Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 279: 120336, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37597590

RESUMO

Group level analyses of functional regions involved in voice perception show evidence of 3 sets of bilateral voice-sensitive activations in the human prefrontal cortex, named the anterior, middle and posterior Frontal Voice Areas (FVAs). However, the relationship with the underlying sulcal anatomy, highly variable in this region, is still unknown. We examined the inter-individual variability of the FVAs in conjunction with the sulcal anatomy. To do so, anatomical and functional MRI scans from 74 subjects were analyzed to generate individual contrast maps of the FVAs and relate them to each subject's manually labeled prefrontal sulci. We report two major results. First, the frontal activations for the voice are significantly associated with the sulcal anatomy. Second, this correspondence with the sulcal anatomy at the individual level is a better predictor than coordinates in the MNI space. These findings offer new perspectives for the understanding of anatomical-functional correspondences in this complex cortical region. They also shed light on the importance of considering individual-specific variations in subject's anatomy.


Assuntos
Neocórtex , Voz , Humanos , Córtex Pré-Frontal/diagnóstico por imagem
2.
Brain Topogr ; 29(4): 590-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26980192

RESUMO

The hand motor hot spot (hMHS) is one of the most salient parameters in transcranial magnetic stimulation (TMS) practice, notably used for targeting. It is commonly accepted that the hMHS corresponds to the hand representation within the primary motor cortex (M1). Anatomical and imaging studies locate this representation in a region of the central sulcus called the "hand knob". The aim of this study was to determine if the hMHS location corresponds to its expected location at the hand knob. Twelve healthy volunteers and eleven patients with chronic neuropathic pain of various origins, but not related to a brain lesion, were enrolled. Morphological magnetic resonance imaging of the brain was normal in all participants. Both hemispheres were studied in all participants except four (two patients and two healthy subjects). Cortical mapping of the hand motor area was conducted using a TMS-dedicated navigation system and recording motor evoked potentials (MEPs) in the contralateral first dorsal interosseous (FDI) muscle. We then determined the anatomical position of the hMHS, defined as the stimulation site providing the largest FDI-MEPs. In 45 % of hemispheres of normal subjects and 25 % of hemispheres of pain patients, the hMHS was located over the central sulcus, most frequently at the level of the hand knob. However, in the other cases, the hMHS was located outside M1, most frequently anteriorly over the precentral or middle frontal gyrus. This study shows that the hMHS does not always correspond to the hand knob and M1 location in healthy subjects or patients. Therefore, image-guided navigation is needed to improve the anatomical accuracy of TMS targeting, even for M1.


Assuntos
Mãos , Córtex Motor/anatomia & histologia , Estimulação Magnética Transcraniana , Adulto , Idoso , Mapeamento Encefálico , Estudos de Casos e Controles , Dor Crônica/fisiopatologia , Potencial Evocado Motor , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Neuralgia/fisiopatologia
3.
Hum Brain Mapp ; 35(5): 2435-47, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24038518

RESUMO

Image-guided navigation systems dedicated to transcranial magnetic stimulation (TMS) have been recently developed and offer the possibility to visualize directly the anatomical structure to be stimulated. Performing navigated TMS requires a perfect knowledge of cortical anatomy, which is very variable between subjects. This study aimed at providing a detailed description of sulcal and gyral anatomy of motor cortical regions with special interest to the inter-individual variability of sulci. We attempted to identify the most stable structures, which can serve as anatomical landmarks for motor cortex mapping in navigated TMS practice. We analyzed the 3D reconstruction of 50 consecutive healthy adult brains (100 hemispheres). Different variants were identified regarding sulcal morphology, but several anatomical structures were found to be remarkably stable (four on dorsoventral axis and five on rostrocaudal axis). These landmarks were used to define a grid of 12 squares, which covered motor cortical regions. This grid was used to perform motor cortical mapping with navigated TMS in 12 healthy subjects from our cohort. The stereotactic coordinates (x-y-z) of the center of each of the 12 squares of the mapping grid were expressed into the standard Talairach space to determine the corresponding functional areas. We found that the regions whose stimulation produced almost constantly motor evoked potentials mainly correspond to the primary motor cortex, with rostral extension to premotor cortex and caudal extension to posterior parietal cortex. Our anatomy-based approach should facilitate the expression and the comparison of the results obtained in motor mapping studies using navigated TMS.


Assuntos
Mapeamento Encefálico , Potencial Evocado Motor/fisiologia , Córtex Motor/anatomia & histologia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana , Adulto , Eletroencefalografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imagens, Psicoterapia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
World Neurosurg ; 183: e540-e548, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38163584

RESUMO

BACKGROUND: For surgical interventions, a precise understanding of the anatomical variations of the brain and defined anatomical landmarks to demarcate the regions of the temporal lobe is essential. Many anatomical studies have facilitated important surgical approaches to the temporobasal region. Because there is considerable sulcal variability, morphological analysis of the brain is imperative. The aim of this study was to define the boundaries of the temporal and occipital lobes and to define the variations in sulci and gyri in the inferior aspect. METHODS: In 110 cerebral hemispheres variations were identified and the major landmarks of the gyral-sulcal pattern at the inferior aspect of the brain were defined. RESULTS: The anatomy of the inferior aspect of the brain is defined in detail by morphological analysis of formalin-fixed hemispheres with a view to informing important surgical approaches. CONCLUSIONS: Since the literature defines no clear separation between the temporal and occipital lobes, certain landmarks such as the preoccipital notch and a basal temporo-occipital line were suggested as ways of making the distinction. The parahippocampal ramus is a constant structure that can be used as a reliable landmark for the posterior end of the hippocampus.


Assuntos
Neurocirurgia , Humanos , Lobo Occipital/cirurgia , Lobo Occipital/anatomia & histologia , Lobo Temporal/cirurgia , Lobo Temporal/anatomia & histologia , Encéfalo , Cadáver
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA