Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(24): 11710-11718, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-37890139

RESUMO

Compared with binary systems, ternary computing systems can utilize fewer devices to realize the same information density. However, most ternary computing systems based on binary CMOS circuits require additional devices to bridge binary processing and ternary computing. Exploring new device architectures for direct ternary processing and computing becomes the key to promoting ternary computing systems. Here, we demonstrated a 2D van der Waals vertical heterojunction transistor (V-HTR) with three flat conductance states, which can be the basic cell in ternary circuits to perform ternary processing and computing, without additional devices. A ternary neural network (TNN) and a ternary inverter were demonstrated based on the V-HTRs. The TNN can eliminate fuzzy data and output only clear data by building a ternary quantization function. By demonstrating both ternary logic and a TNN on the same device architecture, the 2D V-HTR shows potential as a basic hardware unit for future ternary computing systems.

2.
Nanotechnology ; 34(50)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37689056

RESUMO

Optical artificial synapses possess several advantages, including high bandwidth, strong interference immunity, and ultra-fast signal transmission, overcoming the limitations of electrically stimulated synapses. Among various functional materials, 2D materials exhibit exceptional optical and electrical properties. By utilizing van der Waals heterostructures formed by these materials through rational design, synaptic devices can mimic the information perception ability of biological systems. This lays the foundation for low-energy artificial vision systems and neuromorphic computing. This study introduces an inhibitory artificial synapse based on photoelectric co-modulation of graphene/WSe2van der Waals heterojunctions. By synergistically applying gate voltage and light pulses, we simulate memory and logic functions observed in the brain's visual cortex. We achieve the construction of inhibitory synapses, enabling properties such as postsynaptic current response, short-term and long-term plasticity, and paired-pulse facilitation. Additionally, we accomplish the inverse recovery of device conductivity through separate gate voltage stimulation. Through bidirectional modulation of the artificial synaptic conductance, we construct an artificial hardware neural network that achieves 92.5% accuracy in recognizing handwritten digital images from the MNIST dataset. The network also has good recognition accuracy for handwritten digital images with different standard deviation Gaussian noise applied and other datasets. Furthermore, we successfully mimic the neural behavior of aversive learning for alcohol withdrawal in alcoholic patients using the device properties. The promising capabilities of artificial synapses constructed through electrical and optical synergistic modulation make them suitable for wearable electronics and artificial vision systems.


Assuntos
Alcoolismo , Grafite , Síndrome de Abstinência a Substâncias , Humanos , Sinapses/fisiologia , Redes Neurais de Computação
3.
J Comput Chem ; 40(9): 980-987, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30431652

RESUMO

The direct Z-scheme system constructed by two-dimensional (2D) materials is an efficient route for hydrogen production from photocatalytic water splitting. In the present work, the 2D van der Waals (vdW) heterojunctions of MoSe2 /SnS2 , MoSe2 /SnSe2 , MoSe2 /CrS2 , MoTe2 /SnS2 , MoTe2 /SnSe2 , and MoTe2 /CrS2 are proposed to be promising candidates for direct Z-scheme photocatalysts and verified by first principles calculations. Perpendicular electric field is induced in these 2D vdW heterojunctions, which enhances the efficiency of solar energy utilization. Replacing MoSe2 with MoTe2 not only facilitates the interlayer carrier migration, but also improves the optical absorption properties for these heterojunctions. Excitingly, the 2D vdW MoTe2 /CrS2 heterojunction is demonstrated, for the first time, to be 2D near-infrared-light driven photocatalyst for direct Z-scheme water splitting. © 2018 Wiley Periodicals, Inc.

4.
Nano Lett ; 17(11): 6653-6660, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29020776

RESUMO

Interlayer rotation and stacking were recently demonstrated as effective strategies for tuning physical properties of various two-dimensional materials. The latter strategy was mostly realized in heterostructures with continuously varied stacking orders, which obscure the revelation of the intrinsic role of a certain stacking order in its physical properties. Here, we introduce inversion-domain-boundaries into molecular-beam-epitaxy grown MoSe2 homobilayers, which induce uncommon fractional lattice translations to their surrounding domains, accounting for the observed diversity of large-area and uniform stacking sequences. Low-symmetry stacking orders were observed using scanning transmission electron microscopy and detailed geometries were identified by density functional theory. A linear relation was also revealed between interlayer distance and stacking energy. These stacking sequences yield various energy alignments between the valence states at the Γ and K points of the Brillouin zone, showing stacking-dependent bandgaps and valence band tail states in the measured scanning tunneling spectroscopy. These results may benefit the design of two-dimensional multilayers with manipulable stacking orders.

5.
Nanomicro Lett ; 16(1): 104, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300424

RESUMO

The crossmodal interaction of different senses, which is an important basis for learning and memory in the human brain, is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception, but related researches are scarce. Here, we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus (VP) van der Waals heterojunctions. Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene, the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude, reaching up to 7.7 A W-1. Excited by ultraviolet light, multiple synaptic functions, including excitatory postsynaptic currents, paired-pulse facilitation, short/long-term plasticity and "learning-experience" behavior, were demonstrated with a low power consumption. Furthermore, the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments, enabling it to simulate the interaction of visual and olfactory information for crossmodal perception. This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics.

6.
Adv Mater ; 36(21): e2313134, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38331419

RESUMO

The barrier structure is designed to enhance the operating temperature of the infrared detector, thereby improving the efficiency of collecting photogenerated carriers and reducing dark current generation, without suppressing the photocurrent. However, the development of barrier detectors using conventional materials is limited due to the strict requirements for lattice and band matching. In this study, a high-performance unipolar barrier detector is designed utilizing a black arsenic phosphorus/molybdenum disulfide/black phosphorus van der Waals heterojunction. The device exhibits a broad response bandwidth ranging from visible light to mid-wave infrared (520 nm to 4.6 µm), with a blackbody detectivity of 2.7 × 1010 cmHz-1/2 W-1 in the mid-wave infrared range at room temperature. Moreover, the optical absorption anisotropy of black arsenic phosphorus enables polarization resolution detection, achieving a polarization extinction ratio of 35.5 at 4.6 µm. Mid-wave infrared imaging of the device is successfully demonstrated at room temperature, highlighting the significant potential of barrier devices based on van der Waals heterojunctions in mid-wave infrared detection.

7.
ACS Appl Mater Interfaces ; 16(7): 9155-9168, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38324388

RESUMO

The exceptional thermal conductivity and strength of carbon nanotubes (CNTs) position them as outstanding materials for thermal conduction. The intriguing properties introduced by van der Waals (vdW) heterojunctions have also captured the interest of researchers. However, further refinement of the research concerning the integration of these two elements is required. In our study, a vdW heterostructure with asymmetric layer nesting of multiwalled CNTs (ALCNTs) is devised, with a specific focus on the model's heat flux and thermal rectification (TR) properties, which are analyzed using nonequilibrium molecular dynamics (NEMD). Notably, the greatest TR ratio is observed in the connection of three-layer and single-layer ALCNTs. Moreover, multilayer variable-length nested models exhibit a sluggish TR ratio. An examination of the interface thermal resistance (ITR) reveals that the maximum ITR in the multilayer nested model resides at the rightmost interface. However, it is essential to highlight that the determinant of the TR ratio and heat flux in the multilayer nested model is not the maximum ITR of the rightmost interface but rather the ITR of the outermost layer on the left. Additionally, the impacts of the defect density, length, temperature difference, and hydrogenation on the model's heat flux and TR are explored, yielding noteworthy conclusions. For instance, defects in the outer CNT have a minimal influence on the heat flux and TR compared with those in the inner CNT. As the length increases, the heat flux initially decreases and then increases. Hydrogenation significantly enhances the model's heat flux but does not favor the TR. Our study contributes to advancing the understanding of CNT vdW heterojunctions and offers valuable insights for their practical applications.

8.
J Colloid Interface Sci ; 650(Pt B): 1312-1318, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478748

RESUMO

Addressing the energy crisis and environmental pollution necessitates efficient photocatalysts for hydrogen production via water hydrolysis. This study uncovers the potential of a novel photocatalyst - two-dimensional transition metal dichalcogenides (TMDs) heterojunction. Using density functional theory (DFT), we examined the photocatalytic performance of the two-dimensional WS2/MoSe2 heterojunctions for water splitting. Our findings reveal a direct band gap of 1.65 eV and a type II band structure in the heterojunction. This structure facilitates the separation of electrons and holes in the WS2 and MoSe2 monolayers, thereby significantly inhibiting electron-hole recombination. Furthermore, high optical absorption coefficient (105 cm - 1), small effective mass of electron(hole), low interlayer barrier, and adjustable band-edge stress in the heterostructure collectively enhance photocatalytic efficiency.

9.
Small Methods ; 7(1): e2200966, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36440646

RESUMO

Self-powered photodetectors have attracted widespread attention due to their low power consumption which can be driven by the built-in electric field instead of external power, but it is very difficult to achieve high responsivity and fast response speed concurrently. Here, a self-powered photodetector with light-induced electric field enhancement based on a 2D InSe/WSe2 /SnS2 van der Waals heterojunction is designed. The light-induced electric field derived from the photo-generated electrons of SnS2 accumulated at the SnS2 /WSe2 interface produces an additional negative gate voltage applied to the WSe2 layer, which enhances the built-in electric field in the InSe/WSe2 /SnS2 heterojunction. Accordingly, the photocurrent and photoresponse speed of the heterostructure device are largely improved. The self-powered photodetector based on the InSe/WSe2 /SnS2 heterostructure exhibits a high responsivity of 550 mA W-1 , which is a 50 times increase compared to the InSe/WSe2 photodetector, and the response speed (110/120 µs) is one order of magnitude faster than that of the InSe/WSe2 photodetector. The high responsivity and fast speed are caused by the stronger built-in electric field modulated by a light-induced electric field, which can separate carriers effectively and reduce drift times. This device architecture can provide a new avenue to fabricate high-responsivity, fast self-power photodetectors by utilizing the van der Waals heterojunction.

10.
Small Methods ; 6(10): e2200646, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055777

RESUMO

Solid-state devices capable of controlling light-responsive charge transport at the molecular scale are essential for developing molecular optoelectronic technology. Here, a solid-state molecular photodiode device constructed by forming van der Waals (vdW) heterojunctions between standard molecular self-assembled monolayers and two-dimensional semiconductors such as WSe2 is reported. In particular, two non-functionalized molecular species used herein (i.e., tridecafluoro-1-octanethiol and 1-octanethiol) enable bidirectional modulation of the interface band alignment with WSe2 , depending on their dipole orientations. This dipole-induced band modulation at the vdW heterointerface leads to the opposite change of both photoswitching polarity and rectifying characteristics. Furthermore, compared with other molecular or 2D photodiodes at a similar scale, these heterojunction devices exhibit significantly enhanced photo-responsive performances in terms of photocurrent magnitude, open-circuit potential, and switching speed. This study proposes a novel concept of the solid-state molecular optoelectronic device with controlled functions and enhanced performances.

11.
ACS Nano ; 16(2): 2798-2810, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35084838

RESUMO

Van der Waals (vdW) heterojunctions based on two-dimensional (2D) transition metal dichalcogenide (TMD) materials have attracted the attention of researchers to conduct fundamental investigations on emerging physical phenomena and expanding diverse nano-optoelectronic devices. Herein, the quasi-van der Waals epitaxial (QvdWE) growth of vertically aligned one-dimensional (1D) GaN nanorod arrays (NRAs) on TMDs/Si substrates is reported, and their vdW heterojunctions in the applications of high-performance self-powered photodetection are demonstrated accordingly. Such 1D/2D hybrid systems fully combine the advantages of the strong light absorption of 1D GaN nanoarrays and the excellent electrical properties of 2D TMD materials, boosting the photogenerated current density, which demonstrates a light on/off ratio above 105. The device exhibits a competitive photovoltaic photoresponsivity over 10 A W-1 under a weak detectable light signal without any external bias, which is attributed to the efficient photogenerated charge separation under the strong built-in potential from the type-II band alignment of GaN NRAs/TMDs. This work presents a QvdWE route to prepare 1D/2D heterostructures for the fabrication of self-powered photodetectors, which shows promising potentials for practical applications of space communications, sensing networks, and environmental monitoring.

12.
Adv Mater ; 34(39): e2203283, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35972840

RESUMO

Room-temperature-operating highly sensitive mid-wavelength infrared (MWIR) photodetectors are utilized in a large number of important applications, including night vision, communications, and optical radar. Many previous studies have demonstrated uncooled MWIR photodetectors using 2D narrow-bandgap semiconductors. To date, most of these works have utilized atomically thin flakes, simple van der Waals (vdW) heterostructures, or atomically thin p-n junctions as absorbers, which have difficulty in meeting the requirements for state-of-the-art MWIR photodetectors with a blackbody response. Here, a fully depleted self-aligned MoS2 -BP-MoS2 vdW heterostructure sandwiched between two electrodes is reported. This new type of photodetector exhibits competitive performance, including a high blackbody peak photoresponsivity up to 0.77 A W-1 and low noise-equivalent power of 2.0 × 10-14  W Hz-1/2 , in the MWIR region. A peak specific detectivity of 8.61 × 1010  cm Hz1/2  W-1 under blackbody radiation is achieved at room temperature in the MWIR region. Importantly, the effective detection range of the device is twice that of state-of-the-art MWIR photodetectors. Furthermore, the device presents an ultrafast response of ≈4 µs both in the visible and short-wavelength infrared bands. These results provide an ideal platform for realizing broadband and highly sensitive room-temperature MWIR photodetectors.

13.
Adv Mater ; 33(27): e2101059, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34046946

RESUMO

A self-powered, high-performance Ti3 C2 Tx MXene/GaN van der Waals heterojunction (vdWH)-based ultraviolet (UV) photodiode is reported. Such integration creates a Schottky junction depth that is larger than the UV absorption depth to sufficiently separate the photoinduced electron/hole pairs, boosting the peak internal quantum efficiency over the unity and the external quantum efficiency over 99% under weak UV light without bias. The proposed Ti3 C2 Tx /GaN vdWH UV photodiode demonstrates pronounced photoelectric performances working in self-powered mode, including a large responsivity (284 mA W-1 ), a high specific detectivity (7.06 × 1013 Jones), and fast response speed (rise/decay time of 7.55 µs/1.67 ms). Furthermore, the remarkable photovoltaic behavior leads to an impressive power conversion efficiency of 7.33% under 355 nm UV light illumination. Additionally, this work presents an easy-processing spray-deposition route for the fabrication of large-area UV photodiode arrays that exhibit highly uniform cell-to-cell performance. The MXene/GaN photodiode arrays with high-efficiency and self-powered ability show high potential for many applications, such as energy-saving communication, imaging, and sensing networks.

14.
ACS Nano ; 15(10): 16432-16441, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34644047

RESUMO

The physical proximity of layered materials in their van der Waals heterostructures (vdWhs) aids interfacial phenomena such as charge transfer (CT) and energy transfer (ET). Besides providing fundamental insights, CT and ET also offer routes to engineer optoelectronic properties of vdWhs. For example, harnessing ET in vdWhs can help to overcome the limitations of optical absorption imposed by the ultra-thin nature of layered materials and thus provide an opportunity for in situ enhancement of quantum efficiency for light-harvesting and sensing applications. While several spectroscopic studies on vdWhs probed the dynamics of CT and ET, the possible contribution of ET in the photocurrent generation remains largely unexplored. In this work, we investigate the role of nonradiative energy transfer (NRET) in the photocurrent through a vertical vdWh of SnSe2/MoS2/TaSe2. We observe an unusual negative differential photoconductance (NDPC) arising from the existence of NRET across the SnSe2/MoS2 junction. Modulation of the NRET-driven NDPC characteristics with optical power results in a striking transition of the photocurrent's power law from a sublinear to a superlinear regime. Our observations reveal the nontrivial influence of ET on the photoresponse of vdWhs, which offer insights to harness ET in synergy with CT for vdWh based next-generation optoelectronics.

15.
ACS Nano ; 14(6): 6498-6518, 2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32463222

RESUMO

Electrostatic control of charge carrier concentration underlies the field-effect transistor (FET), which is among the most ubiquitous devices in the modern world. As transistors and related electronic devices have been miniaturized to the nanometer scale, electrostatics have become increasingly important, leading to progressively sophisticated device geometries such as the finFET. With the advent of atomically thin materials in which dielectric screening lengths are greater than device physical dimensions, qualitatively different opportunities emerge for electrostatic control. In this Review, recent demonstrations of unconventional electrostatic modulation in atomically thin materials and devices are discussed. By combining low dielectric screening with the other characteristics of atomically thin materials such as relaxed requirements for lattice matching, quantum confinement of charge carriers, and mechanical flexibility, high degrees of electrostatic spatial inhomogeneity can be achieved, which enables a diverse range of gate-tunable properties that are useful in logic, memory, neuromorphic, and optoelectronic technologies.

16.
Adv Mater ; 30(30): e1801232, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29888554

RESUMO

High-performance photonic nonvolatile memory combining photosensing and data storage with low power consumption ensures the energy efficiency of computer systems. This study first reports in situ derived phosphorene/ZnO hybrid heterojunction nanoparticles and their application in broadband-response photonic nonvolatile memory. The photonic nonvolatile memory consistently exhibits broadband response from ultraviolet (380 nm) to near infrared (785 nm), with controllable shifts of the SET voltage. The broadband resistive switching is attributed to the enhanced photon harvesting, a fast exciton separation, as well as the formation of an oxygen vacancy filament in the nano-heterojunction. In addition, the device exhibits an excellent stability under air exposure compared with reported pristine phosphorene-based nonvolatile memory. The superior antioxidation capacity is believed to originate from the fast transfer of lone-pair electrons of phosphorene. The unique assembly of phosphorene/ZnO nano-heterojunctions paves the way toward multifunctional broadband-response data-storage techniques.

17.
Adv Mater ; 28(41): 9133-9141, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27571871

RESUMO

A p-type oxide/2D hybrid van der Waals p-n heterojunction is demonstrated for the first time between SnO (tin monoxide) (the p-type oxide) and 2D MoS2 (molybdenum disulfide), showing an ideality factor of 2 and rectification ratio up to 104 . The reported heterojunction is gate-tunable with typical anti-ambipolar transfer characteristics. Surface potential mapping is performed and a current model for such a heterojunction is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA