Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.034
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 182(5): 1328-1340.e13, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32814014

RESUMO

Among arthropod vectors, ticks transmit the most diverse human and animal pathogens, leading to an increasing number of new challenges worldwide. Here we sequenced and assembled high-quality genomes of six ixodid tick species and further resequenced 678 tick specimens to understand three key aspects of ticks: genetic diversity, population structure, and pathogen distribution. We explored the genetic basis common to ticks, including heme and hemoglobin digestion, iron metabolism, and reactive oxygen species, and unveiled for the first time that genetic structure and pathogen composition in different tick species are mainly shaped by ecological and geographic factors. We further identified species-specific determinants associated with different host ranges, life cycles, and distributions. The findings of this study are an invaluable resource for research and control of ticks and tick-borne diseases.


Assuntos
Variação Genética/genética , Doenças Transmitidas por Carrapatos/microbiologia , Carrapatos/genética , Animais , Linhagem Celular , Vetores de Doenças , Especificidade de Hospedeiro/genética
2.
Proc Natl Acad Sci U S A ; 121(19): e2319400121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38687787

RESUMO

During their blood-feeding process, ticks are known to transmit various viruses to vertebrates, including humans. Recent viral metagenomic analyses using next-generation sequencing (NGS) have revealed that blood-feeding arthropods like ticks harbor a large diversity of viruses. However, many of these viruses have not been isolated or cultured, and their basic characteristics remain unknown. This study aimed to present the identification of a difficult-to-culture virus in ticks using NGS and to understand its epidemic dynamics using molecular biology techniques. During routine tick-borne virus surveillance in Japan, an unknown flaviviral sequence was detected via virome analysis of host-questing ticks. Similar viral sequences have been detected in the sera of sika deer and wild boars in Japan, and this virus was tentatively named the Saruyama virus (SAYAV). Because SAYAV did not propagate in any cultured cells tested, single-round infectious virus particles (SRIP) were generated based on its structural protein gene sequence utilizing a yellow fever virus-based replicon system to understand its nationwide endemic status. Seroepidemiological studies using SRIP as antigens have demonstrated the presence of neutralizing antibodies against SAYAV in sika deer and wild boar captured at several locations in Japan, suggesting that SAYAV is endemic throughout Japan. Phylogenetic analyses have revealed that SAYAV forms a sister clade with the Orthoflavivirus genus, which includes important mosquito- and tick-borne pathogenic viruses. This shows that SAYAV evolved into a lineage independent of the known orthoflaviviruses. This study demonstrates a unique approach for understanding the epidemiology of uncultured viruses by combining viral metagenomics and pseudoinfectious viral particles.


Assuntos
Cervos , Flavivirus , Metagenômica , Carrapatos , Animais , Metagenômica/métodos , Japão/epidemiologia , Cervos/virologia , Flavivirus/genética , Flavivirus/isolamento & purificação , Flavivirus/classificação , Carrapatos/virologia , Filogenia , Viroma/genética , Vírion/genética , Sus scrofa/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estudos Soroepidemiológicos , Genoma Viral
3.
Proc Natl Acad Sci U S A ; 120(16): e2218012120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040418

RESUMO

Powassan virus is an emerging tick-borne virus of concern for public health, but very little is known about its transmission patterns and ecology. Here, we expanded the genomic dataset by sequencing 279 Powassan viruses isolated from Ixodes scapularis ticks from the northeastern United States. Our phylogeographic reconstructions revealed that Powassan virus lineage II was likely introduced or emerged from a relict population in the Northeast between 1940 and 1975. Sequences strongly clustered by sampling location, suggesting a highly focal geographical distribution. Our analyses further indicated that Powassan virus lineage II emerged in the northeastern United States mostly following a south-to-north pattern, with a weighted lineage dispersal velocity of ~3 km/y. Since the emergence in the Northeast, we found an overall increase in the effective population size of Powassan virus lineage II, but with growth stagnating during recent years. The cascading effect of population expansion of white-tailed deer and I. scapularis populations likely facilitated the emergence of Powassan virus in the northeastern United States.


Assuntos
Cervos , Vírus da Encefalite Transmitidos por Carrapatos , Ixodes , Animais , New England
4.
Clin Microbiol Rev ; : e0009724, 2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39494872

RESUMO

SUMMARYLyme borreliosis or Lyme disease is the most frequently reported tick-borne disease in the Northern Hemisphere. In countries of the Southern Hemisphere, such as Brazil, since the early 1990s, some researchers have argued for the existence of an autochthonous Lyme-like borreliosis, known locally as the Baggio-Yoshinari syndrome (BYS), an alleged "Brazilian borreliosis" supposedly caused by a different strain of Borrelia burgdorferi and transmitted by hard ticks. Currently, the existence of BYS in Brazil is still accepted by a large part of the human health care workers, scientists, medical societies, and patients. In fact, this alleged "Brazilian borreliosis" has been the tick-borne zoonotic disease with the greatest number of reported cases and published studies in Brazil during this century, second only to Brazilian spotted fever. In this manuscript, we reviewed all manuscripts directly related to BYS that have been published in Brazil during the last 35 years. This analysis included 199 individual human cases that have been reported in Brazil since 1989, plus multiple studies on ticks, domestic, and wild animals. Our revision aimed to provide a critical opinion on whether the current published works allow healthcare workers, public health agencies, and patients to accept the existence of Lyme disease, BYS, or other Lyme borreliosis-related disease in Brazil. For this purpose, we evaluated the strengths and weaknesses of each published study, considering the diagnostic methods used, such as serological, microbiological, and molecular analyses. Based on these evaluations, we conclude that there is not enough evidence to support the occurrence of Lyme borreliosis in Brazil or that BYS (Brazilian Lyme-like disease) is caused by a bacterium of the genus Borrelia. This assumption is based on the inaccuracy, unreliability, and misinterpretation of the different diagnostic methods that have been used in Brazil. Recognizing the lack of technical evidence for the occurrence of Lyme borreliosis in Brazil has highly relevant implications. For example, it becomes imperative to raise awareness among the country's medical profession, as they have adopted unnecessary and extreme therapies recommended for patients with a supposed borrelial infection, including BYS, in Brazil. Finally, the technical analyses carried out in this study could be applied to other countries in the Southern Hemisphere (e.g., Argentina, South Africa, Australia), where cases classified and alleged as Lyme disease have been reported.

5.
J Virol ; 98(3): e0170923, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38305156

RESUMO

Tick-borne flaviviruses (TBFs) are transmitted to humans through milk and tick bites. Although a case of possible mother-to-child transmission of tick-borne encephalitis virus (TBEV) through breast milk has been reported, this route has not been confirmed in experimental models. Therefore, in this study, using type I interferon receptor-deficient A129 mice infected with Langat virus (LGTV), we aimed to demonstrate the presence of infectious virus in the milk and mammary glands of infected mice. Our results showed viral RNA of LGTV in the pup's stomach milk clots (SMCs) and blood, indicating that the virus can be transmitted from dam to pup through breast milk. In addition, we observed that LGTV infection causes tissue lesions in the mammary gland, and viral particles were present in mammary gland epithelial cells. Furthermore, we found that milk from infected mice could infect adult mice via the intragastric route, which has a milder infection process, longer infection time, and a lower rate of weight loss than other modes of infection. Specifically, we developed a nano-luciferase-LGTV reporter virus system to monitor the dynamics of different infection routes and observed dam-to-pup infection using in vivo bioluminescence imaging. This study provides comprehensive evidence to support breast milk transmission of TBF in mice and has helped provide useful data for studying TBF transmission routes.IMPORTANCETo date, no experimental models have confirmed mother-to-child transmission of tick-borne flavivirus (TBF) through breastfeeding. In this study, we used a mouse model to demonstrate the presence of infectious viruses in mouse breast milk and mammary gland epithelial cells. Our results showed that pups could become infected through the gastrointestinal route by suckling milk, and the infection dynamics could be monitored using a reporter virus system during breastfeeding in vivo. We believe our findings have provided substantial evidence to understand the underlying mechanism of breast milk transmission of TBF in mice, which has important implications for understanding and preventing TBF transmission in humans.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Transmissão Vertical de Doenças Infecciosas , Glândulas Mamárias Animais , Leite , Animais , Feminino , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/crescimento & desenvolvimento , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/transmissão , Encefalite Transmitida por Carrapatos/virologia , Glândulas Mamárias Animais/virologia , Leite/virologia , Animais Recém-Nascidos/virologia
6.
J Virol ; 98(7): e0010023, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38808973

RESUMO

Live-attenuated flavivirus vaccines confer long-term protection against disease, but the design of attenuated flaviviruses does not follow a general approach. The non-coding, subgenomic flavivirus RNA (sfRNA) is produced by all flaviviruses and is an essential factor in viral pathogenesis and transmission. We argue that modulating sfRNA expression is a promising, universal strategy to finetune flavivirus attenuation for developing effective flavivirus vaccines of the future.


Assuntos
Infecções por Flavivirus , Flavivirus , RNA Viral , Vacinas Atenuadas , Vacinas Virais , Vacinas Atenuadas/imunologia , Flavivirus/imunologia , Flavivirus/genética , RNA Viral/genética , Humanos , Vacinas Virais/imunologia , Infecções por Flavivirus/prevenção & controle , Infecções por Flavivirus/virologia , Animais , Desenvolvimento de Vacinas
7.
EMBO Rep ; 24(12): e57424, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37860832

RESUMO

The mechanisms utilized by different flaviviruses to evade antiviral functions of interferons are varied and incompletely understood. Using virological approaches, biochemical assays, and mass spectrometry analyses, we report here that the NS5 protein of tick-borne encephalitis virus (TBEV) and Louping Ill virus (LIV), two related tick-borne flaviviruses, antagonize JAK-STAT signaling through interactions with the tyrosine kinase 2 (TYK2). Co-immunoprecipitation (co-IP) experiments, yeast gap-repair assays, computational protein-protein docking and functional studies identify a stretch of 10 residues of the RNA dependent RNA polymerase domain of tick-borne flavivirus NS5, but not mosquito-borne NS5, that is critical for interactions with the TYK2 kinase domain. Additional co-IP assays performed with several TYK2 orthologs reveal that the interaction is conserved across mammalian species. In vitro kinase assays show that TBEV and LIV NS5 reduce the catalytic activity of TYK2. Our results thus illustrate a novel mechanism by which viruses suppress the interferon response.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , TYK2 Quinase , Carrapatos , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/metabolismo , Interferons/metabolismo , Carrapatos/metabolismo , TYK2 Quinase/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Humanos
8.
Mol Ther ; 32(9): 3012-3024, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-38956870

RESUMO

Several viruses hijack various forms of endocytosis in order to infect host cells. Here, we report the discovery of a molecule with antiviral properties that we named virapinib, which limits viral entry by macropinocytosis. The identification of virapinib derives from a chemical screen using high-throughput microscopy, where we identified chemical entities capable of preventing infection with a pseudotype virus expressing the spike (S) protein from SARS-CoV-2. Subsequent experiments confirmed the capacity of virapinib to inhibit infection by SARS-CoV-2, as well as by additional viruses, such as mpox virus and TBEV. Mechanistic analyses revealed that the compound inhibited macropinocytosis, limiting this entry route for the viruses. Importantly, virapinib has no significant toxicity to host cells. In summary, we present the discovery of a molecule that inhibits macropinocytosis, thereby limiting the infectivity of viruses that use this entry route such as SARS-CoV2.


Assuntos
Antivirais , Pinocitose , SARS-CoV-2 , Internalização do Vírus , Humanos , Pinocitose/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Animais , Chlorocebus aethiops , Glicoproteína da Espícula de Coronavírus/metabolismo , Descoberta de Drogas , Células Vero
9.
Proc Natl Acad Sci U S A ; 119(13): e2117770119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35312359

RESUMO

Spirochetal pathogens, such as the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, encode an abundance of lipoproteins; however, due in part to their evolutionary distance from more well-studied bacteria, such as Proteobacteria and Firmicutes, few spirochetal lipoproteins have assigned functions. Indeed, B. burgdorferi devotes almost 8% of its genome to lipoprotein genes and interacts with its environment primarily through the production of at least 80 surface-exposed lipoproteins throughout its tick vector­vertebrate host lifecycle. Several B. burgdorferi lipoproteins have been shown to serve roles in cellular adherence or immune evasion, but the functions for most B. burgdorferi surface lipoproteins remain unknown. In this study, we developed a B. burgdorferi lipoproteome screening platform utilizing intact spirochetes that enables the identification of previously unrecognized host interactions. As spirochetal survival in the bloodstream is essential for dissemination, we targeted our screen to C1, the first component of the classical (antibody-initiated) complement pathway. We identified two high-affinity C1 interactions by the paralogous lipoproteins, ElpB and ElpQ (also termed ErpB and ErpQ, respectively). Using biochemical, microbiological, and biophysical approaches, we demonstrate that ElpB and ElpQ bind the activated forms of the C1 proteases, C1r and C1s, and represent a distinct mechanistic class of C1 inhibitors that protect the spirochete from antibody-mediated complement killing. In addition to identifying a mode of complement inhibition, our study establishes a lipoproteome screening methodology as a discovery platform for identifying direct host­pathogen interactions that are central to the pathogenesis of spirochetes, such as the Lyme disease agent.


Assuntos
Proteínas de Bactérias , Borrelia burgdorferi , Complemento C1q , Evasão da Resposta Imune , Lipoproteínas , Doença de Lyme , Proteínas de Bactérias/imunologia , Borrelia burgdorferi/imunologia , Complemento C1q/imunologia , Humanos , Imunoglobulinas/imunologia , Lipoproteínas/imunologia , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Proteoma/imunologia
10.
J Infect Dis ; 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39316686

RESUMO

BACKGROUND: The incidence of Tick-borne encephalitis (TBE) has increased during the last decades in Europe. Our aim was to assess the clinical characteristics and outcome of TBE patients in Region Stockholm, as a high-risk area in Sweden. METHODS: The notification database at the regional Department of Communicable Disease Control and Prevention was used to identify TBE cases during 2006-2015. Clinical data was retrieved from the included patients' medical records. The associations of specific variables to predefined outcomes of disease severity were evaluated with multivariate logistic regression models. RESULTS: Of 1004 identified TBE cases, 703 adult patients were included. Sixty-one percent were men, and the median age was 50 years (range 18-94). The majority were non-vaccinated. Comorbidity was present in 34%, and 4% had immunomodulatory therapy. Seventy-five percent were hospitalised, and 11% had severe disease. More than 70% of the 79 patients followed up for more than 6 months had persisting symptoms. The case fatality rate was 1.4%, with 15% in the group with immunomodulatory treatment. In the multivariate analysis, severe disease was associated with underlying comorbidities, age ≥50 years, and previous complete TBE vaccination. CONCLUSION: This is the largest cohort of TBE patients in Scandinavia. Our findings of a more severe course of disease in patients of older age, with immunomodulatory therapy, with comorbidities, and vaccination breakthrough infections must be interpreted in the context of hospitalised patients. Optimised prevention is needed for patients with immunomodulatory therapy, given the considerable case fatality rate. Follow-up visits and rehabilitation should be better standardised.

11.
J Infect Dis ; 230(Supplement_1): S82-S86, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140718

RESUMO

Lyme disease is caused by the spirochete, Borrelia burgdorferi, which is transmitted by Ixodes spp ticks. The rise in Lyme disease cases since its discovery in the 1970s has reinforced the need for a vaccine. A vaccine based on B burgdorferi outer surface protein A (OspA) was approved by the Food and Drug Administration (FDA) several decades ago, but was pulled from the market a few years later, reportedly due to poor sales, despite multiple organizations concluding that it was safe and effective. Newer OspA-based vaccines are being developed and are likely to be available in the coming years. More recently, there has been a push to develop vaccines that target the tick vector instead of the pathogen to inhibit tick feeding and thus prevent transmission of tick-borne pathogens to humans and wildlife reservoirs. This review outlines the history of Lyme disease vaccines and this movement to anti-tick vaccine approaches.


Assuntos
Borrelia burgdorferi , Ixodes , Vacinas contra Doença de Lyme , Doença de Lyme , Doença de Lyme/prevenção & controle , Doença de Lyme/imunologia , Humanos , Animais , Borrelia burgdorferi/imunologia , Vacinas contra Doença de Lyme/imunologia , Ixodes/microbiologia , Vacinação , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Antígenos de Superfície/imunologia , Lipoproteínas/imunologia
12.
J Infect Dis ; 230(Supplement_1): S11-S17, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140721

RESUMO

In the 40 years since Steere and colleagues first described Lyme disease, the illness has increased in incidence and distribution to become the most common vector-borne disease in the United States. Public health officials have developed, implemented, and revised surveillance systems to describe and monitor the condition. Much has been learned about the epidemiology of the illness, despite practical and logistical constraints that have encumbered the collection and interpretation of surveillance data. Future development of automated data collection from electronic health records as a source of surveillance and clinical information will address practical challenges and help answer ongoing questions about complications and persistent symptoms. Robust surveillance will be essential to monitor the effectiveness and safety of future vaccines and other preventive measures.


Assuntos
Doença de Lyme , Doença de Lyme/epidemiologia , Humanos , Estados Unidos/epidemiologia , História do Século XX , História do Século XXI , Vigilância da População , Incidência
13.
Infect Immun ; 92(8): e0024924, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38990046

RESUMO

Ticks are important vectors of disease, particularly in the context of One Health, where tick-borne diseases (TBDs) are increasingly prevalent worldwide. TBDs often involve co-infections, where multiple pathogens co-exist in a single host. Patients with chronic Lyme disease often have co-infections with other bacteria or parasites. This study aimed to create a co-infection model with Borrelia afzelii and tick-borne encephalitis virus (TBEV) in C3H mice and to evaluate symptoms, mortality, and pathogen level compared to single infections. Successful co-infection of C3H mice with B. afzelii and TBEV was achieved. Outcomes varied, depending on the timing of infection. When TBEV infection followed B. afzelii infection by 9 days, TBEV symptoms worsened and virus levels increased. Conversely, mice infected 21 days apart with TBEV showed milder symptoms and lower mortality. Simultaneous infection resulted in mild symptoms and no deaths. However, our model did not effectively infect ticks with TBEV, possibly due to suboptimal dosing, highlighting the challenges of replicating natural conditions. Understanding the consequences of co-infection is crucial, given the increasing prevalence of TBD. Co-infected individuals may experience exacerbated symptoms, highlighting the need for a comprehensive understanding through refined animal models. This study advances knowledge of TBD and highlights the importance of exploring co-infection dynamics in host-pathogen interactions.


Assuntos
Coinfecção , Modelos Animais de Doenças , Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Doença de Lyme , Camundongos Endogâmicos C3H , Animais , Coinfecção/microbiologia , Coinfecção/virologia , Camundongos , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Vírus da Encefalite Transmitidos por Carrapatos/patogenicidade , Doença de Lyme/microbiologia , Encefalite Transmitida por Carrapatos/virologia , Grupo Borrelia Burgdorferi , Feminino
14.
Infect Immun ; 92(6): e0054023, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38727242

RESUMO

Anaplasma marginale is an obligate, intracellular, tick-borne bacterial pathogen that causes bovine anaplasmosis, an often severe, production-limiting disease of cattle found worldwide. Methods to control this disease are lacking, in large part due to major knowledge gaps in our understanding of the molecular underpinnings of basic host-pathogen interactions. For example, the surface proteins that serve as adhesins and, thus, likely play a role in pathogen entry into tick cells are largely unknown. To address this knowledge gap, we developed a phage display library and screened 66 A. marginale proteins for their ability to adhere to Dermacentor andersoni tick cells. From this screen, 17 candidate adhesins were identified, including OmpA and multiple members of the Msp1 family, including Msp1b, Mlp3, and Mlp4. We then measured the transcript of ompA and all members of the msp1 gene family through time, and determined that msp1b, mlp2, and mlp4 have increased transcript during tick cell infection, suggesting a possible role in host cell binding or entry. Finally, Msp1a, Msp1b, Mlp3, and OmpA were expressed as recombinant protein. When added to cultured tick cells prior to A. marginale infection, all proteins except the C-terminus of Msp1a reduced A. marginale entry by 2.2- to 4.7-fold. Except OmpA, these adhesins lack orthologs in related pathogens of humans and animals, including Anaplasma phagocytophilum and the Ehrlichia spp., thus limiting their utility in a universal tick transmission-blocking vaccine. However, this work greatly advances efforts toward developing methods to control bovine anaplasmosis and, thus, may help improve global food security.


Assuntos
Adesinas Bacterianas , Anaplasma marginale , Dermacentor , Animais , Anaplasma marginale/genética , Adesinas Bacterianas/metabolismo , Adesinas Bacterianas/genética , Dermacentor/microbiologia , Bovinos , Aderência Bacteriana/fisiologia , Anaplasmose/microbiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Técnicas de Visualização da Superfície Celular , Interações Hospedeiro-Patógeno , Doenças dos Bovinos/microbiologia
15.
Infect Immun ; 92(10): e0021424, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39120148

RESUMO

Lyme disease, the leading vector-borne disease in the United States and Europe, develops after infection with Borrelia burgdorferi sensu lato bacteria. Transmission of the spirochete from the tick vector to a vertebrate host requires global changes in gene expression that are controlled, in part, by the Rrp2/RpoN/RpoS alternative sigma factor cascade. Transcriptional studies defining the B. burgdorferi RpoS regulon have suggested that RpoS activates the transcription of paralogous family 52 (PFam52) genes. In strain B31, PFam52 genes (bbi42, bbk53, and bbq03) encode a set of conserved hypothetical proteins with >89% amino acid identity that are predicted to be surface-localized. Extensive homology among members of paralogous families complicates studies of protein contributions to pathogenicity as the potential for functional redundancy will obfuscate findings. Using a sequential mutagenesis approach, we generated clones expressing a single PFam52 paralog, as well as a strain deficient in all three. The single paralog expressing strains were used to confirm BBI42, BBK53, and BBQ03 surface localization and RpoS regulation. Surprisingly, the PFam52-deficient strain was able to infect mice and complete the enzootic cycle similar to the wild-type parental strain. Indeed, the presence of numerous pseudogenes that contain frameshifts or internal stop codons among the PFam52 genes suggests that they may be subjected to gene loss in B. burgdorferi's reduced genome. Alternatively, the lack of phenotype might reflect the limitations of the experimental mouse infection model.


Assuntos
Proteínas de Bactérias , Borrelia burgdorferi , Regulação Bacteriana da Expressão Gênica , Doença de Lyme , Borrelia burgdorferi/genética , Animais , Camundongos , Doença de Lyme/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Plasmídeos/genética , Fator sigma/genética , Fator sigma/metabolismo , Camundongos Endogâmicos C3H
16.
Clin Infect Dis ; 78(1): 80-89, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-37540989

RESUMO

BACKGROUND: Powassan virus (POWV) is an emerging arthropod-borne flavivirus, transmitted by Ixodes spp. ticks, which has been associated with neuroinvasive disease and poor outcomes. METHODS: A retrospective study was conducted at Mayo Clinic from 2013 to 2022. We included clinical and epidemiologic data of probable and confirmed neuroinvasive POWV cases. RESULTS: Sixteen patients with neuroinvasive POWV were identified; their median age was 63.2 years, and 62.5% were male. Six patients presented with rhombencephalitis, 4 with isolated meningitis, 3 with meningoencephalitis, 2 with meningoencephalomyelitis, and 1 with opsoclonus myoclonus syndrome. A median time of 18 days was observed between symptom onset and diagnosis. Cerebrospinal fluid analysis showed lymphocytic pleocytosis with elevated protein and normal glucose in the majority of patients. Death occurred within 90 days in 3 patients (18.8%), and residual neurologic deficits were seen in 8 survivors (72.7%). CONCLUSIONS: To our knowledge, this is the largest case series of patients with neuroinvasive POWV infection. We highlight the importance of a high clinical suspicion among patients who live in or travel to high-risk areas during the spring to fall months. Our data show high morbidity and mortality rates among patients with neuroinvasive disease.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Ixodes , Meningoencefalite , Animais , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Estudos Retrospectivos , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/epidemiologia
17.
Emerg Infect Dis ; 30(2): 341-344, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38270164

RESUMO

Tick-borne encephalitis was limited to northeast portions of Italy. We report in Lombardy, a populous region in the northwest, a chamois displaying clinical signs of tickborne encephalitis virus that had multiple virus-positive ticks attached, as well as a symptomatic man. Further, we show serologic evidence of viral circulation in the area.


Assuntos
Encefalite Transmitida por Carrapatos , Encefalite Viral , Infecções por Flavivirus , Masculino , Humanos , Encefalite Transmitida por Carrapatos/epidemiologia , Itália/epidemiologia
18.
Emerg Infect Dis ; 30(11): 2396-2399, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39387510

RESUMO

Bourbon virus is a tickborne virus that can cause human disease. Cases have been reported in Kansas, Oklahoma, and Missouri, USA. We identified Bourbon virus-specific neutralizing antibodies in patients from North Carolina. Bourbon virus infections are likely more common than previously thought, highlighting the need for improved diagnostics and surveillance.


Assuntos
Anticorpos Antivirais , Humanos , North Carolina/epidemiologia , Pessoa de Meia-Idade , Feminino , Masculino , Anticorpos Antivirais/sangue , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Adulto , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Idoso , Animais , Encefalite Transmitida por Carrapatos/epidemiologia , Encefalite Transmitida por Carrapatos/diagnóstico , Encefalite Transmitida por Carrapatos/virologia
19.
Emerg Infect Dis ; 30(10): 2047-2055, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39320158

RESUMO

We evaluated spatial-temporal risk for Lyme disease in northwestern North Carolina, USA, by using individual-level canine Borrelia burgdorferi seroprevalence data collected during 2017-2021 at routine veterinary screenings for tickborne diseases. Seroprevalence in dogs increased from 2.2% (47/2,130) in 2017 to 11.2% (339/3,033) in 2021. The percentage of incident seropositivity increased from 2.1% (45/2,130) in 2017 to 7.6% (231/3,033) in 2021. Exploratory geographic analyses found canine seroprevalence shifted from clustered (2017, Moran's I = 0.30) to dispersed (2021, Moran's I = -0.20). Elevation, slope, aspect, and forest land cover density were associated with canine seroprevalence within various household buffer regions in 2017. Slope was associated with seroprevalence at the household level in 2021. Results support the use of individual-level canine seroprevalence data for monitoring human risk for Lyme disease. Establishing sentinel veterinary clinics within Lyme disease-emergent communities might promote prevention and control efforts and provide opportunities for educational and behavioral interventions.


Assuntos
Anticorpos Antibacterianos , Borrelia burgdorferi , Doenças do Cão , Doença de Lyme , Estudos Soroepidemiológicos , Animais , Cães , Doença de Lyme/epidemiologia , Doença de Lyme/veterinária , Borrelia burgdorferi/imunologia , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia , North Carolina/epidemiologia , Anticorpos Antibacterianos/sangue , Feminino
20.
Emerg Infect Dis ; 30(7): 1472-1474, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38916722

RESUMO

Borrelia miyamotoi is an emerging tickborne pathogen that has been associated with central nervous system infections in immunocompromised patients, albeit infrequently. We describe a case-patient in Minnesota, USA, who had meningeal symptoms of 1 month duration. B. miyamotoi infection was diagnosed by Gram staining on cerebrospinal fluid and confirmed by sequencing.


Assuntos
Borrelia , Meningoencefalite , Humanos , Pessoa de Meia-Idade , Doença Aguda , Antibacterianos/uso terapêutico , Borrelia/isolamento & purificação , Borrelia/genética , Infecções por Borrelia/diagnóstico , Infecções por Borrelia/microbiologia , Infecções por Borrelia/tratamento farmacológico , Infecções por Borrelia/complicações , Meningoencefalite/microbiologia , Meningoencefalite/diagnóstico , Minnesota/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA