaced by the pyridazin-3(2H)-one nucleus, was designed and synthesized to be explored as platelet aggregation inhibitors. The proposed stilbene-pyridazinone hybrids were successfully obtained from simple starting materials and by Wittig's reaction. Most of the target compounds displayed improved in vitro activity in comparison with the standard drug, resveratrol, highlighting as the most potent the analogues 10d and 10e, with inhibition percentages of 94.15 % at 100 µM and 100 % at 50 µM, respectively. The pharmacokinetic and toxicity (ADME/T) properties of the novel hybrids were also estimated with the SwissADME and ProTox-II web servers.


Assuntos
Desenho de Fármacos , Inibidores da Agregação Plaquetária , Agregação Plaquetária , Piridazinas , Estilbenos , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/síntese química , Piridazinas/química , Piridazinas/farmacologia , Piridazinas/síntese química , Estilbenos/química , Estilbenos/farmacologia , Estilbenos/síntese química , Relação Estrutura-Atividade , Humanos , Estrutura Molecular , Agregação Plaquetária/efeitos dos fármacos , Relação Dose-Resposta a Droga
6.
Dig Dis Sci ; 69(8): 2996-3007, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38850506

RESUMO

BACKGROUND: Insights into (poly)phenol exposure represent a modifiable factor that may modulate inflammation in chronic pancreatitis (CP), yet intake is poorly characterized and methods for assessment are underdeveloped. AIMS: The aims are to develop and test a method for estimating (poly)phenol intake from a 90-day food frequency questionnaire (FFQ) using the Phenol-Explorer database and determine associations with dietary patterns in CP patients versus controls via analysis of previously collected cross-sectional data. METHODS: Fifty-two CP patients and 48 controls were recruited from an ambulatory clinic at a large, academic institution. To assess the feasibility of the proposed methodology for estimating dietary (poly)phenol exposure, a retrospective analysis of FFQ data was completed. Mann-Whitney U tests were used to compare (poly)phenol intake by group; Spearman correlations and multivariable-adjusted log-linear associations were used to compare (poly)phenol intakes with dietary scores within the sample. RESULTS: Estimation of (poly)phenol intake from FFQs was feasible and produced estimates within a range of intake previously reported. Total (poly)phenol intake was significantly lower in CP vs controls (463 vs. 567mg/1000kcal; p = 0.041). In adjusted analyses, higher total (poly)phenol intake was associated with higher HEI-2015 (r = 0.34, p < 0.001), aMED (r = 0.22, p = 0.007), EDIH (r = 0.29, p < 0.001), and EDIP scores (r = 0.35, p < 0.001), representing higher overall diet quality and lower insulinemic and anti-inflammatory dietary potentials, respectively. CONCLUSIONS: Using enhanced methods to derive total (poly)phenol intake from an FFQ is feasible. Those with CP have lower total (poly)phenol intake and less favorable dietary pattern indices, thus supporting future tailored dietary intervention studies in this population.


Assuntos
Pancreatite Crônica , Humanos , Pancreatite Crônica/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Polifenóis/administração & dosagem , Estudos Transversais , Dieta/estatística & dados numéricos , Dieta/efeitos adversos , Estudos de Viabilidade , Inquéritos sobre Dietas , Estudos de Casos e Controles
7.
Arch Pharm (Weinheim) ; 357(6): e2400094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631036

RESUMO

Recently, we have developed novel Pim-1 kinase inhibitors starting from a dihydrobenzofuran core structure using a computational approach. Here, we report the design and synthesis of stilbene-based Pim-1 kinase inhibitors obtained by formal elimination of the dihydrofuran ring. These inhibitors of the first design cycle, which were obtained as inseparable cis/trans mixtures, showed affinities in the low single-digit micromolar range. To be able to further optimize these compounds in a structure-based fashion, we determined the X-ray structures of the protein-ligand-complexes. Surprisingly, only the cis-isomer binds upon crystallization of the cis/trans-mixture of the ligands with Pim-1 kinase and the substrate PIMTIDE, the binding mode being largely consistent with that predicted by docking. After crystallization of the exclusively trans-configured derivatives, a markedly different binding mode for the inhibitor and a concomitant rearrangement of the glycine-rich loop is observed, resulting in the ligand being deeply buried in the binding pocket.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-pim-1 , Estilbenos , Humanos , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Ligantes , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Estilbenos/química , Estilbenos/farmacologia , Estilbenos/síntese química , Relação Estrutura-Atividade
8.
Molecules ; 29(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39124922

RESUMO

Grapevines (Vitis spp.) produce several valuable polyphenol-type secondary metabolites including various stilbenoids. Although the potential application of stilbenes may offer alternative solutions to food safety or health challenges, only little information is available on their antibacterial activity against foodborne pathogens. In this work, high-performance liquid chromatography was used to analyze the stilbenoid profile of various wild Vitis species, including V. amurensis, V. davidii, V. pentagona, and V. romanetii, selected from the gene bank for grapes at the University of Pécs, Hungary. We found that the stilbene profile of cane extracts is strongly genotype-dependent, showing the predominant presence of ε-viniferin with a wide concentration range ≈ 320-3870 µg/g dry weight. A novel yet simple and efficient extraction procedure was developed and applied for the first time on grape canes, resulting in ε-viniferin-rich crude extracts that were tested against Listeria monocytogenes, an important foodborne pathogen. After 24 h exposure, V. pentagona and V. amurensis crude extracts completely eliminated the bacteria at a minimum bactericidal concentration of 42.3 µg/mL and 39.2 µg/mL of ε-viniferin, respectively. On the other hand, V. romanetii extract with 7.8 µg/mL of ε-viniferin resulted in 4 log reduction in the viable bacterial cells, while V. davidii extract with 1.4 µg/mL of ε-viniferin did not show significant antibacterial activity. These findings indicate that the ε-viniferin content was directly responsible for the antibacterial effect of cane extract. However, pure ε-viniferin (purity > 95%) required a higher concentration (188 µg/mL) to eradicate the bacteria under the same conditions, suggesting the presence of other antibacterial compounds in the cane extracts. Investigating the onset time of the bactericidal action was conducted through a kinetic experiment, and results showed that the reduction in living bacterial number started after 2 h; however, the bactericidal action demanded 24 h of exposure. Our results revealed that the canes of V. pentagona and V. amurensis species are a crucial bio-source of an important stilbene with antimicrobial activity and health benefits.


Assuntos
Antibacterianos , Listeria monocytogenes , Testes de Sensibilidade Microbiana , Extratos Vegetais , Estilbenos , Vitis , Estilbenos/farmacologia , Estilbenos/química , Antibacterianos/farmacologia , Antibacterianos/química , Vitis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Listeria monocytogenes/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Benzofuranos/farmacologia , Benzofuranos/química
9.
Angew Chem Int Ed Engl ; 63(4): e202316628, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38059917

RESUMO

Important biological processes, such as signaling and transport, are regulated by dynamic binding events. The development of artificial supramolecular systems in which binding between different components is controlled could help emulate such processes. Herein, we describe stiff-stilbene-containing macrocycles that can be switched between (Z)- and (E)-isomers by light, as demonstrated by UV/Vis and 1 H NMR spectroscopy. The (Z)-isomers can be effectively threaded by pyridinium halide axles to give pseudorotaxane complexes, as confirmed by 1 H NMR titration studies and single-crystal X-ray crystallography. The overall stability of these complexes can be tuned by varying the templating counteranion. However, upon light-induced isomerization to the (E)-isomer, the threading capability is drastically reduced. The axle component, in addition, can form a heterodimeric complex with a secondary isophthalamide host. Therefore, when all components are combined, light irradiation triggers axle exchange between the macrocycle and this secondary host, which has been monitored by 1 H NMR spectroscopy and simulated computationally.

10.
Angew Chem Int Ed Engl ; 63(14): e202319516, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38282170

RESUMO

We herein report a method for site-selective photo-crosslinking of a DNA duplex. A stilbene pair was introduced into a DNA duplex and a ruthenium complex was conjugated with a triplex-forming oligonucleotide. We demonstrated that [2+2] photocycloaddition of the stilbene pair occurred upon irradiation with visible light when the ruthenium complex was in close proximity due to triplex formation. No reaction occurred when the ruthenium complex was not in proximity to the stilbene pair. The wavelength of visible light used was of lower energy than the wavelength of UV light necessary for direct excitation of stilbene. Quantum chemical calculation indicated that ruthenium complex catalyzed the photocycloaddition via triplet-triplet energy transfer. Site selectivity of this photo-crosslinking system was evaluated using a DNA duplex bearing two stilbene pairs as a substrate; we showed that the site of crosslinking was precisely regulated by the sequence of the oligonucleotide linked to the ruthenium complex. Since this method does not require orthogonal photoresponsive molecules, it will be useful in construction of complex photoresponsive DNA circuits, nanodevices and biological tools.


Assuntos
Rutênio , Estilbenos , Rutênio/química , DNA/química , Luz , Oligonucleotídeos
11.
Plant Cell Physiol ; 64(10): 1204-1219, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37674261

RESUMO

Stilbenes accumulate in Scots pine heartwood where they have important roles in protecting wood from decaying fungi. They are also part of active defense responses, and their production is induced by different (a)biotic stressors. The specific transcriptional regulators as well as the enzyme responsible for activating the stilbene precursor cinnamate in the pathway are still unknown. UV-C radiation was the first discovered artificial stress activator of the pathway. Here, we describe a large-scale transcriptomic analysis of pine needles in response to UV-C and treatment with translational inhibitors, both activating the transcription of stilbene pathway genes. We used the data to identify putative candidates for the missing CoA ligase and for pathway regulators. We further showed that the pathway is transcriptionally activated by phosphatase inhibitor, ethylene and jasmonate treatments, as in grapevine, and that the stilbene synthase promoter retains its inducibility in some of the tested conditions in Arabidopsis, a species that normally does not synthesize stilbenes. Shared features between gymnosperm and angiosperm regulation and partially retained inducibility in Arabidopsis suggest that pathway regulation occurs not only via ancient stress-response pathway(s) but also via species-specific regulators. Understanding which genes control the biosynthesis of stilbenes in Scots pine aids breeding of more resistant trees.


Assuntos
Arabidopsis , Estilbenos , Estilbenos/metabolismo , Transcriptoma , Arabidopsis/genética , Perfilação da Expressão Gênica , Árvores/genética
12.
Metab Eng ; 77: 219-230, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031949

RESUMO

Malonyl-CoA is a central precursor for biosynthesis of a wide range of complex secondary metabolites. The development of platform strains with increased malonyl-CoA supply can contribute to the efficient production of secondary metabolites, especially if such strains exhibit high tolerance towards these chemicals. In this study, Pseudomonas taiwanensis VLB120 was engineered for increased malonyl-CoA availability to produce bacterial and plant-derived polyketides. A multi-target metabolic engineering strategy focusing on decreasing the malonyl-CoA drain and increasing malonyl-CoA precursor availability, led to an increased production of various malonyl-CoA-derived products, including pinosylvin, resveratrol and flaviolin. The production of flaviolin, a molecule deriving from five malonyl-CoA molecules, was doubled compared to the parental strain by this malonyl-CoA increasing strategy. Additionally, the engineered platform strain enabled production of up to 84 mg L-1 resveratrol from supplemented p-coumarate. One key finding of this study was that acetyl-CoA carboxylase overexpression majorly contributed to an increased malonyl-CoA availability for polyketide production in dependence on the used strain-background and whether downstream fatty acid synthesis was impaired, reflecting its complexity in metabolism. Hence, malonyl-CoA availability is primarily determined by competition of the production pathway with downstream fatty acid synthesis, while supply reactions are of secondary importance for compounds that derive directly from malonyl-CoA in Pseudomonas.


Assuntos
Malonil Coenzima A , Policetídeos , Pseudomonas , Ácidos Graxos/metabolismo , Malonil Coenzima A/metabolismo , Policetídeos/metabolismo , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/metabolismo , Resveratrol/metabolismo , Metabolismo Secundário , Estilbenos/metabolismo , Ácidos Cumáricos/metabolismo , Fenilalanina/metabolismo , Genoma Bacteriano/genética , Deleção de Sequência , Acetilcoenzima A/metabolismo , Citrato (si)-Sintase/metabolismo , Ácido Pirúvico/metabolismo , Fitoalexinas/metabolismo , Naftoquinonas/metabolismo
13.
Chemistry ; 29(40): e202301018, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37115496

RESUMO

We present the synthesis of two sets of spiro-connected azaacene dimers. Their geometry and electronic coupling are critically determined by a secondary linker, i. e., an etheno- and an ethano-bridge. The core fragment of the etheno-bridged dimer corresponds to a conformationally locked cis-stilbene. Optoelectronic properties, single crystal X-ray structures and stability with respect to oxidation of the conjugated and non-conjugated dimers are reported and compared. The conjugated dimers exhibit smaller optical gaps and bathochromically shifted absorption maxima, but are prone to unexpected oxygen addition, dearomatizing one of the azaacene substituents.

14.
Crit Rev Food Sci Nutr ; : 1-15, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37165487

RESUMO

Natural stilbenes have been studied extensively as a result of their complicated structures and diverse biological activities. Singlet oxygen (1O2), a kind of reactive oxygen species (ROS) has a strong destructive effect on food systems (especially for light-sensitive foods). Many cutting-edge scientific studies have found that some stilbenes not only have extensive quenching properties for ROS, but also can selectively quench 1O2. However, the industry devoted too much energy on the development of more new stilbenes, lacking in-depth summaries and reflections on the characteristics of their basic structure and the mechanism of their extraordinary 1O2 quenching abilities. Therefore, we summarized the classification methods for stilbene compounds and evaluated similarities, differences and possible limitations of different classification methods. In addition, we described the role of different functional groups in stilbenes in quenching of 1O2 and summarized the quenching mechanism of 1O2 by stilbenes. By the way, the current application of stilbene compounds and their potential risks in the food industry were also mentioned in this article. The stilbenes can be used as antioxidants (especially new strategies against 1O2 oxidation) in food systems to improve the shelf life. At this stage, it is necessary to develop more effective and safe food antioxidant stilbenes based on their quenching mechanism.

15.
Bioorg Med Chem Lett ; 87: 129261, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36990245

RESUMO

RAD51 is a pivotal protein of the homologous recombination DNA repair pathway, and is overexpressed in some cancer cells, disrupting then the efficiency of cancer-treatments. The development of RAD51 inhibitors appears as a promising solution to restore these cancer cells sensitization to radio- or chemotherapy. From a small molecule identified as a modulator of RAD51, the 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), two series of analogues with small or bulky substituents on the aromatic parts of the stilbene moiety were prepared for a structure-activity relationship study. Three compounds, the cyano analogue (12), and benzamide (23) or phenylcarbamate (29) analogues of DIDS were characterized as novel potent RAD51 inhibitors with HR inhibition in the micromolar range.


Assuntos
Recombinação Homóloga , Rad51 Recombinase , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Ligação Proteica , Relação Estrutura-Atividade
16.
Chem Biodivers ; 20(5): e202300368, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36996024

RESUMO

To develop new highly effective anticancer agents derived from naturally occurring stilbene scaffold, in total of 24 indole and indazole-based stilbenes including 17 new compounds were designed according to molecular hybridization strategy and synthesized via Witting reaction. The cytotoxic screening results against human tumor cell lines (K562 cells and MDA-MB-231 cells) showed that indole and indazole-based stilbenes are of great interest for developing anticancer agents as eight derivatives possessed strong antiproliferative activities with IC50 values less than 10 µM, and those synthetic derivatives displayed more higher cytotoxicities against K562 cells than MDA-MB-231 cells. In particular, indole-based stilbene bearing piperidine exhibited the most potent cytotoxicities against both K562 and MDA-MB-231 cells with IC50 values 2.4 µM and 2.18 µM, respectively, along with a remarkable selectivity towards human normal L-02 cells. Together, the results suggested that indole and indazole-based stilbenes are promising anticancer scaffolds worthy of further investigation.


Assuntos
Antineoplásicos , Estilbenos , Humanos , Relação Estrutura-Atividade , Estilbenos/farmacologia , Indazóis/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Indóis/farmacologia , Desenho de Fármacos , Estrutura Molecular
17.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108369

RESUMO

In recent years, fluorescent compounds that emit efficiently in the solid state have become particularly interesting, especially those that are easily prepared and inexpensive. Hence, exploring the photophysical properties of stilbene derivatives, supported by a detailed analysis of molecular packing obtained from single-crystal X-ray diffraction data, is a relevant area of research. A complete understanding of the interactions to determine the molecular packing in the crystal lattice and their effect on the material's physicochemical properties is essential to tune various properties effectively. In the present study, we examined a series of methoxy-trans-stilbene analogs with substitution pattern-dependent fluorescence lifetimes between 0.82 and 3.46 ns and a moderate-to-high fluorescence quantum yield of 0.07-0.69. The relationships between the solid-state fluorescence properties and the structure of studied compounds based on X-ray analysis were investigated. As a result, the QSPR model was developed using PLSR (Partial Least Squares Regression). Decomposition of the Hirshfeld surfaces (calculated based on the arrangement of molecules in the crystal lattice) revealed the various types of weak intermolecular interactions that occurred in the crystal lattice. The obtained data, in combination with global reactivity descriptors calculated using HOMO and LUMO energy values, were used as explanatory variables. The developed model was characterized by good validation metrics (RMSECAL = 0.017, RMSECV = 0.029, R2CAL = 0.989, and R2CV = 0.968) and indicated that the solid-state fluorescence quantum yield of methoxy-trans-stilbene derivatives was mainly dependent on weak intermolecular C…C contacts corresponding to π-π stacking and C…O/O…C interactions. To a lesser extent and inversely proportional, the fluorescence quantum yield was affected by the interactions of the type O…H/H…O and H…H and the electrophilicity of the molecule.

18.
Molecules ; 28(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37298957

RESUMO

Stilbene and its derivatives belong to the group of biologically active compounds. Some derivatives occur naturally in various plant species, while others are obtained by synthesis. Resveratrol is one of the best-known stilbene derivatives. Many stilbene derivatives exhibit antimicrobial, antifungal or anticancer properties. A thorough understanding of the properties of this group of biologically active compounds, and the development of their analytics from various matrices, will allow for a wider range of applications. This information is particularly important in the era of increasing incidence of various diseases hitherto unknown, including COVID-19, which is still present in our population. The purpose of this study was to summarize information on the qualitative and quantitative analysis of stilbene derivatives, their biological activity, potential applications as preservatives, antiseptics and disinfectants, and stability analysis in various matrices. Optimal conditions for the analysis of the stilbene derivatives in question were developed using the isotachophoresis technique.


Assuntos
COVID-19 , Estilbenos , Humanos , Estilbenos/farmacologia , Resveratrol/farmacologia , Antifúngicos , Conservantes Farmacêuticos
19.
Curr Issues Mol Biol ; 45(1): 12-32, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36661488

RESUMO

COVID-19 disease has had a global impact on human health with increased levels of morbidity and mortality. There is an unmet need to design and produce effective antivirals to treat COVID-19. This study aimed to explore the potential ability of natural stilbenes to inhibit the Mpro protease, an acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enzyme involved in viral replication. The binding affinities of stilbene compounds against Mpro were scrutinized using molecular docking, prime molecular mechanics-generalized Born surface area (MM-GBSA) energy calculations, and molecular dynamic simulations. Seven stilbene molecules were docked with Mpro and compared with GC376 and N3, antivirals with demonstrated efficacy against Mpro. Ligand binding efficiencies and polar and non-polar interactions between stilbene compounds and Mpro were analyzed. The binding affinities of astringin, isorhapontin, and piceatannol were -9.319, -8.166, and -6.291 kcal/mol, respectively, and higher than either GC376 or N3 at -6.976 and -6.345 kcal/mol, respectively. Prime MM-GBSA revealed that these stilbene compounds exhibited useful ligand efficacy and binding affinity to Mpro. Molecular dynamic simulation studies of astringin, isorhapontin, and piceatannol showed their stability at 300 K throughout the simulation time. Collectively, these results suggest that stilbenes such as astringin, isorhapontin, and piceatannol could provide useful natural inhibitors of Mpro and thereby act as novel treatments to limit SARS-CoV-2 replication.

20.
Curr Issues Mol Biol ; 44(5): 2175-2185, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35678676

RESUMO

The potential anti-diabetic effect of resveratrol derivative, 3,3',4,5'-tetramethoxy-trans-stilbene (3,3',4,5'-TMS) and its underlying mechanism in high glucose (HG) and dexamethasone (DXMS)-stimulated insulin-resistant HepG2 cells (IR-HepG2) were investigated. 3,3',4,5'-TMS did not reduce the cell viability of IR-HepG2 cells at the concentrations of 0.5-10 µM. 3,3',4,5'-TMS increased the potential of glucose consumption and glycogen synthesis in a concentration-dependent manner in IR-HepG2 cells. 3,3',4,5'-TMS ameliorated insulin resistance by enhancing the phosphorylation of glycogen synthase kinase 3 beta (GSK3ß), inhibiting phosphorylation of insulin receptor substrate-1 (IRS-1), and activating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway in IR-HepG2 cells. Furthermore, 3,3',4,5'-TMS significantly suppressed levels of reactive oxygen species (ROS) with up-regulation of nuclear factor erythroid 2-related factor 2 (Nrf2) expression. To conclude, the beneficial effect of 3,3',4,5'-TMS against insulin resistance to increase glucose consumption and glycogen synthesis was mediated through activation of IRS/PI3K/Akt signaling pathways in the IR-HepG2 cells, accomplished with anti-oxidative activity through up-regulation of Nrf2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA