Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Acta Haematol ; 147(5): 604-611, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38402867

RESUMO

INTRODUCTION: Targeting the B-cell receptor pathway via ibrutinib, a specific inhibitor of Bruton's tyrosine kinase, has shown marked clinical efficacy in treatment of patients with chronic lymphocytic leukemia (CLL), thus becoming a preferred first line option independent of risk factors. However, acquired resistance to ibrutinib poses a major clinical problem and requires the development of novel treatment combinations to increase efficacy and counteract resistance development and clinical relapse rates. CASE PRESENTATION: In this study, we performed exome and transcriptome analyses of an ibrutinib resistant CLL patient in order to investigate genes and expression patterns associated with ibrutinib resistance. Here, we provide evidence that ibrutinib resistance can be attributed to aberrant mammalian target of rapamycin (MTOR) signaling. CONCLUSION: Thus, our study proposes that combined use of MTOR inhibitors with ibrutinib could be a possible option to overcome therapy resistance in ibrutinib treated patients.


Assuntos
Adenina , Tirosina Quinase da Agamaglobulinemia , Resistencia a Medicamentos Antineoplásicos , Leucemia Linfocítica Crônica de Células B , Piperidinas , Inibidores de Proteínas Quinases , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia/metabolismo , Tirosina Quinase da Agamaglobulinemia/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Adenina/análogos & derivados , Piperidinas/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/uso terapêutico , Masculino , Pirazóis/uso terapêutico , Pirazóis/farmacologia
2.
Genomics ; 114(3): 110345, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35321848

RESUMO

Sea buckthorn is a typical drought-resistant tree species. However, there is a general lack of understanding of the pattern of DNA methylation linked with sea buckthorn responses to drought, and its relationship with drought tolerance mechanisms. In this study, we performed whole-transcriptome RNA sequencing and methylome sequencing in response to drought stress to explore differentially expressed mRNAs, miRNAs, lncRNAs and circRNAs in sea buckthorn leaves. Based on predicted DE pairs, we constructed a competitive endogenous RNA network, which revealed potential transcriptional regulatory roles in response to drought stress. The results of methylome sequencing revealed that the DNA methylation level was increased in sea buckthorn leaves under drought stress. We identified 13,405 differentially methylated regions between CK and TR. We found one DMR-associated DEG (Vacuolar-sorting receptor 6) involved in the ABA accumulation pathway. In addition, two DNA methyltransferases (HrMET1 and HrDRM1) were closely associated with drought-induced hypermethylation in sea buckthorn. Together, we firstly conducted a comprehensive transcriptomic and epigenetic analysis of sea buckthorn under drought stress, providing a resource for further study of the potential functions of genes, miRNAs, lncRNAs, circRNAs and DNA methyltransferases.


Assuntos
Hippophae , MicroRNAs , RNA Longo não Codificante , Transcriptoma , Hippophae/genética , Hippophae/metabolismo , Epigenoma , RNA Circular/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Secas , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Metiltransferases/genética , DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
3.
BMC Plant Biol ; 22(1): 471, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36192710

RESUMO

BACKGROUND: Tea plant (Camellia sinensis (L.) O. Kuntze) is an important economic tea crop, but flowering will consume a lot of nutrients of C. sinensis, which will seriously affect the nutritional growth of C. sinensis. However, there are few studies on the development mechanism of C. sinensis flower, and most studies focus on a single C. sinensis cultivar. RESULTS: Here, we identified a 92-genes' C. sinensis flower development core transcriptome from the transcriptome of three C. sinensis cultivars ('BaiYe1', 'HuangJinYa' and 'SuChaZao') in three developmental stages (bud stage, white bud stage and blooming stage). In addition, we also reveal the changes in endogenous hormone contents and the expression of genes related to synthesis and signal transduction during the development of C. sinensis flower. The results showed that most genes of the core transcriptome were involved in circadian rhythm and autonomous pathways. Moreover, there were only a few flowering time integrators, only 1 HD3A, 1 SOC1 and 1 LFY, and SOC1 played a dominant role in the development of C. sinensis flower. Furthermore, we screened out 217 differentially expressed genes related to plant hormone synthesis and 199 differentially expressed genes related to plant hormone signal transduction in C. sinensis flower development stage. CONCLUSIONS: By constructing a complex hormone regulation network of C. sinensis flowering, we speculate that MYC, FT, SOC1 and LFY play key roles in the process of endogenous hormones regulating C. sinensis flowering development. The results of this study can a provide reference for the further study of C. sinensis flowering mechanism.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Flores , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Chá , Transcriptoma
4.
Cell Tissue Res ; 389(1): 129-143, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35524814

RESUMO

Recurrent pregnancy loss is a common obstetric complication affecting approximately 1-2% of reproductive population worldwide, but the precise causes for approximately a half of such patients remain unexplained. In this study, we compared the expression profiles of messenger RNA (mRNA), long non-coding RNA (lncRNA), microRNA (miRNA), and circular RNA (circRNA) in villi tissues from patients with unexplained recurrent pregnancy loss (URPL) and elective termination of pregnancy (ETP) using whole-transcriptome sequencing. A number of differentially expressed RNAs were confirmed by real-time PCR analysis. As a result, we identified a total of 1,703 mRNAs, 798 lncRNAs, 199 miRNAs, and 163 circRNAs that were significantly differentially expressed between villi tissues from URPL and ETP. The data of real-time PCR were consistent with those of the sequencing results. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the majority of differentially expressed mRNAs and target genes of ncRNAs were associated with focal adhesion, extracellular matrix-receptor interaction, and the PI3K-Akt signaling pathway. Additionally, two co-expression networks (lncRNA-miRNA-mRNA and lncRNA-circRNA-miRNA-mRNA) were constructed based on the correlation analysis between the differentially expressed RNAs. Taken together, this study provides a large number of valuable candidates for elucidating regulatory mechanisms of ncRNAs, which may ultimately assist in understanding the pathogenesis of URPL.


Assuntos
Aborto Habitual , MicroRNAs , RNA Longo não Codificante , Aborto Habitual/genética , Feminino , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
5.
Am J Respir Cell Mol Biol ; 63(2): 172-184, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32275839

RESUMO

Air pollution particulate matter <2.5 µm (PM2.5) exposure is associated with poor respiratory outcomes. Mechanisms underlying PM2.5-induced lung pathobiology are poorly understood but likely involve cellular and molecular changes to the airway epithelium. We extracted and chemically characterized the organic and water-soluble components of air pollution PM2.5 samples, then determined the whole transcriptome response of human nasal mucociliary airway epithelial cultures to a dose series of PM2.5 extracts. We found that PM2.5 organic extract (OE), but not water-soluble extract, elicited a potent, dose-dependent transcriptomic response from the mucociliary epithelium. Exposure to a moderate OE dose modified the expression of 424 genes, including activation of aryl hydrocarbon receptor signaling and an IL-1 inflammatory program. We generated an OE-response gene network defined by eight functional enrichment groups, which exhibited high connectivity through CYP1A1, IL1A, and IL1B. This OE exposure also robustly activated a mucus secretory expression program (>100 genes), which included transcriptional drivers of mucus metaplasia (SPDEF and FOXA3). Exposure to a higher OE dose modified the expression of 1,240 genes and further exacerbated expression responses observed at the moderate dose, including the mucus secretory program. Moreover, the higher OE dose significantly increased the MUC5AC/MUC5B gel-forming mucin expression ratio and strongly downregulated ciliated cell expression programs, including key ciliating cell transcription factors (e.g., FOXJ1 and MCIDAS). Chronic OE stimulation induced mucus metaplasia-like remodeling characterized by increases in MUC5AC+ secretory cells and MUC5AC mucus secretions. This epithelial remodeling may underlie poor respiratory outcomes associated with high PM2.5 exposure.


Assuntos
Mucosa Nasal/diagnóstico por imagem , Material Particulado/efeitos adversos , Mucosa Respiratória/efeitos dos fármacos , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Asma/induzido quimicamente , Asma/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Mucina-5AC/genética , Mucina-5B/genética , Fatores de Transcrição/genética
6.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396637

RESUMO

Sugar beet is an important sugar-yielding crop with some tolerance to salt, but the mechanistic basis of this tolerance is not known. In the present study, we have used whole-transcriptome RNA-seq and degradome sequencing in response to salt stress to uncover differentially expressed (DE) mRNAs, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in both leaves and roots. A competitive endogenous RNA (ceRNA) network was constructed with the predicted DE pairs, which revealed regulatory roles under salt stress. A functional analysis suggests that ceRNAs are implicated in copper redistribution, plasma membrane permeability, glycometabolism and energy metabolism, NAC transcription factor and the phosphoinositol signaling system. Overall, we conducted for the first time a full transcriptomic analysis of sugar beet under salt stress that involves a potential ceRNA network, thus providing a basis to study the potential functions of lncRNAs/circRNAs.


Assuntos
Beta vulgaris/genética , Sequenciamento do Exoma/métodos , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , RNA de Plantas/genética , Estresse Salino/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , MicroRNAs/genética , Folhas de Planta/genética , Raízes de Plantas/genética , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Salinidade , Cloreto de Sódio/farmacologia
7.
Int J Mol Sci ; 20(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159293

RESUMO

BACKGROUND: The LA hybrid lily 'Aladdin' has both excellent traits of Longiflorum hybrids and Asiatic hybrids-such as big and vivid flower, strong stem, high self-propagation coefficient, and shorter low temperature time required to release bulb dormancy in contrast to Oriental hybrids. A genome-wide transcriptional analysis using transcriptome RNA-Seq was performed in order to explore whether there is a gibberellin floral induction pathway in the LA hybrid lily. Subsequently, gene co-expression network analysis was used to analyze the possible interactions of key candidate genes screened from transcriptome data. At the same time, a series of physiological, biochemical, and cultivation tests were carried out. RESULTS: The content of five endogenous hormones changed sharply in the shoot apex during the treatment of 200 mg/L exogenous gibberellin and the ratio of ABA/GA3 dropped and stayed at a lower level after 4 hours' treatment from the higher levels initially, reaching a dynamic balance. In addition, the metabolism of carbohydrates in the bulbs increase during exogenous gibberellin treatment. A total of 124,041 unigenes were obtained by RNA-seq. With the transcriptome analysis, 48,927 unigenes and 48,725 unigenes respectively aligned to the NR database and the Uniprot database. 114,138 unigenes, 25,369 unigenes, and 19,704 unigenes respectively aligned to the COG, GO, and KEGG databases. 2148 differentially expression genes (DEGs) were selected with the indicators RPKM ≥ 0, FDR ≤ 0.05 and |log2(ratio)| ≥ 2. The number of the upregulated unigenes was significantly more than the number of the downregulated unigenes. Some MADS-box genes related to flowering transformation-such as AGL20, SOC1, and CO-were found to be upregulated. A large number of gibberellin biosynthesis related genes such as GA2ox, GA3ox, GA20ox, Cytochrome P450, CYP81, and gibberellin signal transduction genes such as DELLA, GASA, and GID1 were significantly differentially expressed. The plant hormones related genes such as NCED3 and sugar metabolism related genes such as α-amylase, sucrose synthase hexokinase, and so on were also found expressing differentially. In addition, stress resistance related genes such as LEA1, LEA2, LEA4, serine/threonine protein kinase, LRR receptor-like serine/threonine protein kinase, P34 kinase, histidine kinase 3 and epigenetic related genes in DNA methylation, histone methylation, acetylation, ubiquitination of ribose were also found. Particularly, a large number of transcription factors responsive to the exogenous gibberellin signal including WRKY40, WRKY33, WRKY27, WRKY21, WRKY7, MYB, AP2/EREBP, bHLH, NAC1, NAC2, and NAC11 were found to be specially expressing. 30 gene sequences were selected from a large number of differentially expressed candidate genes for qRT-PCR expression verification (0, 2, 4, 8, and 16 h) and compared with the transcriptome expression levels. CONCLUSIONS: 200mg/L exogenous GA3 can successfully break the bulb's dormancy of the LA hybrid lily and significantly accelerated the flowering process, indicating that gibberellin floral induction pathway is present in the LA lily 'Aladdin'. With the GCNs analysis, two second messenger G protein-coupled receptor related genes that respond to gibberellin signals in the cell were discovered. The downstream transport proteins such as AMT, calcium transport ATPase, and plasma membrane ATPase were also discovered participating in GA signal transduction. Transcription factors including WRKY7, NAC2, NAC11, and CBF specially regulated phosphorylation and glycosylation during the ubiquitination degradation process of DELLA proteins. These transcription factors also activated in abscisic acid metabolism. A large number of transcription factors such as WRKY21, WRKY22, NAC1, AP2, EREB1, P450, and CYP81 that both regulate gibberellin signaling and low-temperature signals have also been found. Finally, the molecular mechanism of GA floral induction pathway in the LA hybrid lily 'Aladdin' was constructed.


Assuntos
Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Lilium/genética , Lilium/metabolismo , Metabolismo dos Carboidratos , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas , Anotação de Sequência Molecular , Reguladores de Crescimento de Plantas/metabolismo , Transcriptoma
8.
Plant Cell Environ ; 41(9): 2109-2127, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29486529

RESUMO

Soybean is an important crop providing edible oil and protein source. Soybean oil and protein contents are quantitatively inherited and significantly affected by environmental factors. In this study, meta-analysis was conducted based on soybean physical maps to integrate quantitative trait loci (QTLs) from multiple experiments in different environments. Meta-QTLs for seed oil, fatty acid composition, and protein were identified. Of them, 11 meta-QTLs were located on hot regions for both seed oil and protein. Next, we selected 4 chromosome segment substitution lines with different seed oil and protein contents to characterize their 3 years of phenotype selection in the field. Using strand-specific RNA-sequencing analysis, we profile the time-course transcriptome patterns of soybean seeds at early maturity, middle maturity, and dry seed stages. Pairwise comparison and K-means clustering analysis revealed 7,482 differentially expressed genes and 45 expression patterns clusters. Weighted gene coexpression network analysis uncovered 46 modules of gene expression patterns. The 2 most significant coexpression networks were visualized, and 7 hub genes were identified that were involved in soybean oil and seed storage protein accumulation processes. Our results provided a transcriptome dataset for soybean seed development, and the candidate hub genes represent a foundation for further research.


Assuntos
Glycine max/genética , Proteínas de Armazenamento de Sementes/genética , Sementes/crescimento & desenvolvimento , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Fenótipo , Locos de Características Quantitativas , Sementes/genética , Análise de Sequência de RNA , Óleo de Soja/química , Óleo de Soja/genética
9.
Life Sci Space Res (Amst) ; 41: 136-145, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38670640

RESUMO

To systematically evaluate the effect of simulated long-term spaceflight composite stress (LSCS) in hippocampus and gain more insights into the transcriptomic landscape and molecular mechanism, we performed whole-transcriptome sequencing based on the control group (Ctrl) and the simulated long-term spaceflight composite stress group (LSCS) from six hippocampus of rats. Subsequently, differential expression analysis was performed on the Ctrl and LSCS groups, followed by enrichment analysis and functional interaction prediction analysis to investigate gene-regulatory circuits in LSCS. In addition, competitive endogenous RNA (ceRNA) network was constructed to gain insights into genetic interaction. The result showed that 276 differentially expressed messenger RNAs (DEmRNAs), 139 differentially expressed long non-coding RNAs (DElncRNAs), 103 differentially expressed circular RNAs (DEcircRNAs), and 52 differentially expressed microRNAs (DEmiRNAs) were found in LSCS samples compared with the controls, which were then subjected to enrichment analysis of Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways to find potential functions. PI3K-Akt signaling pathway and MAPK signaling pathway may play fundamental roles in the pathogenesis of LSCS. A ceRNA network was constructed with the predicted 340 DE pairs, which revealed the interaction roles of 220 DEmiRNA-DEmRNA pairs, 76 DEmiRNA-DElncRNA pairs, and 44 DEmiRNA-DEcircRNA pairs. Further, Thrombospondins2 was found to be a key target among those ceRNAs. Overall, we conducted for the first time a full transcriptomic analysis of the response of hippocampus to the LSCS that involved a potential ceRNA network, thus providing a basis to study the underlying mechanism of the LSCS.


Assuntos
Redes Reguladoras de Genes , Hipocampo , Transcriptoma , Animais , Ratos , Masculino , Hipocampo/metabolismo , RNA Longo não Codificante/genética , Estresse Fisiológico , MicroRNAs/genética , RNA Mensageiro/genética , Análise de Sequência de RNA , Ratos Sprague-Dawley , RNA Circular/genética , Perfilação da Expressão Gênica , RNA Endógeno Competitivo
10.
Front Neurosci ; 17: 1195840, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027526

RESUMO

Neurodegenerative diseases (NDs) are characterized by a progressive deterioration of neuronal function, leading to motor and cognitive damage in patients. Astrocytes are essential for maintaining brain homeostasis, and their functional impairment is increasingly recognized as central to the etiology of various NDs. Such impairment can be induced by toxic insults with palmitic acid (PA), a common fatty acid, that disrupts autophagy, increases reactive oxygen species, and triggers inflammation. Although the effects of PA on astrocytes have been addressed, most aspects of the dynamics of this fatty acid remain unknown. Additionally, there is still no model that satisfactorily explains how astroglia goes from being neuroprotective to neurotoxic. Current incomplete knowledge needs to be improved by the growing field of non-coding RNAs (ncRNAs), which is proven to be related to NDs, where the complexity of the interactions among these molecules and how they control other RNA expressions need to be addressed. In the present study, we present an extensive competing endogenous RNA (ceRNA) network using transcriptomic data from normal human astrocyte (NHA) cells exposed to PA lipotoxic conditions and experimentally validated data on ncRNA interaction. The obtained network contains 7 lncRNA transcripts, 38 miRNAs, and 239 mRNAs that showed enrichment in ND-related processes, such as fatty acid metabolism and biosynthesis, FoxO and TGF-ß signaling pathways, prion diseases, apoptosis, and immune-related pathways. In addition, the transcriptomic profile was used to propose 22 potential key controllers lncRNA/miRNA/mRNA axes in ND mechanisms. The relevance of five of these axes was corroborated by the miRNA expression data obtained in other studies. MEG3 (ENST00000398461)/hsa-let-7d-5p/ATF6B axis showed importance in Parkinson's and late Alzheimer's diseases, while AC092687.3/hsa-let-7e-5p/[SREBF2, FNIP1, PMAIP1] and SDCBP2-AS1 (ENST00000446423)/hsa-miR-101-3p/MAPK6 axes are probably related to Alzheimer's disease development and pathology. The presented network and axes will help to understand the PA-induced mechanisms in astrocytes, leading to protection or injury in the CNS under lipotoxic conditions as part of the intricated cellular regulation influencing the pathology of different NDs. Furthermore, the five corroborated axes could be considered study targets for new pharmacologic treatments or as possible diagnostic molecules, contributing to improving the quality of life of millions worldwide.

11.
Front Plant Sci ; 14: 1213311, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521931

RESUMO

A major challenge for plants in a rapidly changing climate is to adapt to rising temperatures. Some plants adapt to temperature conditions by generating an epigenetic memory that can be transmitted both meiotically and mitotically. Such epigenetic memories may increase phenotypic variation to global warming and provide time for adaptation to occur through classical genetic selection. The goal of this study was to understand how warmer temperature conditions experienced during sexual and asexual reproduction affect the transcriptomes of different strawberry (Fragaria vesca) ecotypes. We let four European F. vesca ecotypes reproduce at two contrasting temperatures (18 and 28°C), either asexually through stolon formation for several generations, or sexually by seeds (achenes). We then analyzed the transcriptome of unfolding leaves, with emphasis on differential expression of genes belonging to the epigenetic machinery. For asexually reproduced plants we found a general transcriptomic response to temperature conditions but for sexually reproduced plants we found less significant responses. We predicted several splicing isoforms for important genes (e.g. a SOC1, LHY, and SVP homolog), and found significantly more differentially presented splicing event variants following asexual vs. sexual reproduction. This difference could be due to the stochastic character of recombination during meiosis or to differential creation or erasure of epigenetic marks during embryogenesis and seed development. Strikingly, very few differentially expressed genes were shared between ecotypes, perhaps because ecotypes differ greatly both genetically and epigenetically. Genes related to the epigenetic machinery were predominantly upregulated at 28°C during asexual reproduction but downregulated after sexual reproduction, indicating that temperature-induced change affects the epigenetic machinery differently during the two types of reproduction.

12.
Sci Total Environ ; 901: 165846, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37541492

RESUMO

In the context of climate change and extreme high temperature, the commercially important sea urchin Strongylocentrotus intermedius suffers high mortality during summer in Northern China. How sea urchins respond to high temperatures is of great concern to academia and industry. How to understand the heat tolerance of sea urchin from the whole transcriptome level. In this study, the heat-resistant S. intermedius bred by our team and its control group were used as the research objects, then we applied whole-transcriptome RNA sequencing to detect differentially expressed mRNAs, microRNAs, long noncoding RNAs that respond to heat stress in the heat-resistant and control S. intermedius. A competitive endogenous RNA (ceRNA) regulatory network was constructed with predicted pairs of differentially expressed mRNAs and noncoding RNAs and revealed the molecular regulatory mechanisms in S. intermedius responding to heat stress. A functional analysis suggested that the ceRNAs were involved in basal metabolism, calcium ion transport, endoplasmic reticulum stress, and apoptosis. This is the whole-transcriptomic analysis of S. intermedius under heat stress to propose ceRNA networks that will provide a basis for studying the potential functions of long noncoding RNAs and miRNAs in the heat stress response in S. intermedius and provide a theoretical basis for the study of the molecular mechanism of sea urchins in response to environmental changes.

13.
Front Plant Sci ; 14: 1112264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860901

RESUMO

Potassium ions (K+) are important for plant growth and crop yield. However, the effects of K+ deficiency on the biomass of coconut seedlings and the mechanism by which K+ deficiency regulates plant growth remain largely unknown. Therefore, in this study, we compared the physiological, transcriptome, and metabolite profiles of coconut seedling leaves under K+-deficient and K+-sufficient conditions using pot hydroponic experiments, RNA-sequencing, and metabolomics technologies. K+ deficiency stress significantly reduced the plant height, biomass, and soil and plant analyzer development value, as well as K content, soluble protein, crude fat, and soluble sugar contents of coconut seedlings. Under K+ deficiency, the leaf malondialdehyde content of coconut seedlings were significantly increased, whereas the proline (Pro) content was significantly reduced. Superoxide dismutase, peroxidase, and catalase activities were significantly reduced. The contents of endogenous hormones such as auxin, gibberellin, and zeatin were significantly decreased, whereas abscisic acid content was significantly increased. RNA-sequencing revealed that compared to the control, there were 1003 differentially expressed genes (DEGs) in the leaves of coconut seedlings under K+ deficiency. Gene Ontology analysis revealed that these DEGs were mainly related to "integral component of membrane," "plasma membrane," "nucleus", "transcription factor activity," "sequence-specific DNA binding," and "protein kinase activity." Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the DEGs were mainly involved in "MAPK signaling pathway-plant," "plant hormone signal transduction," "starch and sucrose metabolism," "plant-pathogen interaction," "ABC transporters," and "glycerophospholipid metabolism." Metabolomic analysis showed that metabolites related to fatty acids, lipidol, amines, organic acids, amino acids, and flavonoids were generally down-regulated in coconut seedlings under K+ deficiency, whereas metabolites related to phenolic acids, nucleic acids, sugars, and alkaloids were mostly up-regulated. Therefore, coconut seedlings respond to K+ deficiency stress by regulating signal transduction pathways, primary and secondary metabolism, and plant-pathogen interaction. These results confirm the importance of K+ for coconut production, and provide a more in-depth understanding of the response of coconut seedlings to K+ deficiency and a basis for improving K+ utilization efficiency in coconut trees.

14.
Front Immunol ; 14: 1276196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077407

RESUMO

Solute carrier (SLC) transporters are membrane-bound proteins that facilitate nutrient transport, and the movement across cellular membranes of various substrates ranging from ions to amino acids, metabolites and drugs. Recently, SLCs have gained increased attention due to their functional linkage to innate immunological processes such as the clearance of dead cells and anti-microbial defense. Further, the druggable nature of these transporters provides unique opportunities for improving outcomes in different immunological diseases. Although the SLCs represent the largest group of transporters and are often identified as significant hits in omics data sets, their role in immunology has been insufficiently explored. This is partly due to the absence of tools that allow identification of SLC expression in particular immune cell types and enable their comparison before embarking on functional studies. In this study, we used publicly available RNA-Seq data sets to analyze the transcriptome in adaptive and innate immune cells, focusing on differentially and highly expressed SLCs. This revealed several new insights: first, we identify differentially expressed SLC transcripts in phagocytes (macrophages, dendritic cells, and neutrophils) compared to adaptive immune cells; second, we identify new potential immune cell markers based on SLC expression; and third, we provide user-friendly online tools for researchers to explore SLC genes of interest (and the rest of the genes as well), in three-way comparative dot plots among immune cells. We expect this work to facilitate SLC research and comparative transcriptomic studies across different immune cells.


Assuntos
Aminoácidos , Proteínas de Membrana Transportadoras , Camundongos , Animais , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Membrana Celular/metabolismo , Aminoácidos/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
15.
Front Immunol ; 14: 1171103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426644

RESUMO

Introduction: Spaceflight leads to the deconditioning of multiple body systems including the immune system. We sought to characterize the molecular response involved by capturing changes in leukocyte transcriptomes from astronauts transitioning to and from long-duration spaceflight. Methods: Fourteen male and female astronauts with ~6-month- long missions aboard the International Space Station (ISS) had 10 blood samples collected throughout the three phases of the study: one pre-flight (PF), four in-flight (IF) while onboard the ISS, and five upon return to Earth (R). We measured gene expression through RNA sequencing of leukocytes and applied generalized linear modeling to assess differential expression across all 10 time points followed by the analysis of selected time points and functional enrichment of changing genes to identify shifts in biological processes. Results: Our temporal analysis identified 276 differentially expressed transcripts grouped into two clusters (C) showing opposite profiles of expression with transitions to and from spaceflight: (C1) decrease-then-increase and (C2) increase-then-decrease. Both clusters converged toward average expression between ~2 and ~6 months in space. Further analysis of spaceflight transitions identified the decrease-then-increase pattern with most changes: 112 downregulated genes between PF and early spaceflight and 135 upregulated genes between late IF and R. Interestingly, 100 genes were both downregulated when reaching space and upregulated when landing on Earth. Functional enrichment at the transition to space related to immune suppression increased cell housekeeping functions and reduced cell proliferation. In contrast, egress to Earth is related to immune reactivation. Conclusion: The leukocytes' transcriptome changes describe rapid adaptations in response to entering space followed by opposite changes upon returning to Earth. These results shed light on immune modulation in space and highlight the major adaptive changes in cellular activity engaged to adapt to extreme environments.


Assuntos
Astronautas , Voo Espacial , Masculino , Humanos , Feminino , Transcriptoma , Leucócitos
16.
Front Plant Sci ; 14: 1198847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546260

RESUMO

Se-biofortified agricultural products receive considerable interest due to the worldwide severity of selenium (Se) deficiency. Alfalfa (Medicago sativa L.), the king of forage, has a large biomass, a high protein content, and a high level of adaptability, making it a good resource for Se biofortification. Analyses of agronomic, quality, physiological, and microstructure results indicated the mechanism of biomass increase and quality development in alfalfa during Se treatment. Se treatment effectively increased Se content, biomass accumulation, and protein levels in alfalfa. The enhancement of antioxidant capacity contributes to the maintenance of low levels of reactive oxygen species (ROS), which, in turn, serves to increase alfalfa's stress resistance and the stability of its intracellular environment. An increase in the rate of photosynthesis contributes to the accumulation of biomass in alfalfa. To conduct a more comprehensive investigation of the regulatory networks induced by Se treatment, the transcriptome sequencing of non-coding RNA (ncRNA) was employed to compare 100 mg/kg Se treatment and control groups. The analysis identified 1,414, 62, and 5 genes as DE-long non-coding RNAs (DE-lncRNA), DE-microRNAs (DE-miRNA), and DE-circular RNA (DE-circRNA), respectively. The function of miRNA-related regulatory networks during Se biofortification in alfalfa was investigated. Subsequent enrichment analysis revealed significant involvement of transcription factors, DNA replication and repair mechanisms, photosynthesis, carbohydrate metabolism, and protein processing. The antioxidant capacity and protein accumulation of alfalfa were regulated by the modulation of signal transduction, the glyoxalase pathway, proteostasis, and circRNA/lncRNA-related regulatory networks. The findings offer new perspectives on the regulatory mechanisms of Se in plant growth, biomass accumulation, and stress responses, and propose potential strategies for enhancing its utilization in the agricultural sector.

17.
Front Plant Sci ; 14: 1141692, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37534284

RESUMO

The use of biocontrol agents with plant growth-promoting activity has emerged as an approach to support sustainable agriculture. During our field evaluation of potato plants treated with biocontrol rhizobacteria, four bacteria were associated with increased plant height. Using two important solanaceous crop plants, tomato and potato, we carried out a comparative analysis of the growth-promoting activity of the four bacterial strains: Pseudomonas fluorescens SLU99, Serratia plymuthica S412, S. rubidaea AV10, and S. rubidaea EV23. Greenhouse and in vitro experiments showed that P. fluorescens SLU99 promoted plant height, biomass accumulation, and yield of potato and tomato plants, while EV23 promoted growth in potato but not in tomato plants. SLU99 induced the expression of plant hormone-related genes in potato and tomato, especially those involved in maintaining homeostasis of auxin, cytokinin, gibberellic acid and ethylene. Our results reveal potential mechanisms underlying the growth promotion and biocontrol effects of these rhizobacteria and suggest which strains may be best deployed for sustainably improving crop yield.

18.
Front Endocrinol (Lausanne) ; 14: 1026187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36864831

RESUMO

Background: Gene expression (GE) data have shown promise as a novel tool to aid in the diagnosis of childhood growth hormone deficiency (GHD) when comparing GHD children to normal children. The aim of this study was to assess the utility of GE data in the diagnosis of GHD in childhood and adolescence using non-GHD short stature children as a control group. Methods: GE data was obtained from patients undergoing growth hormone stimulation testing. Data were taken for the 271 genes whose expression was utilized in our previous study. The synthetic minority oversampling technique was used to balance the dataset and a random forest algorithm applied to predict GHD status. Results: 24 patients were recruited to the study and eight subsequently diagnosed with GHD. There were no significant differences in gender, age, auxology (height SDS, weight SDS, BMI SDS) or biochemistry (IGF-I SDS, IGFBP-3 SDS) between the GHD and non-GHD subjects. A random forest algorithm gave an AUC of 0.97 (95% CI 0.93 - 1.0) for the diagnosis of GHD. Conclusion: This study demonstrates highly accurate diagnosis of childhood GHD using a combination of GE data and random forest analysis.


Assuntos
Nanismo , Hormônio do Crescimento , Transcriptoma , Adolescente , Criança , Humanos , Grupos Controle , Perfilação da Expressão Gênica , Hormônio do Crescimento/deficiência
19.
Plants (Basel) ; 12(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38140430

RESUMO

The perennial woody plant Hydrangea arborescens 'Annabelle' is of great research value due to its unique mechanism of flower development that occurs in the current year, resulting in decorative flowers that can be enjoyed for a relatively long period of time. However, the mechanisms underlying the regulation of current-year flower development in H. arborescens 'Annabelle' are still not fully understood. In this study, we conducted an associated analysis to explore the core regulating network in H. arborescens 'Annabelle' by combining phenological observations, physiological assays, and transcriptome comparisons across seven flower developmental stages. Through this analysis, we constructed a gene co-expression network (GCN) based on the highest reciprocal rank (HRR), using 509 differentially expressed genes (DEGs) identified from seven flowering-related pathways, as well as the biosynthesis of eight flowering-related phytohormones and signal transduction in the transcriptomic analysis. According to the analysis of the GCN, we identified 14 key genes with the highest functional connectivity that played critical roles in specific development stages. We confirmed that 135 transcription factors (AP2/ERF, bHLH, CO-like, GRAS, MIKC, SBP, WRKY) were highly co-expressed with the 14 key genes, indicating their close associations with the development of current-year flowers. We further proposed a hypothetical model of a gene regulatory network for the development of the whole flower. This model suggested that the photoperiod, aging, and gibberellin pathways, along with the phytohormones abscisic acid (ABA), gibberellin (GA), brassinosteroid (BR), and jasmonic acid (JA), work synergistically to promote the floral transition. Additionally, auxin, GA, JA, ABA, and salicylic acid (SA) regulated the blooming process by involving the circadian clock. Cytokinin (CTK), ethylene (ETH), and SA were key regulators that affected flower senescence. Additionally, several floral integrators (HaLFY, HaSOC1-2, HaAP1, HaFULL, HaAGL24, HaFLC, etc.) were dominant contributors to the development of H. arborescens flowers. Overall, this research provides a comprehensive understanding of the dynamic mechanism underlying the entire process of current-year flower development, thereby offering valuable insights for further studies on the flower development of H. arborescens 'Annabelle'.

20.
Front Oncol ; 13: 1134445, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091184

RESUMO

Background: Cell free RNA (cfRNA) contains transcript fragments from multiple cell types, making it useful for cancer detection in clinical settings. However, the pathophysiological origins of cfRNAs in plasma from colorectal cancer (CRC) patients remain unclear. Methods: To identify the tissue-specific contributions of cfRNAs transcriptomic profile, we used a published single-cell transcriptomics profile to deconvolute cell type abundance among paired plasma samples from CRC patients who underwent tumor-ablative surgery. We further validated the differentially expressed cfRNAs in 5 pairs of CRC tumor samples and adjacent tissue samples as well as 3 additional CRC tumor samples using RNA-sequencing. Results: The transcriptomic component from intestinal secretory cells was significantly decreased in the in-house post-surgical cfRNA. The HPGD, PACS1, and TDP2 expression was consistent across cfRNA and tissue samples. Using the Cancer Genome Atlas (TCGA) CRC datasets, we were able to classify the patients into two groups with significantly different survival outcomes. Conclusions: The three-gene signature holds promise in applying minimal residual disease (MRD) testing, which involves profiling remnants of cancer cells after or during treatment. Biomarkers identified in the present study need to be validated in a larger cohort of samples in order to ascertain their possible use in early diagnosis of CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA