RESUMO
Urbanization is one of the important factors leading to biodiversity loss and habitat fragmentation. As an important component of urban ecosystem, soil fauna community plays a key role in improving soil structure and fertility, and promoting material circulation of urban ecosystem. To investigate the distribution characteristics of medium and small-sized soil fauna community in green space and the mechanisms underlying their responses to environmental change during urbanization, we selected 27 green space plots with a gradient of urban, suburban, and rural areas in Nanchang City as study objects, and measured plant parameters, soil physicochemical properties, and distribution characteristics of soil fauna community in these plots. The results showed that a total of 1755 soil fauna individuals were captured, belonging to 2 phyla, 11 classes, and 16 orders. The dominant groups were Collembola, Parasiformes, and Acariformes, which accounting for 81.9% of total soil fauna community. The density, Shannon diversity index, and Simpson dominance index of soil fauna community were significantly higher in suburban area than those in rural area. In the green space of the urban-rural gradient, there were large structure variations in different trophic levels of medium and small-sized soil fauna community. Herbivores and macro-predators occupied the largest proportion in rural area, and less in other areas. Results of the redundancy analysis showed the crown diameter, forest density, soil total phosphorus contents were the main environmental factors affecting soil fauna community distribution, with interpretation rate of 55.9%, 14.0% and 9.7%, respectively. Results of the non-metric multidimensional scale analysis showed that there were variations in soil fauna community characteristics in green space of the urban-rural gradient, and that the aboveground vegetation was the dominant factor for this change. This study improved our understanding of urban ecosystem biodiversity in Nanchang, and provided basis for maintaining soil biodiversity and urban green space construction.