Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(4): 4999-5008, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38241705

RESUMO

Two-dimensional (2D) Ti3C2Tx MXene materials show great potential in electrochemical and flexible sensors due to their high electrical conductivity, good chemical stability, and special delaminated structure. However, their thermal properties were rarely studied, which remarkably affect the stability and safety of various devices. Here, we fabricated a suspended MXene drum resonator photothermally driven by a sinusoidally modulated laser, measured the thermal time constant by demodulating the thermomechanical motion, and then calculated the thermal conductivity and thermal diffusivity of the MXene film. Experiments show the thermal conductivity of the film increases from 3.10 to 3.58 W/m·K while the thermal diffusivity from 1.06 × 10-6 to 1.22 × 10-6 m2/s when temperature increases from 300 to 360 K. We also confirm the film thermal conductivity is mainly contributed by phonon transport rather than electron transport. Furthermore, the relationship between the mechanical and thermal properties of the MXene films was disclosed. The thermal conductivity decreases when film strain increases, caused by enhanced phonon scattering and softening of high-frequency phonons. The measurements provide a noninvasive method to analyze the thermal characteristics of suspended MXene films, which can be further extended to the thermal properties of other 2D materials.

2.
Nanomaterials (Basel) ; 12(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35957156

RESUMO

Graphene resonant sensors have shown strong competitiveness with respect to sensitivity and size. To advance the applications of graphene resonant sensors, the damage behaviors of graphene harmonic oscillators after thermal annealing and laser irradiation were investigated by morphology analysis and frequency domain vibration characteristics. The interface stress was proven to be the key factor that directly affected the yield of resonators. The resulting phenomenon could be improved by appropriately controlling the annealing temperature and size of resonators, thereby achieving membrane intactness of up to 96.4%. However, micro-cracks were found on the graphene sheets when continuous wave (CW) laser power was more than 4 mW. Moreover, the fluctuating light energy would also cause mechanical fatigue in addition to the photothermal effect, and the threshold damage power for the sinusoidally modulated laser was merely 2 mW. In this way, based on the amplitude-frequency surface morphology of the graphene resonator, the thermal time constant of the order of a few microseconds was confirmed to evaluate the damage of the graphene oscillator in situ and in real time, which could be further extended for those resonators using other 2D materials.

3.
J Forensic Sci ; 67(3): 955-963, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35118646

RESUMO

Blood-contaminated fingermarks are significant evidence for forensic investigators in high-profile cases providing a direct link between the suspect and the crime. Although these marks are often visible, blood enhancement techniques are operationally used to recover maximal ridge detail. The standard protein dye-staining procedure includes a chemical blood-fixing step, which requires an initial, prolonged drying period, for natural coagulation to occur. However, in special cases, when it is crucial to detect forensic traces quickly, there is a need to speed up the enhancement process. This study explored, both theoretically and empirically, the use of heat as an alternative method to the standard chemical fixing. Three consecutive experiments were conducted in which blood-contaminated fingerprints were deposited on different types of surfaces (car parts, glass, and flooring tiles), and heated for different periods, prior to development by amido black solution. The results showed that heat was successful in fixing blood, while the required temperature and heating durations, were inversely proportional. This observation was in correlation with theoretical heat-transfer data, calculated by the Lumped Heat Capacity model, also demonstrating the impact of the thermal time constant of each surface, on the conditions required for the full fixing of blood. The experimental findings led to a design of a portable, and tailor-made heating device, examined for the use in crime scenes, allowing to shorten the necessary fixing process from hours to minutes. For future crime-scene work, this novel approach may be utilized for a rapid blood-fixing, especially in cases when the scene cannot be preserved.


Assuntos
Dermatoglifia , Temperatura Alta , Negro de Amido , Medicina Legal , Coloração e Rotulagem
4.
Artigo em Inglês | MEDLINE | ID: mdl-30360429

RESUMO

In the international guidelines/standards for human protection against electromagnetic fields, the specific absorption rate (SAR) is used as a metric for radio-frequency field exposure. For radio-frequency near-field exposure, the peak value of the SAR averaged over 10 g of tissue is treated as a surrogate of the local temperature elevation for frequencies up to 3⁻10 GHz. The limit of 10-g SAR is derived by extrapolating the thermal damage in animal experiments. However, no reports discussed the difference between the time constant of temperature elevation in small animals and humans for local exposure. This study computationally estimated the thermal time constants of temperature elevation in human head and rat models exposed to dipole antennas at 3⁻10 GHz. The peak temperature elevation in the human brain was lower than that in the rat model, mainly because of difference in depth from the scalp. Consequently, the thermal time constant of the rat brain was smaller than that of the human brain. Additionally, the thermal time constant in human skin decreased with increasing frequency, which was mainly characterized by the effective SAR volume, whereas it was almost frequency-independent in the human brain. These findings should be helpful for extrapolating animal studies to humans.


Assuntos
Encéfalo/efeitos da radiação , Modelos Biológicos , Ondas de Rádio/efeitos adversos , Temperatura Cutânea/efeitos da radiação , Animais , Campos Eletromagnéticos , Febre , Cabeça , Humanos , Doses de Radiação , Ratos , Pele
5.
Ultramicroscopy ; 171: 195-203, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27694037

RESUMO

With the vigorous development of new nanodevices and nanomaterials, improvements in the quantitation and resolution of the measurement of nanoscale energy transport/conversion phenomena have become increasingly important. Although several new advanced methods for scanning thermal microscopy (SThM) have been developed to meet these needs, such methods require a drastic enhancement of SThM probe performance. In this study, by taking advantage of the characteristics of micromechanical structures where their mechanical stability is maintained even when the film that composes the structures becomes extremely thin, we develop a new design of SThM probe whose tip is made of ultra-thin SiO2 film (~100nm), fabricate the SThM probes, and demonstrate experimentally that the tip radius, thermal time constant, and thermal sensitivity of the probe are all improved. We expect the development of new high-performance SThM probes, along with the advanced measurement methods, to allow the measurement of temperature and thermal properties with higher spatial resolution and quantitative accuracy, ultimately making essential contributions to diverse areas of science and engineering related to the nanoscale energy transport/conversion phenomena.

6.
Healthc Technol Lett ; 3(2): 98-104, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27695626

RESUMO

Elevated skin temperature at the body/device interface of lower-limb prostheses is one of the major factors that affect tissue health. The heat dissipation in prosthetic sockets is greatly influenced by the thermal conductive properties of the hard socket and liner material employed. However, monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used which requires consistent positioning of sensors during donning and doffing. Predicting the residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. To predict the residual limb temperature, a machine learning algorithm - Gaussian processes is employed, which utilizes the thermal time constant values of commonly used socket and liner materials. This Letter highlights the relevance of thermal time constant of prosthetic materials in Gaussian processes technique which would be useful in addressing the challenge of non-invasively monitoring the residual limb skin temperature. With the introduction of thermal time constant, the model can be optimised and generalised for a given prosthetic setup, thereby making the predictions more reliable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA