Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Chemistry ; 30(29): e202400601, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38489225

RESUMO

α,ß-Unsaturated aldehydes are important building blocks for the synthesis of a wide range of chemicals, including polymers. The synthesis of these molecules from cheap feedstocks such as alkenes remains a scientific challenge, mainly due to the low reactivity of alkenes. Here we report a selective and metal-free access to α,ß-unsaturated aldehydes from alkenes with formaldehyde. This reaction is catalyzed by dimethylamine and affords α,ß-unsaturated aldehydes in yields of up to 80 %. By combining Density Functional Theory (DFT) calculations and experiments, we elucidate the reaction mechanism which is based on a cascade of hydride transfer, hydrolysis and aldolization reactions. The reaction can be performed under very mild conditions (30-50 °C), in a theoretically 100 % carbon-economical fashion, with water as the only by-product. The reaction was successfully applied to non-activated linear 1-alkenes, thus opening an access to industrially relevant α,ß-unsaturated aldehydes from cheap and widely abundant chemicals at large scale.

2.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37298684

RESUMO

Protein carbonylation is an irreversible form of post-translational modification triggered by reactive oxygen species in animal and plant cells. It occurs either through the metal-catalyzed oxidation of Lys, Arg, Pro, and Thr side chains or the addition of α, ß-unsaturated aldehydes and ketones to the side chains of Cys, Lys, and His. Recent genetic studies concerning plants pointed to an implication of protein carbonylation in gene regulation through phytohormones. However, for protein carbonylation to stand out as a signal transduction mechanism, such as phosphorylation and ubiquitination, it must be controlled in time and space by a still unknown trigger. In this study, we tested the hypothesis that the profile and extent of protein carbonylation are influenced by iron homeostasis in vivo. For this, we compared the profile and the contents of the carbonylated proteins in the Arabidopsis thaliana wild-type and mutant-deficient in three ferritin genes under normal and stress conditions. Additionally, we examined the proteins specifically carbonylated in wild-type seedlings exposed to iron-deficient conditions. Our results indicated that proteins were differentially carbonylated between the wild type and the triple ferritin mutant Fer1-3-4 in the leaves, stems, and flowers under normal growth conditions. The profile of the carbonylated proteins was also different between the wild type and the ferritin triple mutant exposed to heat stress, thus pointing to the influence of iron on the carbonylation of proteins. Consistent with this, the exposure of the seedlings to iron deficiency and iron excess greatly influenced the carbonylation of certain proteins involved in intracellular signal transduction, translation, and iron deficiency response. Overall, the study underlined the importance of iron homeostasis in the occurrence of protein carbonylation in vivo.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Deficiências de Ferro , Animais , Carbonilação Proteica , Ferro/metabolismo , Arabidopsis/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
3.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047550

RESUMO

Acrolein, a highly reactive α,ß-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer.


Assuntos
Diabetes Mellitus , Doenças do Sistema Digestório , Animais , Humanos , Aldeídos/metabolismo , Acroleína/química , Dieta , Diabetes Mellitus/etiologia
4.
Arch Biochem Biophys ; 727: 109344, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35777524

RESUMO

Humans have widespread exposure to both oxidants, and soft electrophilic compounds such as alpha,beta-unsaturated aldehydes and quinones. Electrophilic motifs are commonly found in a drugs, industrial chemicals, pollutants and are also generated via oxidant-mediated degradation of biomolecules including lipids (e.g. formation of 4-hydroxynonenal, 4-hydroxyhexenal, prostaglandin J2). All of these classes of compounds react efficiently with Cys residues, and the particularly the thiolate anion, with this resulting in Cys modification via either oxidation or adduct formation. This can result in deleterious or beneficial effects, that are either reversible (e.g. in cell signalling) or irreversible (damaging). For example, acrolein is a well-established toxin, whereas dimethylfumarate is used in the treatment of multiple sclerosis and psoriasis. This short review discusses the targets of alpha,beta-unsaturated aldehydes, and particularly two prototypic cases, acrolein and dimethylfumarate, and the factors that control the selectivity and kinetics of reaction of these species. Comparison is made between the reactivity of oxidants versus soft electrophiles. These rate constants indicate that electrophiles can be significant thiol modifying agents in some situations, as they have rate constants similar to or greater than species such as H2O2, can be present at higher concentrations, and are less efficiently removed by protective systems when compared to H2O2. They may also induce similar or higher levels of modification than highly reactive oxidants, due to the very low concentrations of oxidants formed in most in vivo situations.


Assuntos
Cisteína , Oxidantes , Acroleína , Aldeídos/química , Cisteína/química , Fumarato de Dimetilo , Humanos , Peróxido de Hidrogênio , Cinética
5.
Microb Cell Fact ; 20(1): 17, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468136

RESUMO

BACKGROUND: α,ß-Unsaturated aldehydes are widely used in the organic synthesis of fine chemicals for application in products such as flavoring agents, fragrances and pharmaceuticals. In the selective oxidation of α,ß-unsaturated alcohols to the corresponding α,ß-unsaturated aldehydes, it remains challenging to overcome poor selectivity, overoxidation and a low atom efficiency in chemical routes. RESULTS: An E. coli strain coexpressing the NADP+-specific alcohol dehydrogenase YsADH and the oxygen-dependent NADPH oxidase TkNOX was constructed; these components enabled the NADP+ regeneration and catalyzed the oxidation of 100 mM 3-methyl-2-buten-1-ol to 3-methyl-2-butenal with a yield of 21.3%. The oxygen supply was strengthened by introducing the hemoglobin protein VsHGB into recombinant E. coli cells and replacing the atmosphere of the reactor with pure oxygen, which increased the yield to 51.3%. To further improve catalytic performance, the E. coli cells expressing the multifunctional fusion enzyme YsADH-(GSG)-TkNOX-(GSG)-VsHGB were generated, which completely converted 250 mM 3-methyl-2-buten-1-ol to 3-methyl-2-butenal after 8 h of whole-cell oxidation. The reaction conditions for the cascade biocatalysis were optimized, in which supplementation with 0.2 mM FAD and 0.4 mM NADP+ was essential for maintaining high catalytic activity. Finally, the established whole-cell system could serve as a platform for the synthesis of valuable α,ß-unsaturated aldehydes through the selective oxidation of various α,ß-unsaturated alcohols. CONCLUSIONS: The construction of a strain expressing the fusion enzyme YsADH-(GSG)-TkNOX-(GSG)-VsHGB achieved efficient NADP+ regeneration and the selective oxidation of various α,ß-unsaturated alcohols to the corresponding α,ß-unsaturated aldehydes. Among the available redox enzymes, the fusion enzyme YsADH-(GSG)-TkNOX-(GSG)-VsHGB has become the most recent successful example to improve catalytic performance in comparison with its separate components.


Assuntos
Oxirredutases do Álcool/metabolismo , Álcoois/metabolismo , Aldeídos/metabolismo , Escherichia coli/metabolismo , Hemoglobinas/metabolismo , NADPH Oxidases/metabolismo , Oxirredutases do Álcool/genética , Álcoois/química , Aldeídos/química , Biocatálise , Cromatografia Gasosa/métodos , Cromatografia Líquida de Alta Pressão/métodos , Escherichia coli/genética , NADPH Oxidases/genética , Oxirredução , Especificidade por Substrato
6.
Molecules ; 26(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299572

RESUMO

α-Functionalized α,ß-unsaturated aldehydes is an important class of compounds, which are widely used in fine organic synthesis, biology, medicine and pharmacology, chemical industry, and agriculture. Some of the 2-substituted 2-alkenals are found to be the key metabolites in plant and animal cells. Therefore, the development of efficient methods for their synthesis attracts the attention of organic chemists. This review focusses on the recent advances in the synthesis of 2-functionally substituted 2-alkenals. The approaches to the preparation of α-alkyl α,ß-unsaturated aldehydes are not included in this review.

7.
Angew Chem Int Ed Engl ; 60(33): 18309-18317, 2021 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-34114306

RESUMO

Effective control on chemoselectivity in the catalytic hydrogenation of C=O over C=C bonds is uncommon with Pd-based catalysts because of the favored adsorption of C=C bonds on Pd surface. Here we report a unique orthorhombic PdSn intermetallic phase with unprecedented chemoselectivity toward C=O hydrogenation. We observed the formation and metastability of this PdSn phase in situ. During a natural cooling process, the PdSn nanoparticles readily revert to the favored Pd3 Sn2 phase. Instead, using a thermal quenching method, we prepared a pure-phase PdSn nanocatalyst. PdSn shows an >96 % selectivity toward hydrogenating C=O bonds of various α,ß-unsaturated aldehydes, highest in reported Pd-based catalysts. Further study suggests that efficient quenching prevents the reversion from PdSn- to Pd3 Sn2 -structured surface, the key to the desired catalytic performance. Density functional theory calculations and analysis of reaction kinetics provide an explanation for the observed high selectivity.

8.
Crit Rev Food Sci Nutr ; 60(3): 461-478, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30596262

RESUMO

Unravelling the relationship between food and health requires a more in-depth knowledge of the various changes occurring in the gastrointestinal tract during digestion and which may ultimately affect the nutritional quality and safety of ingested food lipids before absorption into the bloodstream. In this context, this review deals with the oxidation process of food lipids under digestive conditions and the studies carried out on this topic using different digestion models: in vitro, in vivo or ex vivo, static or dynamic, and including one, two and/or three digestive phases (oral, gastric and duodenal). These studies have contributed to clarifying the occurrence and extent of lipid degradation under such a particular environment, many of them also highlighting the factors affecting the advance or delay of the oxidation of dietary lipids during digestion, like: food lipid content, unsaturation degree and initial oxidative status; the presence in the food bolus of compounds showing antioxidant activity (polyphenols, tocopherols…) either added or naturally present; the presence in the food bolus of proteins (including iron or not); food technological or culinary processings (salting, smoking, cooking…), among others. Likewise, the methodologies employed to study lipid oxidation under digestive conditions are also summarized and future research perspectives are discussed.


Assuntos
Digestão , Trato Gastrointestinal/metabolismo , Lipídeos/química , Lipólise , Antioxidantes/química , Humanos , Oxirredução , Polifenóis/química , Tocoferóis/química
9.
Am J Physiol Heart Circ Physiol ; 316(4): H889-H899, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30735434

RESUMO

Myocardial ischemia-reperfusion (I/R) results in the generation of free radicals, accumulation of lipid peroxidation-derived unsaturated aldehydes, variable angina (pain), and infarction. The transient receptor potential ankyrin 1 (TRPA1) mediates pain signaling and is activated by unsaturated aldehydes, including acrolein and 4-hydroxynonenal. The contribution of TRPA1 (a Ca2+-permeable channel) to I/R-induced myocardial injury is unknown. We tested the hypothesis that cardiac TRPA1 confers myocyte sensitivity to aldehyde accumulation and promotes I/R injury. Although basal cardiovascular function in TRPA1-null mice was similar to that in wild-type (WT) mice, infarct size was significantly smaller in TRPA1-null mice than in WT mice (34.1 ± 9.3 vs. 14.3 ± 9.9% of the risk region, n = 8 and 7, respectively, P < 0.05), despite a similar I/R-induced area at risk (40.3 ±8.4% and 42.2 ± 11.3% for WT and TRPA1-null mice, respectively) after myocardial I/R (30 min of ischemia followed by 24 h of reperfusion) in situ. Positive TRPA1 immunofluorescence was present in murine and human hearts and was colocalized with connexin43 at intercalated disks in isolated murine cardiomyocytes. Cardiomyocyte TRPA1 was confirmed by quantitative RT-PCR, DNA sequencing, Western blot analysis, and electrophysiology. A role of TRPA1 in cardiomyocyte toxicity was demonstrated in isolated cardiomyocytes exposed to acrolein, an I/R-associated toxin that induces Ca2+ accumulation and hypercontraction, effects significantly blunted by HC-030031, a TRPA1 antagonist. Protection induced by HC-030031 was quantitatively equivalent to that induced by SN-6, a Na+/Ca2+ exchange inhibitor, further supporting a role of Ca2+ overload in acrolein-induced cardiomyocyte toxicity. These data indicate that cardiac TRPA1 activation likely contributes to I/R injury and, thus, that TRPA1 may be a novel therapeutic target for decreasing myocardial I/R injury. NEW & NOTEWORTHY Transient receptor potential ankyrin 1 (TRPA1) activation mediates increased blood flow, edema, and pain reception, yet its role in myocardial ischemia-reperfusion (I/R) injury is unknown. Genetic ablation of TRPA1 significantly decreased myocardial infarction after I/R in mice. Functional TRPA1 in cardiomyocytes was enriched in intercalated disks and contributed to acrolein-induced Ca2+ overload and hypercontraction. These data indicate that I/R activation of TRPA1 worsens myocardial infarction; TRPA1 may be a potential target to mitigate I/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/metabolismo , Canal de Cátion TRPA1/genética , Acetanilidas/farmacologia , Aldeídos/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Purinas/farmacologia , Canal de Cátion TRPA1/antagonistas & inibidores
10.
FASEB J ; : fj201800345R, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-29890087

RESUMO

Chronic obstructive pulmonary disease (COPD) is a growing cause of morbidity and mortality worldwide. Cigarette smoke (CS) exposure, a major cause of COPD, dysregulates airway epithelial ion transport and diminishes airway surface liquid (ASL) volume. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is secreted into the airway lumen where it maintains airway hydration via interactions with the epithelial Na+ channel (ENaC). Although ASL hydration is dysregulated in CS-exposed/COPD airways, effects of CS on SPLUNC1 have not been elucidated. We hypothesized that CS alters SPLUNC1 activity, therefore contributing to ASL dehydration. CS exposure caused irreversible SPLUNC1 aggregation and prevented SPLUNC1 from internalizing ENaC and maintaining ASL hydration. Proteomic analysis revealed αß-unsaturated aldehyde modifications to SPLUNC1's cysteine residues. Removal of these cysteines prevented SPLUNC1 from regulating ENaC/ASL volume. In contrast, SPX-101, a peptide mimetic of natural SPLUNC1, that internalizes ENaC, but does not contain cysteines was unaffected by CS. SPX-101 increased ASL hydration and attenuated ENaC activity in airway cultures after CS exposure and prolonged survival in a chronic airway disease model. These findings suggest that the CS-induced defects in SPLUNC1 can be circumvented, thus making SPX-101 a novel candidate for the treatment of mucus dehydration in COPD. -Moore, P. J., Reidel, B., Ghosh, A., Sesma, J., Kesimer, M., Tarran, R. Cigarette smoke modifies and inactivates SPLUNC1, leading to airway dehydration.

11.
Molecules ; 24(18)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546876

RESUMO

Chirality is one of the most important attributes for its presence in a vast majority of bioactive natural products and pharmaceuticals. Asymmetric organocatalysis methods have emerged as a powerful methodology for the construction of highly enantioenriched structural skeletons of the target molecules. Due to their extensive application of organocatalysis in the total synthesis of bioactive molecules and some of them have been used in the industrial synthesis of drugs have attracted increasing interests from chemists. Among the chiral organocatalysts, chiral secondary amines (MacMillan's catalyst and Jorgensen's catalyst) have been especially considered attractive strategies because of their impressive efficiency. Herein, we outline advances in the asymmetric total synthesis of natural products and relevant drugs by using the strategy of chiral secondary amine catalyzed reactions of α,ß-unsaturated aldehydes in the last eighteen years.


Assuntos
Aldeídos/química , Aminas/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Catálise
12.
Vopr Pitan ; 87(6): 125-138, 2018.
Artigo em Russo | MEDLINE | ID: mdl-30763498

RESUMO

The first article of the series describes possible applications of both proton nuclear magnetic resonance spectroscopy (1Н NMR) and Fourier transform infrared spectroscopy (FTIR) in food lipid thermo-oxidation analysis. Thermo-oxidation process is a source of various oxidation products. Some of them are known to be toxic, such as oxidized α,ß-unsaturated aldehydes and epoxidized linoleic acid derivatives. Today we know that routine nonspecific methods in lipid oxidation analysis are not informative, may provide incorrect results and procedures are long and laborious. Therefore it might be useful to find more reliable, accurate and informative physic-chemical methods measuring food lipid oxidation status. This paper is devoted to the most widely used in lipid analysis spectroscopic methods such as 1Н NMR and FTIR. It has been shown that 1Н NMR and FTIR provide more information on the types, formation and degradation time of compounds formed than wet chemistry methods. 1Н NMR gives qualitative and quantitative information on degraded and newly formed compounds and FTIR is able to measure a lot of standard oxidation indices with high accuracy. Both of them allow us to trace any compounds' evolution in lipid matrices in real time. Mention is made of their advantages for routine laboratory analysis.


Assuntos
Análise de Alimentos/métodos , Óleos de Plantas/análise , Humanos , Espectroscopia de Ressonância Magnética/métodos , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
13.
Chemistry ; 23(26): 6264-6271, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28295732

RESUMO

The synthesis of fused, highly substituted chromenes in a one-pot-three-step cascade hexadehydro-Diels-Alder reaction of tetraynes followed by an intermolecular α,ß-unsaturated aldehyde rearrangement is reported. The target compounds were prepared by the condensation of malonates with 3-bromo-1-propyne, and the resulting 2,2-di(1-propyn-3-yl)malonates underwent cross-coupling with phenylethynyl bromides to afford 2,2-di(5-phenyl-2,4-pentadiynyl)malonates, which underwent intramolecular cyclization to produce tricyclic chromenes. The overall transformation involves the formation of four new C-C bonds and one new C-aryl-O-C-aryl bond by both intramolecular cyclization and intermolecular rearrangement reactions. These constitute a key strategy for the construction of a highly substituted natural chromene core and a robust method for producing other chromenes.

14.
Bioorg Med Chem ; 25(4): 1487-1495, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28126438

RESUMO

Bacterial luciferase catalyzes the monooxygenation of long-chain aldehydes such as tetradecanal to the corresponding acid accompanied by light emission with a maximum at 490nm. In this study even numbered aldehydes with eight, ten, twelve and fourteen carbon atoms were compared with analogs having a double bond at the α,ß-position. These α,ß-unsaturated aldehydes were synthesized in three steps and were examined as potential substrates in vitro. The luciferase of Photobacterium leiognathi was found to convert these analogs and showed a reduced but significant bioluminescence activity compared to tetradecanal. This study showed the trend that aldehydes, both saturated and unsaturated, with longer chain lengths had higher activity in terms of bioluminescence than shorter chain lengths. The maximal light intensity of (E)-tetradec-2-enal was approximately half with luciferase of P. leiognathi, compared to tetradecanal. Luciferases of Vibrio harveyi and Aliivibrio fisheri accepted these newly synthesized substrates but light emission dropped drastically compared to saturated aldehydes. The onset and the decay rate of bioluminescence were much slower, when using unsaturated substrates, indicating a kinetic effect. As a result the duration of the light emission is doubled. These results suggest that the substrate scope of bacterial luciferases is broader than previously reported.


Assuntos
Aldeídos/farmacologia , Aliivibrio fischeri/enzimologia , Luciferases Bacterianas/antagonistas & inibidores , Photobacterium/enzimologia , Vibrio/enzimologia , Aldeídos/síntese química , Aldeídos/química , Relação Dose-Resposta a Droga , Luciferases Bacterianas/metabolismo , Luminescência , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
15.
Chem Biodivers ; 14(5)2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28027605

RESUMO

Reactive α,ß-unsaturated aldehydes, including 4-oxoalk-2-enals, are known to be present in volatile secretions of numerous heteropteran insect species. Because the aldehydes are likely to originate from metabolism of fatty acids (FAs), the present study aimed to examine and compare the aldehyde and FA profiles of four model heteropteran species. The model species consisted of adult family group representatives within the infraorder Pentatomomorpha (Hemiptera: Heteroptera): seed bug (Lygaeus equestris (Lygaeoidea)), dock leaf bug (Coreus marginatus (Coreoidea)), red firebug (Pyrrhocoris apterus (Pyrrhocoroidea)), and European stink bug (Graphosoma lineatum (Pentatomoidea)). Solid-phase microextraction combined with two-dimensional gas-chromatography/time-of-flight mass spectrometry was used to establish the profiles of volatile secretions in stressed living insects. The FA profiles of acylglyceride and phospholipid fractions deposited in fat body and/or hemolymph were obtained by liquid chromatography/mass spectrometry and gas chromatography with flame ionization detection techniques. Our results based on multivariate statistical analyses of the data imply that volatile secretion blends as well as fat body and/or hemolymph lipid profiles are species specific but the differences in volatile blends between different species do not mirror the changes in corresponding fat body and/or hemolymph lipid profiles of stressed and non-stressed individuals.


Assuntos
Aldeídos/análise , Ácidos Graxos/análise , Heterópteros/química , Animais , Corpo Adiposo , Cromatografia Gasosa-Espectrometria de Massas , Hemolinfa , Microextração em Fase Sólida , Especificidade da Espécie , Estresse Fisiológico
16.
Chemistry ; 22(16): 5698-704, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-26934305

RESUMO

Metal-support interactions are desired to optimize the catalytic turnover on metals. Herein, the enhanced interactions by using a Mo2C nanowires support were utilized to modify the charge density of an Ir surface, accomplishing the selective hydrogenation of α,ß-unsaturated aldehydes on negatively charged Ir(δ-) species. The combined experimental and theoretical investigations showed that the Ir(δ-) species derive from the higher work function of Ir (vs. Mo2C) and the consequently electron transfer. In crotonaldehyde hydrogenation, Ir/Mo2C delivered a crotyl alcohol selectivity as high as 80%, outperforming those of counterparts (<30%) on silica. Moreover, such electronic metal-support interactions were also confirmed for Pt and Au, as compared with which, Ir/Mo2C was highlighted by its higher selectivity as well as the better activity. Additionally, the efficacy for various substrates further verified our Ir/Mo2C system to be competitive for chemoselective hydrogenation.

17.
Chemistry ; 20(41): 13210-6, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25179918

RESUMO

A general and highly chemo-, regio-, and stereoselective synthesis of α,ß-unsaturated aldehydes by a domino hydroformylation/aldol condensation reaction has been developed. A variety of olefins and aromatic aldehydes were efficiently converted into various substituted α,ß-unsaturated aldehydes in good to excellent yields in the presence of a rhodium phosphine/acid-base catalyst system. In view of the easy availability of the substrates, the high atom-efficiency, the excellent selectivity, and the mild conditions, this method is expected to complement current methodologies for the preparation of α,ß-unsaturated aldehydes.


Assuntos
Aldeídos/química , Alcenos/química , Aldeídos/síntese química , Catálise , Fosfinas/química , Ródio/química , Estereoisomerismo
18.
Chemistry ; 20(26): 7939-42, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24888893

RESUMO

A novel, one-pot hydroformylation/Diels-Alder sequence for the synthesis of multisubstituted cyclohexenes, cyclohexadienes, and phthalates has been developed. Various alkynes were efficiently converted into the corresponding products in good yields and with excellent diastereoselectivity through palladium-catalyzed hydroformylation followed by an AAD-type reaction (AAD: Amides-Aldehydes-Dienophiles). In view of the availability of the substrates, the atom-efficiency of the overall process, and the convenient introduction of substituents in the cyclohexene ring, this method complements current methods for the preparation of polysubstituted cyclohexane derivatives.

19.
ACS Appl Mater Interfaces ; 16(11): 13685-13696, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38449444

RESUMO

Chemoselective hydrogenation of carbonyl in unsaturated aldehydes is a significant process in the chemical industry, in which the development of aqueous-phase reaction systems as a substitution to organic ones is challenging. Herein, we report Ir atomic cluster catalysts anchored onto WO3-x nanorods via a reduction treatment at various temperatures (denoted as Ir/WOx-T, T = 200, 300, 400, and 500 °C), which accelerates the chemoselective hydrogenation of carbonyl groups in aqueous solutions. The optimal catalyst Ir/WOx-300 exhibits exceptional activity (TOF value: 1313.7 min-1) and chemoselectivity toward cinnamaldehyde (CAL) hydrogenation to cinnamyl alcohol (COL) (yield: ∼98.0%) in water medium, which is, to the best of our knowledge, the highest level compared with previously reported heterogeneous catalysts in liquid-phase reaction. Ac-HAADF-STEM, XAFS, and XPS verify the formation of interface structure (Irδ+-Ov-W5+ (0 ≤ δ ≤ 4); Ov denotes oxygen vacancy) induced by metal-support interaction and the largest concentration of interfacial Ir (Irδ+) in Ir/WOx-300. In situ studies (Raman, FT-IR), isotopic labeling measurements combined with DFT calculations substantiate that the hydrogenation of the C=O group consists of two pathways: water-mediated hydrogenation (predominant) and direct hydrogenation via H2 dissociation (secondary). In the former case, W5+-Ov site accelerates the activation adsorption of H2O, while Ir0 site facilitates the H-H bond cleavage of H2 and Irδ+ promotes the CAL adsorption. H2O molecule, as the source of hydrogen species, participates directly in the hydrogenation of the carbonyl group through a hydrogen-bonded network, with a largely reduced energy barrier relative to the H2 dissociation path. This work demonstrates a green catalytic route that breaks the activity-selectivity trade-off toward the selective hydrogenation of unsaturated aldehydes, which shows great potential in heterogeneous catalysis.

20.
Cells ; 12(6)2023 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-36980220

RESUMO

Acrolein, a highly reactive unsaturated aldehyde, is a ubiquitous environmental pollutant that seriously threatens human health and life. Due to its high reactivity, cytotoxicity and genotoxicity, acrolein is involved in the development of several diseases, including multiple sclerosis, neurodegenerative diseases such as Alzheimer's disease, cardiovascular and respiratory diseases, diabetes mellitus and even the development of cancer. Traditional tobacco smokers and e-cigarette users are particularly exposed to the harmful effects of acrolein. High concentrations of acrolein have been found in both mainstream and side-stream tobacco smoke. Acrolein is considered one of cigarette smoke's most toxic and harmful components. Chronic exposure to acrolein through cigarette smoke has been linked to the development of asthma, acute lung injury, chronic obstructive pulmonary disease (COPD) and even respiratory cancers. This review addresses the current state of knowledge on the pathological molecular mechanisms of acrolein in the induction, course and development of lung diseases and cancers in smokers.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Neoplasias , Doença Pulmonar Obstrutiva Crônica , Poluição por Fumaça de Tabaco , Humanos , Acroleína/toxicidade , Pulmão , Doença Pulmonar Obstrutiva Crônica/etiologia , Neoplasias/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA