Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.952
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Physiol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087821

RESUMO

The consumption of high fat-high energy diets (HF-HEDs) continues to rise worldwide and parallels the rise in maternal obesity (MO) that predisposes offspring to cardiometabolic disorders. Although the underlying mechanisms are unclear, thyroid hormones (TH) modulate cardiac maturation in utero. Therefore, we aimed to determine the impact of a high fat-high energy diet (HF-HED) on the hormonal, metabolic and contractility profile of the non-human primate (NHP) fetal heart. At ∼9 months preconception, female baboons (Papio hamadryas) were randomly assigned to either a control diet or HF-HED. At 165 days gestational age (term = 184 days), fetuses were delivered by Caesarean section under anaesthesia, humanely killed, and left ventricular cardiac tissue (Control (n = 6 female, 6 male); HF-HED (n = 6 F, 6 M)) was collected. Maternal HF-HED decreased the concentration of active cardiac TH (i.e. triiodothyronine (T3)), and type 1 iodothyronine deiodinase (DIO1) mRNA expression. Maternal HF-HED decreased the abundance of cardiac markers of insulin-mediated glucose uptake phosphorylated insulin receptor substrate 1 (Ser789) and glucose transporter 4, and increased protein abundance of key oxidative phosphorylation complexes (I, III, IV) and mitochondrial abundance in both sexes. Maternal HF-HED alters cardiac TH status, which may induce early signs of cardiac insulin resistance. This may increase the risk of cardiometabolic disorders in later life in offspring born to these pregnancies. KEY POINTS: Babies born to mothers who consume a high fat-high energy diet (HF-HED) prior to and during pregnancy are predisposed to an increased risk of cardiometabolic disorders across the life course. Maternal HF-HED prior to and during pregnancy decreased thyroid hormone triiodothyronine (T3) concentrations and type 1 iodothyronine deiodinase DIO1 mRNA expression in the non-human primate fetal heart. Maternal HF-HED decreased markers of insulin-dependent glucose uptake, phosphorylated insulin receptor substrate 1 and glucose transporter 4 in the fetal heart. Maternal HF-HED increased mitochondrial abundance and mitochondrial OXPHOS complex I, III and IV in the fetal heart. Fetuses from HF-HED pregnancies are predisposed to cardiometabolic disorders that may be mediated by changes in T3, placing them on a poor lifetime cardiovascular health trajectory.

2.
Neurobiol Dis ; 200: 106621, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39097035

RESUMO

Allan-Herndon-Dudley syndrome (AHDS) is a rare X-linked disorder that causes severe neurological damage, for which there is no effective treatment. AHDS is due to inactivating mutations in the thyroid hormone transporter MCT8 that impair the entry of thyroid hormones into the brain, resulting in cerebral hypothyroidism. However, the pathophysiology of AHDS is still not fully understood and this is essential to develop therapeutic strategies. Based on evidence suggesting that thyroid hormone deficit leads to alterations in astroglial cells, including gliosis, in this work, we have evaluated astroglial impairments in MCT8 deficiency by means of magnetic resonance imaging, histological, ultrastructural, and immunohistochemical techniques, and by mining available RNA sequencing outputs. Apparent diffusion coefficient (ADC) imaging values obtained from magnetic resonance imaging showed changes indicative of alterations in brain cytoarchitecture in MCT8-deficient patients (n = 11) compared to control subjects (n = 11). Astroglial alterations were confirmed by immunohistochemistry against astroglial markers in autopsy brain samples of an 11-year-old and a 30th gestational week MCT8-deficient subjects in comparison to brain samples from control subjects at similar ages. These findings were validated and further explored in a mouse model of AHDS. Our findings confirm changes in all the astroglial populations of the cerebral cortex in MCT8 deficiency that impact astrocytic metabolic and mitochondrial cellular respiration functions. These impairments arise early in brain development and persist at adult stages, revealing an abnormal distribution, density, morphology of cortical astrocytes, along with altered transcriptome, compatible with an astrogliosis-like phenotype at adult stages. We conclude that astrocytes are potential novel therapeutic targets in AHDS, and we propose ADC imaging as a tool to monitor the progression of neurological impairments and potential effects of treatments in MCT8 deficiency.

3.
Chemistry ; : e202401719, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995511

RESUMO

Monocarboxylate transporter 8 (MCT8) is a trans-membrane transporter, which mediates the cellular delivery of thyroid hormones, L-thyroxine (T4) and 3,5,3 '-triiodo-L-thyronine (T3). In humans, the MCT8 protein is encoded by the SLC16A2 gene and mutations in the transporter cause a genetic neurological disorder known as Allan-Herndon-Dudley syndrome (AHDS). MCT8 deficiency leads to impaired transport of thyroid hormones in the brain. Radiolabelled T4 and T3 or LC/MS-MS methods have been used to monitor the thyroid hormone uptake through MCT8. Herein, we developed a fluorescent based assay to monitor the thyroid hormone uptake through MCT8. A dansyl-based fluorescent probe having L-thyroxine moiety is found to be highly selective towards MCT8 in living cells. The high selectivity of the probe towards MCT8 can be attributed to the halogen bond-mediated recognition by the transporter protein. The presence of a free carboxylic acid group is essential for the specificity of the probe towards MCT8. Additionally, the selectivity of the probe for MCT8 is abolished upon esterification of the carboxylic group. Similarly, MCT8 does not recognize the probe when it contains a free amine group.

4.
Front Zool ; 21(1): 4, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38350982

RESUMO

BACKGROUND: Proper adjustments of metabolic thermogenesis play an important role in thermoregulation in endotherm to cope with cold and/or warm ambient temperatures, however its roles in energy balance and fat accumulation remain uncertain. Our study aimed to investigate the effect of previous cold exposure (10 and 0 °C) on the energy budgets and fat accumulation in the striped hamsters (Cricetulus barabensis) in response to warm acclimation. The body mass, energy intake, resting metabolic rate (RMR) and nonshivering thermogenesis (NST), serum thyroid hormone levels (THs: T3 and T4), and the activity of brown adipose tissue (BAT), indicated by cytochrome c oxidase (COX) activity and uncoupling protein 1 (ucp1) expression, were measured following exposure to the cold (10 °C and 0 °C) and transition to the warm temperature (30 °C). RESULTS: The hamsters at 10 °C and 0 °C showed significant increases in energy intake, RMR and NST, and a considerable reduction in body fat than their counterparts kept at 21 °C. After being transferred from cold to warm temperature, the hamsters consumed less food, and decreased RMR and NST, but they significantly increased body fat content. Interestingly, the hamsters that were previously exposed to the colder temperature showed significantly more fat accumulation after transition to the warm. Serum T3 levels, BAT COX activity and ucp1 mRNA expression were significantly increased following cold exposure, and were considerably decreased after transition to the warm. Furthermore, body fat content was negatively correlated with serum T3 levels, BAT COX activity and UCP1 expression. CONCLUSION: The data suggest that the positive energy balance resulting from the decreased RMR and NST in BAT under the transition from the cold to the warm plays important roles in inducing fat accumulation. The extent of fat accumulation in the warm appears to reflect the temperature of the previous cold acclimation.

5.
J Neural Transm (Vienna) ; 131(7): 833-845, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38693463

RESUMO

BACKGROUND: Psychotic major depression (PMD) is characterized by major depressive disorder (MDD) accompanied by delusions or hallucinations. While the prevalence of PMD and its association with anxiety have been studied, gender-specific differences and the role of thyroid hormones in PMD-related anxiety remain less explored. METHODS: A total of 1718 first-episode and drug-naïve MDD patients was assessed for the presence of PMD and severe anxiety. Clinical assessments, including Hamilton Depression Rating Scale (HAMD), Hamilton Anxiety Rating Scale (HAMA), Positive and Negative Syndrome Scale (PANSS), and Clinical Global Impressions-Severity (CGI-S) scale, were conducted to assess depression, anxiety, psychotic symptoms, and clinical severity, respectively. Blood samples were collected to measure thyroid function parameters. RESULTS: The prevalence of severe anxiety was higher in PMD patients compared to non-psychotic MDD patients (71.3% vs. 5.3%). No significant gender differences were observed in the prevalence of severe anxiety among PMD patients. However, elevated thyroid-stimulating hormone (TSH) levels and increased depression severity (HAMD scores) were identified as independent risk factors for severe anxiety in female PMD patients. In contrast, no significant risk factors were found in male PMD patients. The area under the receiver operating characteristic (AUCROC) analysis revealed that the HAMD score and TSH level showed acceptable discriminatory capacity for distinguishing between female PMD patients with and without severe anxiety. CONCLUSION: This study highlights the heightened prevalence of severe anxiety in PMD patients, with TSH levels and depression severity emerging as gender-specific risk factors for anxiety in females. These findings suggest the importance of thyroid hormone assessment and tailored interventions for managing anxiety in female PMD patients.


Assuntos
Ansiedade , Transtorno Depressivo Maior , Humanos , Feminino , Masculino , Adulto , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/epidemiologia , Pessoa de Meia-Idade , Fatores Sexuais , Ansiedade/epidemiologia , Ansiedade/sangue , Hormônios Tireóideos/sangue , Índice de Gravidade de Doença , Transtornos Psicóticos/sangue , Transtornos Psicóticos/epidemiologia , Adulto Jovem , Caracteres Sexuais , Tireotropina/sangue
6.
Neuroendocrinology ; 114(5): 411-422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38228117

RESUMO

INTRODUCTION: Aging is characterized by the deterioration of a wide range of functions in tissues and organs, and Alzheimer's disease (AD) is a neurodegenerative disease characterized by cognitive impairment. Hypothyroidism occurs when there is insufficient production of thyroid hormones (THs) by the thyroid. The relationship between hypothyroidism and aging as well as AD is controversial at present. METHODS: We established an animal model of AD (FAD4T) with mutations in the APP and PSEN1 genes, and we performed a thyroid function test and RNA sequencing (RNA-Seq) of the thyroid from FAD4T and naturally aging mice. We also studied gene perturbation correlation in the FAD4T mouse thyroid, bone marrow, and brain by further single-cell RNA sequencing (scRNA-seq) data of the bone marrow and brain. RESULTS: In this study, we found alterations in THs in both AD and aging mice. RNA-seq data showed significant upregulation of T-cell infiltration- and cell proliferation-related genes in FAD4T mouse thyroid. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that upregulated genes were enriched in the functional gene modules of activation of immune cells. Downregulated energy metabolism-related genes were prominent in aging thyroids, which reflected the reduction in THs. GSEA showed a similar enrichment tendency in both mouse thyroids, suggesting their analogous inflammation state. In addition, the regulation of leukocyte activation and migration was a common signature between the thyroid, brain, and bone marrow of FAD4T mice. CONCLUSIONS: Our findings identified immune cell infiltration of the thyroid as the potential underlying mechanism of the alteration of THs in AD and aging.


Assuntos
Envelhecimento , Doença de Alzheimer , Modelos Animais de Doenças , Presenilina-1 , Hormônios Tireóideos , Animais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Envelhecimento/metabolismo , Camundongos , Hormônios Tireóideos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Glândula Tireoide/metabolismo , Camundongos Transgênicos , Encéfalo/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Masculino
7.
Liver Int ; 44(1): 125-138, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37872645

RESUMO

OBJECTIVE: Progressive hepatic fibrosis can be considered the final stage of chronic liver disease. Hepatic stellate cells (HSC) play a central role in liver fibrogenesis. Thyroid hormones (TH, e.g. thyroxine; T4 and triiodothyronine; T3) significantly affect development, growth, cell differentiation and metabolism through activation of TH receptor α and/or ß (TRα/ß). Here, we evaluated the influence of TH in hepatic fibrogenesis. DESIGN: Human liver tissue was obtained from explanted livers following transplantation. TRα-deficient (TRα-KO) and wild-type (WT) mice were fed a control or a profibrogenic methionine-choline deficient (MCD) diet. Liver tissue was assessed by qRT-PCR for fibrogenic gene expression. In vitro, HSC were treated with TGFß in the presence or absence of T3. HSC with stable TRα knockdown and TRα deficient mouse embryonic fibroblasts (MEF) were used to determine receptor-specific function. Activation of HSC and MEF was assessed using the wound healing assay, Western blotting, and qRT-PCR. RESULTS: TRα and TRß expression is downregulated in the liver during hepatic fibrogenesis in humans and mice. TRα represents the dominant isoform in HSC. In vitro, T3 blunted TGFß-induced expression of fibrogenic genes in HSC and abrogated wound healing by modulating TGFß signalling, which depended on TRα presence. In vivo, TRα-KO enhanced MCD diet-induced liver fibrogenesis. CONCLUSION: These observations indicate that TH action in non-parenchymal cells is highly relevant. The interaction of TRα with TH regulates the phenotype of HSC via the TGFß signalling pathway. Thus, the TH-TR axis may be a valuable target for future therapy of liver fibrosis.


Assuntos
Fibroblastos , Células Estreladas do Fígado , Animais , Camundongos , Humanos , Células Estreladas do Fígado/metabolismo , Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/farmacologia , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Fator de Crescimento Transformador beta
8.
Diabetes Obes Metab ; 26(9): 3842-3848, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38924605

RESUMO

AIM: To investigate the relationship between thyroid function and weight regain in patients with obesity after metabolic surgery. METHODS: This retrospective study enrolled 162 patients who underwent metabolic surgery. Correlations between decreases in thyroid hormone levels and changes in weight, waist circumference (WC) and the Chinese visceral adiposity index (CVAI) were assessed. Binary logistic regression and receiver operating characteristic (ROC) curves were used to identify predictors and clinically useful cut-off values, respectively. RESULTS: The levels of thyroid-stimulating hormone (TSH) and free triiodothyronine (FT3) decreased markedly at 1 year after surgery, as did weight, body mass index (BMI), triglycerides, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, WC and CVAI. Decreases in TSH and FT3 after metabolic surgery were associated with changes in weight, BMI and CVAI. Binary logistic regression and ROC curve analyses confirmed that decreases in TSH can predict good weight loss after metabolic surgery to some extent. Finally, binary logistic regression and ROC curve analyses confirmed that changes in TSH can predict weight regain after metabolic surgery. CONCLUSIONS: Changes in TSH and FT3 after metabolic surgery were correlated with changes in weight and CVAI. Changes in thyroid hormones can predict weight regain in patients with obesity who underwent metabolic surgery.


Assuntos
Tireotropina , Tri-Iodotironina , Aumento de Peso , Humanos , Masculino , Feminino , Aumento de Peso/fisiologia , Estudos Retrospectivos , Pessoa de Meia-Idade , Tireotropina/sangue , Tri-Iodotironina/sangue , Adulto , Índice de Massa Corporal , Obesidade/cirurgia , Obesidade/sangue , Obesidade/complicações , Cirurgia Bariátrica , Circunferência da Cintura , Hormônios Tireóideos/sangue , Redução de Peso/fisiologia , Valor Preditivo dos Testes , Curva ROC
9.
Br J Nutr ; 131(9): 1488-1496, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221821

RESUMO

Iodine and thyroid hormones (TH) transport in the placenta are essential for fetal growth and development, but there is little research focus on the human placenta. The research aimed to investigate iodine and TH transport mechanisms in the human placenta. The placenta was collected from sixty healthy pregnant women. Urinary iodine concentration (UIC), serum iodine concentration (SIC), placenta iodine storage (PIS) and the concentration of serum and placenta TH were examined. Five pregnant women were selected as insufficient intake (II), adequate intake (AI) and above requirements intake (ARI) groups. Localisation/expression of placental sodium/iodide symporter (NIS) and Pendrin were also studied. Results showed that PIS positively correlated with the UIC (R = 0·58, P < 0·001) and SIC (R = 0·55, P < 0·001), and PIS was higher in the ARI group than that in the AI group (P = 0·017). NIS in the ARI group was higher than that in the AI group on the maternal side of the placenta (P < 0·05). NIS in the II group was higher than that in the AI group on the fetal side (P < 0·05). In the II group, NIS on the fetal side was higher than on the maternal side (P < 0·05). Pendrin was higher in the II group than in the AI group on the maternal side (P < 0·05). Free triiodothyronine (r = 0·44, P = 0·0067) and thyroid-stimulating hormone (r = 0·75, P < 0·001) between maternal and fetal side is positively correlated. This study suggests that maternal iodine intake changes the expression of NIS and Pendrin, thereby affecting PIS. Serum TH levels were not correlated with placental TH levels.


Assuntos
Iodo , Estado Nutricional , Placenta , Simportadores , Hormônios Tireóideos , Humanos , Feminino , Gravidez , Iodo/urina , Iodo/metabolismo , Placenta/metabolismo , Adulto , Hormônios Tireóideos/sangue , Hormônios Tireóideos/metabolismo , Simportadores/metabolismo , Transportadores de Sulfato/metabolismo , Transporte Biológico
10.
Ann Pharmacother ; : 10600280241252211, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755964

RESUMO

BACKGROUND: A growing body of evidence indicates a strong association between exogenous thyroid hormone (ETH) and brain health. Establishing the potential relationship between ETH therapy and dementia symptoms is crucial for patients with thyroid disorders. OBJECTIVE: In this study, we investigate the potential association between ETH therapy and dementia symptoms by exploring the Food and Drug Administration Adverse Event Reporting System (FAERS) database. METHODS: Disproportionality analysis (DPA) was conducted using postmarketing data from the FAERS repository (Q1 2004 to Q4 2023). Cases of dementia symptoms associated with ETH therapy were identified and analyzed through DPA using reporting odds ratios and information component methods. Dose and time-to-onset analyses were performed to assess the association between ETH therapy and dementia symptoms. RESULTS: A total of 9889 cases of ETH-associated symptoms were identified in the FAERS database. Dementia accounted for a consistent proportion of adverse drug reactions each year (3.4%-6.3%). The DPA indicated an association between ETH therapy and dementia symptoms, which remained significant even across sex, age, and indications. The median time-to-onset of dementia symptoms was 7.5 days, and the median treatment time was 40.5 days. No significant dose-response relationship was observed. CONCLUSION AND RELEVANCE: This study provides evidence for a link between ETH therapy and dementia. Clinicians are therefore advised to exercise vigilance, conduct comprehensive monitoring, and consider individualized dosing to mitigate potential reactions to ETH drug administration.

11.
Brain Cogn ; 180: 106202, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38991360

RESUMO

Newborn visual fixation abilities predict future cognitive, perceptive, and motor skills. However, little is known about the factors associated with the newborn visual fixation, which is an indicator of neurocognitive abilities. We analyzed maternal biological and environmental characteristics associated with fine motor skills (visual tracking) in 1 month old infants. Fifty-one infants were tested on visual tracking tasks (Infant Visuomotor Behavior Assessment Scale/ Guide for the Assessment of Visual Ability in Infants) and classified according to visual conducts scores. Differences between groups were compared considering motor development (Alberta Infant Motor Scale) maternal mental health (Edinburgh Postnatal Depression Scale and Hamilton Anxiety Scale); home environment (Affordances in the Home Environment for Development Scale); maternal care (Coding Interactive Behavior); breastmilk composition (total fatty acids, proteins, and cortisol); and maternal metabolic profile (serum hormones and interleukins). Mothers of infants with lower visual fixation scores had higher levels of protein in breastmilk at 3 months. Mothers of infants with better visual conduct scores had higher serum levels of T4 (at 1 month) and prolactin (at 3 months). There were no associations between visual ability and motor development, home environment, or maternal care. Early newborn neuromotor development, especially visual and fine motor skills, is associated with maternal biological characteristics (metabolic factors and breastmilk composition), highlighting the importance of early detection of maternal metabolic changes for the healthy neurodevelopment of newborns.

12.
BMC Endocr Disord ; 24(1): 98, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926806

RESUMO

BACKGROUND: Advanced maternal age may affect the intrauterine environment and increase the risk of neurodevelopmental disorders in offspring. Thyroid hormones are critical for fetal neurological development but whether maternal age influences fetal thyroid hormone levels in euthyroid mothers is unknown. OBJECTIVE: This study evaluated the association between cord blood thyroid hormones and maternal age, fetal sex, maternal thyroid function, and other perinatal factors. METHODS: The study population consisted of 203 healthy women with term singleton pregnancies who underwent elective cesarean section. Maternal levels of free T3 (fT3), free T4 (fT4) and TSH before delivery, and cord levels of fT3, fT4 and TSH were measured. Spearman's correlation coefficient and multiple linear regression analyses were performed to determine the correlation between cord thyroid hormone parameters and maternal characteristics. RESULTS: There were no significant differences in maternal serum or cord blood thyroid hormone levels between male and female births. In multivariate linear regression analysis, maternal age and maternal TSH values were negatively associated with the cord blood levels of fT3 in all births, after adjusting for confounding factors. Maternal age was more closely associated with the cord blood levels of fT3 in female than in male births. CONCLUSION: The inverse association between maternal age and cord blood levels of fT3 in euthyroid pregnant women suggested an impact of maternal aging on offspring thyroid function.


Assuntos
Sangue Fetal , Idade Materna , Tri-Iodotironina , Humanos , Feminino , Adulto , Masculino , Gravidez , Sangue Fetal/química , Sangue Fetal/metabolismo , Recém-Nascido , Tri-Iodotironina/sangue , Fatores Sexuais , Testes de Função Tireóidea , Tireotropina/sangue
13.
BMC Endocr Disord ; 24(1): 76, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816692

RESUMO

OBJECTIVE: There has been some confusion in earlier research on the connection between thyroid function and polycystic ovary syndrome (PCOS). This research is aimed to probe into the correlation between thyroid condition and the risk of PCOS from a new standpoint of thyroid hormone sensitivity. METHODS: This research comprised 415 females with PCOS from Drum Tower Hospital Affiliated with the Medical School of Nanjing University, and 137 non-PCOS individuals were selected as the normal control. Based on free thyroxine (FT4), free triiodothyronine (FT3), and thyroid-stimulating hormone (TSH), we calculated the thyroid hormone sensitivity indices, which consist of Thyroid Feedback Quantile-based Index (TFQI), Thyroid-stimulating Hormone Index (TSHI), Thyrotroph Thyroxine Resistance Index (TT4RI) and Free Triiodothyronine /Free thyroxine (FT3/FT4). The binary logistic regression model was adopted to investigate the correlation between thyroid hormone sensitivity indices with the risk of PCOS. Pearson or Spearman correlation analysis was employed to explore the association among thyroid-related measures with metabolic parameters in PCOS. RESULTS: Results of this research showed that females with PCOS had rising TFQI, TSHI, TT4RI, and FT3/FT4 levels compared with the control group. After adjustment for the impact of various covariates, there was no significant correlation between FT3/FT4 and the risk of PCOS; However, the odds ratio of the third and fourth vs. the first quartile of TFQI were 3.57(95% confidence interval [CI]:1.08,11.87) and 4.90(95% CI:1.38,17.38) respectively; The odds ratio of the fourth vs. the first quartile of TSHI was 5.35(95% CI:1.48,19.37); The odds ratio of the second vs. the first quartile of TT4RI was 0.27(95%CI 0.09,0.82). In addition, no significant correlation was observed between thyroid-related measures and metabolic measures in females with PCOS. CONCLUSIONS: A reduction in the sensitivity of central thyroid hormone is closely correlated with a higher risk of PCOS. Further research is necessary to corroborate our findings and the supporting mechanisms.


Assuntos
Síndrome do Ovário Policístico , Hormônios Tireóideos , Humanos , Síndrome do Ovário Policístico/sangue , Feminino , Adulto , Hormônios Tireóideos/sangue , Estudos de Casos e Controles , Testes de Função Tireóidea , Fatores de Risco , Adulto Jovem , Tireotropina/sangue , Tri-Iodotironina/sangue , Tiroxina/sangue , Biomarcadores/sangue , Prognóstico
14.
BMC Cardiovasc Disord ; 24(1): 383, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054435

RESUMO

BACKGROUND: The aim of this study was to explore the genetic effects of hormones modulated through the pituitary-thyroid/adrenal/gonadal axis on the risk of developing venous thromboembolism (VTE) and to investigate the potentially causal relationships between them. METHODS: A two-sample Mendelian randomization (MR) design was used. The single-nucleotide polymorphisms (SNPs) used as instrumental variables for various hormones and hormone-mediated diseases were derived from published genome-wide association studies (GWASs). Summary statistics for the risk of developing VTE (including deep venous thrombosis [DVT] and pulmonary embolism [PE]) were obtained from the UK Biobank and the FinnGen consortium. Inverse-variance weighting (IVW) was applied as the primary method to analyse causal associations. Other MR methods were used for supplementary estimates and sensitivity analysis. RESULTS: A genetic predisposition to greater free thyroxine (FT4) concentrations was associated with a greater risk of developing DVT (OR = 1.0007, 95%CI [1.0001-1.0013], p = 0.0174) and VTE (OR = 1.0008, 95%CI [1.0002-1.0013], p = 0.0123). Genetically predicted hyperthyroidism was significantly associated with an increased risk of developing DVT (OR = 1.0685, 95%CI [1.0139-1.1261], p = 0.0134) and VTE (OR = 1.0740, 95%CI [1.0165-1.1348], p = 0.0110). According to the initial MR analysis, testosterone concentrations were positively associated with the risk of developing VTE (OR = 1.0038, 95%CI [1.004-1.0072], p = 0.0285). After sex stratification, estradiol concentrations were positively associated with the risk of developing DVT (OR = 1.0143, 95%CI [1.0020-1.0267], p = 0.0226) and VTE (OR = 1.0156, 95%CI [1.0029-1.0285], p = 0.0158) in females, while the significant relationship between testosterone and VTE did not persist. SHBG rs858518 was identified as the only SNP that was associated with an increased risk of developing VTE, mediated by estradiol, in females. CONCLUSIONS: Genetically predicted hyperthyroidism and increased FT4 concentrations were positively associated with the risk of developing VTE. The effects of genetically predicted sex hormones on the risk of developing VTE differed between males and females. Greater genetically predicted estradiol concentrations were associated with an increased risk of developing VTE in females, while the SHBG rs858518 variant may become a potential prevention and treatment target for female VTE.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/genética , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/diagnóstico , Tromboembolia Venosa/sangue , Fatores de Risco , Medição de Risco , Feminino , Masculino , Tiroxina/sangue , Fenótipo , Biomarcadores/sangue , Trombose Venosa/genética , Trombose Venosa/epidemiologia , Trombose Venosa/sangue , Trombose Venosa/diagnóstico , Fatores Sexuais , Testosterona/sangue , Embolia Pulmonar/genética , Embolia Pulmonar/epidemiologia , Embolia Pulmonar/sangue , Embolia Pulmonar/diagnóstico
15.
Environ Res ; 242: 117703, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984785

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) comprise a large group of chemicals that are ubiquitous in the environment and include recognized persistent organic pollutants. The aim of this cross-sectional study was to investigate possible endocrine disrupting effects of different PFAS in adolescents. METHODS: Serum concentrations of PFAS, thyroid, parathyroid and steroid hormones were measured in 921 adolescents aged 15-19 years in the Fit Futures study, Northern Norway. The questionnaire included data on self-reported age at menarche and puberty development score (PDS). Multiple linear and logistic regression analyses and principle component analyses (PCA) were used to assess associations of PFAS with hormones concentrations and puberty indices. RESULTS: In girls, total PFAS (∑PFAS), perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), perfluorodecanoate (PFDA) were positively associated with dehydroepiandrosterone sulfate (DHEAS) and negatively associated with 11-deoxycorticosterone (11-DOC)/DHEAS ratio. In boys, the associations with 11-DOC/DHEAS ratio were positive for ∑PFAS, perfluoroheptanoate (PFHpA), perfluoroheptane sulfonate (PFHpS), PFOA, and PFOS. Perfluoroundecanoate (PFUnDA) was negatively associated with free thyroxine (fT4) and free triiodothyronine (fT3) in boys. PFNA and PFDA were also negatively associated with fT3 in boys. Serum parathyroid hormone concentration (PTH) was negatively associated with ∑PFAS and perfluorohexane sulfonate (PFHxS) in girls, and with PFOS in boys. PFDA and PFUnDA were positively associated with early menarche, while ∑PFAS and PFOA were positively associated with PDS in boys. No associations of PFAS with serum testosterone, follicle-stimulating hormone, or luteinizing hormone were found in either sex. In girls, PFOA was positively associated with free testosterone index (FTI). In boys, PFOA was positively associated with androstendione and 17-OH-progesterone, while PFHpA was positively associated with estradiol. CONCLUSIONS: Serum concentrations of several PFAS were associated with parathyroid and steroid hormones in both sexes, and with thyroid hormones in boys, as well as with early menarche in girls and higher PDS in boys.


Assuntos
Ácidos Alcanossulfônicos , Caprilatos , Poluentes Ambientais , Ácidos Graxos , Fluorocarbonos , Heptanoatos , Adolescente , Feminino , Humanos , Masculino , Estudos Transversais , Menarca , Esteroides , Testosterona , Hormônios Tireóideos , Adulto Jovem
16.
Environ Res ; 252(Pt 1): 118781, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552824

RESUMO

Environmental chemicals have been indicated to cause disruption of thyroid homeostasis in human populations. However, previous studies mostly focused on single group of chemicals. Herein, we investigate the independent and combined effects of multiple pollutants on thyroid homeostasis, including thyroid-stimulating hormone (TSH), total and free thyroxine (tT4 and fT4) and total and free triiodothyronine (tT3 and fT3) in elderly people. These environmental pollutants (n = 144) are from ten categories, including phenols, parabens, perfluoroalkyl substances (PFASs), polychlorinated biphenyls (PCBs), phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), synthetic pyrethroids (SPs), herbicides, and metals. Few studies have evaluated the health risks of these 144 chemicals, especially their joint effects. In single-pollutant evaluations, multiple linear regression (MLR) models were used to estimate the independent associations between multiple exposures and thyroid biomarkers. In multi-pollutant evaluations, elastic net regression and Bayesian kernel machine regression (BKMR) models were used to estimate the combined associations. The MLR models showed that 41 chemicals were significantly related to THs levels. BKMR models revealed the most important chemical groups: metals for TSH, PAHs, SPs and PCBs for tT4, herbicides and SPs for tT3. This study will contribute to the understanding of multipollutant exposure and help prioritize specific chemical groups related to thyroid hormone disruption.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Hormônios Tireóideos , Humanos , China , Idoso , Hormônios Tireóideos/sangue , Estudos Transversais , Poluentes Ambientais/sangue , Feminino , Masculino , Exposição Ambiental/análise , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Tireotropina/sangue
17.
Int J Med Sci ; 21(10): 1806-1813, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113891

RESUMO

Background: Roxadustat is commonly used to treat renal anemia. However, the potential effects of roxadustat on metabolism and organs other than the kidneys have recently attracted increased attention. Objective: This study aimed to examine the regulatory effects of roxadustat on thyroid hormones and blood lipid metabolism in patients with end-stage kidney disease (ESKD) undergoing hemodialysis. Methods: Eighty ESKD patients on hemodialysis and taking roxadustat were enrolled. Hemoglobin, thyroid hormones (TSH, FT3, FT4), and blood lipid profiles (TC, LDL-C, TG, HDL-C) were assessed before and after treatment. Changes in these parameters were compared, and relevant causative factors were analyzed. Results: Roxadustat significantly increased Hb, lowered TSH, FT4, TC, and LDL-C levels (all P<0.001). Patients were categorized into three groups based on post-treatment TSH inhibition percentage: Q1(≥70%), Q2(30%-70%), Q3(≤30%). Pre-treatment TSH decreased with reduced TSH inhibition (P<0.05). Post-treatment, TC, LDL-C, TSH, FT3, and FT4 increased with reduced TSH inhibition (all P<0.05).TC and LDL-C significantly decreased post-treatment in Q1 and Q2 (P<0.05). Correlation analysis showed a positive correlation between ΔTSH and pre-treatment TSH levels (r=0.732, P<0.001). The proportion of patients with ≥70% TSH inhibition increased with higher pre-treatment TSH levels (P for trend <0.05). ΔLDL-C and ΔTSH were positively correlated (r=0.278, P<0.05), with ΔTSH identified as an influencing factor in multiple linear regression (ß=0.133, 95% CI [0.042, 0.223], P<0.05). Conclusion: Roxadustat effectively improves anemia in ESKD patients while inhibiting TSH and FT4 secretion and reducing TC and LDL-C levels. Decreases in TSH levels correlate with baseline TSH levels, and lowered blood lipid levels are associated with decreased TSH levels.


Assuntos
Glicina , Isoquinolinas , Falência Renal Crônica , Metabolismo dos Lipídeos , Diálise Renal , Hormônios Tireóideos , Humanos , Masculino , Feminino , Diálise Renal/efeitos adversos , Pessoa de Meia-Idade , Estudos Retrospectivos , Falência Renal Crônica/terapia , Falência Renal Crônica/sangue , Falência Renal Crônica/complicações , Idoso , Glicina/análogos & derivados , Glicina/uso terapêutico , Metabolismo dos Lipídeos/efeitos dos fármacos , Hormônios Tireóideos/sangue , Isoquinolinas/uso terapêutico , Isoquinolinas/administração & dosagem , Lipídeos/sangue , Adulto , Tireotropina/sangue
18.
Endocr Pract ; 30(5): 417-423, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479647

RESUMO

OBJECTIVE: An alterable risk factor for hyperuricemia is obesity. Additionally, obese people may have a moderate form of acquired resistance to thyroid hormones. Thyrotropin, thyroid hormones, and obesity all interact subtly. However, the connection between thyroid hormone sensitivity and hyperuricemia in obese patients both before and after laparoscopic sleeve gastrectomy (LSG) has not yet been clarified. The objective of our study was to investigate the connection between impaired thyroid hormone sensitivity and elevated uric acid (UA) levels before and after LSG. METHODS: In total, 1054 euthyroid patients with obesity (481 males, 573 females), 248 (143 female patients) of whom underwent subsequent LSG, were enrolled in this retrospective study. Anthropometric measurements and thyroid hormone and UA levels were taken before and 3 months after LSG. RESULTS: Female patients with obesity with impaired sensitivity to thyroid hormones had higher UA levels (P for trend <.01). The odds ratio of the fourth vs first quartile of thyroid feedback quantile index, thyrotropin index, and thyrotropin-thyroxine resistance index were 4.285 (confidence interval: 1.360-13.507), 3.700 (confidence interval: 1.276-10.729), and 2.839 (confidence interval: 1.014-7.948), respectively, with robust relationships with female hyperuricemia (all P < .05). However, there was only a positive correlation between the decline in UA levels and thyroid feedback quantile index, thyrotropin, and thyrotropin-thyroxine resistance index in female patients following LSG. CONCLUSION: Female hyperuricemia is correlated with higher thyroid hormone resistance index scores. Resistance to thyroid hormones was greatly improved by LSG. The decrease in UA levels after surgery is correlated with the improvement of thyroid hormone resistance after LSG.


Assuntos
Gastrectomia , Laparoscopia , Obesidade , Hormônios Tireóideos , Ácido Úrico , Humanos , Feminino , Adulto , Gastrectomia/métodos , Ácido Úrico/sangue , Estudos Retrospectivos , Pessoa de Meia-Idade , Obesidade/cirurgia , Obesidade/sangue , Obesidade/complicações , Masculino , Hormônios Tireóideos/sangue , Tireotropina/sangue , Hiperuricemia/sangue , Hiperuricemia/epidemiologia , Obesidade Mórbida/cirurgia , Obesidade Mórbida/sangue
19.
Cell Mol Life Sci ; 80(9): 253, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589787

RESUMO

Environmental changes alter the sex fate in about 15% of vertebrate orders, mainly in ectotherms such as fish and reptiles. However, the effects of temperature changes on the endocrine and molecular processes controlling gonadal sex determination are not fully understood. Here, we provide evidence that thyroid hormones (THs) act as co-players in heat-induced masculinization through interactions with the stress axis to promote testicular development. We first demonstrated that the thyroid axis (through thyroid-related genes and T3 levels) is highly active in males during the gonadal development in medaka (Oryzias latipes). Similarly, T3 treatments promoted female-to-male sex reversal in XX embryos. Subsequently, embryonic exposure to temperature-induced stress up-regulated the genes related to the thyroid and stress axes with a final increase in T3 levels. In this context, we show that blocking the stress axis response by the loss of function of the corticotropin-releasing hormone receptors suppresses thyroid-stimulating hormone expression, therefore, heat-induced activation of the thyroid axis. Thus, our data showed that early activation of the stress axis and, in consequence, the TH axis, too, leaves us with that both being important endocrine players in inducing female-to-male reversal, which can help predict possible upcoming physiological impacts of global warming on fish populations.


Assuntos
Temperatura Alta , Glândula Tireoide , Feminino , Masculino , Animais , Temperatura , Gônadas , Folhas de Planta
20.
Arch Toxicol ; 98(9): 3019-3034, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38761188

RESUMO

Early brain development depends on adequate transport of thyroid hormones (THs) from the maternal circulation to the fetus. To reach the fetal brain, THs have to cross several physiological barriers, including the placenta, blood-brain-barrier and blood-cerebrospinal fluid-barrier. Transport across these barriers is facilitated by thyroid hormone transmembrane transporters (THTMTs). Some endocrine disrupting chemicals (EDCs) can interfere with the transport of THs by THTMTs. To screen chemicals for their capacity to disrupt THTMT facilitated TH transport, in vitro screening assays are required. In this study, we developed assays for two THTMTs, organic anion transporter polypeptide 1C1 (OATP1C1) and organic anion transporter 4 (OAT4), both known to play a role in the transport of THs across barriers. We used overexpressing cell models for both OATP1C1 and OAT4, which showed an increased uptake of radiolabeled T4 compared to control cell lines. Using these models, we screened various reference and environmental chemicals for their ability to inhibit T4 uptake by OATP1C1 and OAT4. Tetrabromobisphenol A (TBBPA) was identified as an OATP1C1 inhibitor, more potent than any of the reference chemicals tested. Additionally perfluorooctanesulfonic acid (PFOS), perfluoroctanic acid (PFOA), pentachlorophenol and quercetin were identified as OATP1C1 inhibitors in a similar range of potency to the reference chemicals tested. Bromosulfophthalein, TBBPA, PFOA and PFOS were identified as potent OAT4 inhibitors. These results demonstrate that EDCs commonly found in our environment can disrupt TH transport by THTMTs, and contribute to the identification of molecular mechanisms underlying TH system disruption chemicals.


Assuntos
Disruptores Endócrinos , Transportadores de Ânions Orgânicos Sódio-Independentes , Transportadores de Ânions Orgânicos , Humanos , Disruptores Endócrinos/toxicidade , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Fluorocarbonos/toxicidade , Hormônios Tireóideos/metabolismo , Caprilatos/toxicidade , Tiroxina/metabolismo , Transporte Biológico/efeitos dos fármacos , Células HEK293 , Ácidos Alcanossulfônicos/toxicidade , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA