Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Cereb Cortex ; 33(10): 6152-6170, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36587366

RESUMO

A growing body of evidence suggests that in adults, there is a spatially consistent "inferior temporal numeral area" (ITNA) in the occipitotemporal cortex that appears to preferentially process Arabic digits relative to non-numerical symbols and objects. However, very little is known about why the ITNA is spatially segregated from regions that process other orthographic stimuli such as letters, and why it is spatially consistent across individuals. In the present study, we used diffusion-weighted imaging and functional magnetic resonance imaging to contrast structural and functional connectivity between left and right hemisphere ITNAs and a left hemisphere letter-preferring region. We found that the left ITNA had stronger structural and functional connectivity than the letter region to inferior parietal regions involved in numerical magnitude representation and arithmetic. Between hemispheres, the left ITNA showed stronger structural connectivity with the left inferior frontal gyrus (Broca's area), while the right ITNA showed stronger structural connectivity to the ipsilateral inferior parietal cortex and stronger functional coupling with the bilateral IPS. Based on their relative connectivity, our results suggest that the left ITNA may be more readily involved in mapping digits to verbal number representations, while the right ITNA may support the mapping of digits to quantity representations.


Assuntos
Mapeamento Encefálico , Lobo Temporal , Adulto , Humanos , Vias Neurais/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Córtex Cerebral , Lobo Parietal/diagnóstico por imagem , Imageamento por Ressonância Magnética
2.
Cereb Cortex ; 33(6): 2485-2506, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35671505

RESUMO

Ventral temporal cortex (VTC) consists of high-level visual regions that are arranged in consistent anatomical locations across individuals. This consistency has led to several hypotheses about the factors that constrain the functional organization of VTC. A prevailing theory is that white matter connections influence the organization of VTC, however, the nature of this constraint is unclear. Here, we test 2 hypotheses: (1) white matter tracts are specific for each category or (2) white matter tracts are specific to cytoarchitectonic areas of VTC. To test these hypotheses, we used diffusion magnetic resonance imaging to identify white matter tracts and functional magnetic resonance imaging to identify category-selective regions in VTC in children and adults. We find that in childhood, white matter connections are linked to cytoarchitecture rather than category-selectivity. In adulthood, however, white matter connections are linked to both cytoarchitecture and category-selectivity. These results suggest a rethinking of the view that category-selective regions in VTC have category-specific white matter connections early in development. Instead, these findings suggest that the neural hardware underlying the processing of categorical stimuli may be more domain-general than previously thought, particularly in childhood.


Assuntos
Substância Branca , Criança , Humanos , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética , Lobo Temporal
3.
J Neurosci ; 42(23): 4693-4710, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35508386

RESUMO

Although there is mounting evidence that input from the dorsal visual pathway is crucial for object processes in the ventral pathway, the specific functional contributions of dorsal cortex to these processes remain poorly understood. Here, we hypothesized that dorsal cortex computes the spatial relations among an object's parts, a process crucial for forming global shape percepts, and transmits this information to the ventral pathway to support object categorization. Using fMRI with human participants (females and males), we discovered regions in the intraparietal sulcus (IPS) that were selectively involved in computing object-centered part relations. These regions exhibited task-dependent functional and effective connectivity with ventral cortex, and were distinct from other dorsal regions, such as those representing allocentric relations, 3D shape, and tools. In a subsequent experiment, we found that the multivariate response of posterior (p)IPS, defined on the basis of part-relations, could be used to decode object category at levels comparable to ventral object regions. Moreover, mediation and multivariate effective connectivity analyses further suggested that IPS may account for representations of part relations in the ventral pathway. Together, our results highlight specific contributions of the dorsal visual pathway to object recognition. We suggest that dorsal cortex is a crucial source of input to the ventral pathway and may support the ability to categorize objects on the basis of global shape.SIGNIFICANCE STATEMENT Humans categorize novel objects rapidly and effortlessly. Such categorization is achieved by representing an object's global shape structure, that is, the relations among object parts. Yet, despite their importance, it is unclear how part relations are represented neurally. Here, we hypothesized that object-centered part relations may be computed by the dorsal visual pathway, which is typically implicated in visuospatial processing. Using fMRI, we identified regions selective for the part relations in dorsal cortex. We found that these regions can support object categorization, and even mediate representations of part relations in the ventral pathway, the region typically thought to support object categorization. Together, these findings shed light on the broader network of brain regions that support object categorization.


Assuntos
Reconhecimento Visual de Modelos , Vias Visuais , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Lobo Parietal/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Luminosa/métodos , Vias Visuais/diagnóstico por imagem , Vias Visuais/fisiologia
4.
J Neurosci ; 41(25): 5511-5521, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34016715

RESUMO

The ventral visual stream of the human brain is subdivided into patches with categorical stimulus preferences, like faces or scenes. However, the functional organization within these areas is less clear. Here, we used functional magnetic resonance imaging and vertex-wise tuning models to independently probe spatial and face-part preferences in the inferior occipital gyrus (IOG) of healthy adult males and females. The majority of responses were well explained by Gaussian population tuning curves for both retinotopic location and the preferred relative position within a face. Parameter maps revealed a common gradient of spatial and face-part selectivity, with the width of tuning curves drastically increasing from posterior to anterior IOG. Tuning peaks clustered more idiosyncratically but were also correlated across maps of visual and face space. Preferences for the upper visual field went along with significantly increased coverage of the upper half of the face, matching recently discovered biases in human perception. Our findings reveal a broad range of neural face-part selectivity in IOG, ranging from narrow to "holistic." IOG is functionally organized along this gradient, which in turn is correlated with retinotopy.SIGNIFICANCE STATEMENT Brain imaging has revealed a lot about the large-scale organization of the human brain and visual system. For example, occipital cortex contains map-like representations of the visual field, while neurons in ventral areas cluster into patches with categorical preferences, like faces or scenes. Much less is known about the functional organization within these areas. Here, we focused on a well established face-preferring area-the inferior occipital gyrus (IOG). A novel neuroimaging paradigm allowed us to map the retinotopic and face-part tuning of many recording sites in IOG independently. We found a steep posterior-anterior gradient of decreasing face-part selectivity, which correlated with retinotopy. This suggests the functional role of ventral areas is not uniform and may follow retinotopic "protomaps."


Assuntos
Reconhecimento Facial/fisiologia , Lobo Occipital/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Visuais/fisiologia
5.
Neuroimage ; 251: 118941, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35122966

RESUMO

Despite decades of research, our understanding of the relationship between color and form processing in the primate ventral visual pathway remains incomplete. Using fMRI multivoxel pattern analysis, we examined coding of color and form, using a simple form feature (orientation) and a mid-level form feature (curvature), in human ventral visual processing regions. We found that both color and form could be decoded from activity in early visual areas V1 to V4, as well as in the posterior color-selective region and shape-selective regions in ventral and lateral occipitotemporal cortex defined based on their univariate selectivity to color or shape, respectively (the central color region only showed color but not form decoding). Meanwhile, decoding biases towards one feature or the other existed in the color- and shape-selective regions, consistent with their univariate feature selectivity reported in past studies. Additional extensive analyses show that while all these regions contain independent (linearly additive) coding for both features, several early visual regions also encode the conjunction of color and the simple, but not the complex, form feature in a nonlinear, interactive manner. Taken together, the results show that color and form are encoded in a biased distributed and largely independent manner across ventral visual regions in the human brain.


Assuntos
Córtex Visual , Vias Visuais , Animais , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Reconhecimento Visual de Modelos , Estimulação Luminosa/métodos , Córtex Visual/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem
6.
Biol Cybern ; 116(1): 5-21, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34635954

RESUMO

A varying contrastive context filter (VCCF)-based model of brightness perception has been proposed. It is motivated first by a recently proposed difference of difference-of-Gaussian (DDOG) filter. Alongside, it is also inspired from the fact that the nature evolves various discrete systems and mechanisms to carry out many of its complex tasks. A weight factor, used for the linear combination of two filters representing the magnocellular and parvocellular channels in the central visual pathway, has been defined and termed as the factor of contrastive context (FOCC) in the present model. This is a binary variable that lends a property of discretization to the DDOG filter. By analyzing important brightness contrast as well as brightness assimilation illusions, we arrive at the minimal set of values (only two) for FOCC, using which one is able to successfully predict the direction of brightness shift in both situations of brightness contrast, claimed and categorized here as low contrastive context, and those of brightness assimilation, claimed and categorized here as high contrastive context perception, depending upon whether the initial M-channel-filtered stimulus is above or below a threshold of the contrastive context. As distinct from Michelson/Weber/RMS contrast, high or low, the contrastive context claimed is dependent on the edge information in the stimulus determined by the Laplacian operator, also used in the DDOG model. We compared the proposed model against the already well-established oriented difference-of-Gaussian (ODOG) model of brightness perception. Extensive simulations suggest that though for most illusions both ODOG and VCCF produce correct output, for certain intricate cases in which the ODOG filter fails to correctly predict the illusory effect, our proposed VCCF model continues to remain effective.


Assuntos
Sensibilidades de Contraste , Ilusões , Humanos , Distribuição Normal , Estimulação Luminosa , Vias Visuais , Percepção Visual
7.
Cereb Cortex ; 31(11): 4986-5005, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34115102

RESUMO

Humans are remarkably adept in listening to a desired speaker in a crowded environment, while filtering out nontarget speakers in the background. Attention is key to solving this difficult cocktail-party task, yet a detailed characterization of attentional effects on speech representations is lacking. It remains unclear across what levels of speech features and how much attentional modulation occurs in each brain area during the cocktail-party task. To address these questions, we recorded whole-brain blood-oxygen-level-dependent (BOLD) responses while subjects either passively listened to single-speaker stories, or selectively attended to a male or a female speaker in temporally overlaid stories in separate experiments. Spectral, articulatory, and semantic models of the natural stories were constructed. Intrinsic selectivity profiles were identified via voxelwise models fit to passive listening responses. Attentional modulations were then quantified based on model predictions for attended and unattended stories in the cocktail-party task. We find that attention causes broad modulations at multiple levels of speech representations while growing stronger toward later stages of processing, and that unattended speech is represented up to the semantic level in parabelt auditory cortex. These results provide insights on attentional mechanisms that underlie the ability to selectively listen to a desired speaker in noisy multispeaker environments.


Assuntos
Córtex Auditivo , Percepção da Fala , Estimulação Acústica/métodos , Atenção/fisiologia , Córtex Auditivo/fisiologia , Percepção Auditiva , Feminino , Humanos , Masculino , Fala/fisiologia , Percepção da Fala/fisiologia
8.
J Neurosci ; 40(8): 1710-1721, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31871278

RESUMO

Drawing is a powerful tool that can be used to convey rich perceptual information about objects in the world. What are the neural mechanisms that enable us to produce a recognizable drawing of an object, and how does this visual production experience influence how this object is represented in the brain? Here we evaluate the hypothesis that producing and recognizing an object recruit a shared neural representation, such that repeatedly drawing the object can enhance its perceptual discriminability in the brain. We scanned human participants (N = 31; 11 male) using fMRI across three phases of a training study: during training, participants repeatedly drew two objects in an alternating sequence on an MR-compatible tablet; before and after training, they viewed these and two other control objects, allowing us to measure the neural representation of each object in visual cortex. We found that: (1) stimulus-evoked representations of objects in visual cortex are recruited during visually cued production of drawings of these objects, even throughout the period when the object cue is no longer present; (2) the object currently being drawn is prioritized in visual cortex during drawing production, while other repeatedly drawn objects are suppressed; and (3) patterns of connectivity between regions in occipital and parietal cortex supported enhanced decoding of the currently drawn object across the training phase, suggesting a potential neural substrate for learning how to transform perceptual representations into representational actions. Together, our study provides novel insight into the functional relationship between visual production and recognition in the brain.SIGNIFICANCE STATEMENT Humans can produce simple line drawings that capture rich information about their perceptual experiences. However, the mechanisms that support this behavior are not well understood. Here we investigate how regions in visual cortex participate in the recognition of an object and the production of a drawing of it. We find that these regions carry diagnostic information about an object in a similar format both during recognition and production, and that practice drawing an object enhances transmission of information about it to downstream regions. Together, our study provides novel insight into the functional relationship between visual production and recognition in the brain.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Reconhecimento Psicológico/fisiologia , Córtex Visual/diagnóstico por imagem , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Estimulação Luminosa , Córtex Visual/fisiologia , Adulto Jovem
9.
Neuroimage ; 243: 118545, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34478822

RESUMO

Recent studies provide an increasing understanding of how visual objects categories like faces or bodies are represented in the brain and also raised the question whether a category based or more dynamic network inspired models are more powerful. Two important and so far sidestepped issues in this debate are, first, how major category attributes like the emotional expression directly influence category representation and second, whether category and attribute representation are sensitive to task demands. This study investigated the impact of a crucial category attribute like emotional expression on category area activity and whether this varies with the participants' task. Using (fMRI) we measured BOLD responses while participants viewed whole body expressions and performed either an explicit (emotion) or an implicit (shape) recognition task. Our results based on multivariate methods show that the type of task is the strongest determinant of brain activity and can be decoded in EBA, VLPFC and IPL. Brain activity was higher for the explicit task condition in VLPFC and was not emotion specific. This pattern suggests that during explicit recognition of the body expression, body category representation may be strengthened, and emotion and action related activity suppressed. Taken together these results stress the importance of the task and of the role of category attributes for understanding the functional organization of high level visual cortex.


Assuntos
Emoções/fisiologia , Lobo Parietal/diagnóstico por imagem , Córtex Visual/diagnóstico por imagem , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Reconhecimento Visual de Modelos/fisiologia , Adulto Jovem
10.
J Neurophysiol ; 125(1): 120-139, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33174507

RESUMO

The decrease in response with stimulus repetition is a common property observed in many sensory brain areas. This repetition suppression (RS) is ubiquitous in neurons of macaque inferior temporal (IT) cortex, the end-stage of the ventral visual pathway. The neural mechanisms of RS in IT are still unclear, and one possibility is that it is inherited from areas upstream to IT that show also RS. Since neurons in IT have larger receptive fields compared with earlier visual areas, we examined the inheritance hypothesis by presenting adapter and test stimuli at widely different spatial locations along both vertical and horizontal meridians and across hemifields. RS was present for distances between adapter and test stimuli up to 22° and when the two stimuli were presented in different hemifields. Also, we examined the position tolerance of the stimulus selectivity of adaptation by comparing the responses to a test stimulus following the same (repetition trial) or a different (alternation trial) adapter at a position different from the test stimulus. Stimulus-selective adaptation was still present and consistently stronger in the later phase of the response for distances up to 18°. Finally, we observed stimulus-selective adaptation in repetition trials even without a measurable excitatory response to the adapter stimulus. To accommodate these and previous data, we propose that at least part of the stimulus-selective adaptation in IT is based on short-term plasticity mechanisms within IT and/or reflects top-down activity from areas downstream to IT.NEW & NOTEWORTHY Neurons in inferior temporal cortex reduce their response when stimuli are repeated. To assess whether this repetition suppression is inherited from upstream visual areas, we examined the extent of its spatial generalization. We observed stimulus-selective adaptation when adapter and test stimuli were presented at widely different spatial positions and in different hemifields. These data suggest that at least part of the repetition suppression originates within inferior temporal cortex and/or reflects feedback from downstream areas.


Assuntos
Lateralidade Funcional , Generalização Psicológica , Lobo Temporal/fisiologia , Vias Visuais/fisiologia , Adaptação Fisiológica , Animais , Macaca mulatta , Masculino , Priming de Repetição , Percepção Visual
11.
Cereb Cortex ; 30(3): 1068-1086, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31408095

RESUMO

The pulvinar is the largest extrageniculate visual nucleus in mammals. Given its extensive reciprocal connectivity with the visual cortex, it allows the cortico-thalamocortical transfer of visual information. Nonetheless, knowledge of the nature of the pulvinar inputs to the cortex remains elusive. We investigated the impact of silencing the pulvinar on the contrast response function of neurons in 2 distinct hierarchical cortical areas in the cat (areas 17 and 21a). Pulvinar inactivation altered the response gain in both areas, but with larger changes observed in area 21a. A theoretical model was proposed, simulating the pulvinar contribution to cortical contrast responses by modifying the excitation-inhibition balanced state of neurons across the cortical hierarchy. Our experimental and theoretical data showed that the pulvinar exerts a greater modulatory influence on neuronal activity in area 21a than in the primary visual cortex, indicating that the pulvinar impact on cortical visual neurons varies along the cortical hierarchy.


Assuntos
Neurônios/fisiologia , Pulvinar/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Gatos , Feminino , Masculino , Modelos Neurológicos , Estimulação Luminosa , Vias Visuais/fisiologia
12.
Proc Natl Acad Sci U S A ; 115(38): E9015-E9024, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30171168

RESUMO

Human object-selective cortex shows a large-scale organization characterized by the high-level properties of both animacy and object size. To what extent are these neural responses explained by primitive perceptual features that distinguish animals from objects and big objects from small objects? To address this question, we used a texture synthesis algorithm to create a class of stimuli-texforms-which preserve some mid-level texture and form information from objects while rendering them unrecognizable. We found that unrecognizable texforms were sufficient to elicit the large-scale organizations of object-selective cortex along the entire ventral pathway. Further, the structure in the neural patterns elicited by texforms was well predicted by curvature features and by intermediate layers of a deep convolutional neural network, supporting the mid-level nature of the representations. These results provide clear evidence that a substantial portion of ventral stream organization can be accounted for by coarse texture and form information without requiring explicit recognition of intact objects.


Assuntos
Modelos Neurológicos , Reconhecimento Visual de Modelos/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Neuroimagem Funcional/métodos , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estimulação Luminosa/métodos , Adulto Jovem
13.
J Neurosci ; 39(9): 1649-1670, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30617210

RESUMO

In rodents, the progression of extrastriate areas located laterally to primary visual cortex (V1) has been assigned to a putative object-processing pathway (homologous to the primate ventral stream), based on anatomical considerations. Recently, we found functional support for such attribution (Tafazoli et al., 2017), by showing that this cortical progression is specialized for coding object identity despite view changes, the hallmark property of a ventral-like pathway. Here, we sought to clarify what computations are at the base of such specialization. To this aim, we performed multielectrode recordings from V1 and laterolateral area LL (at the apex of the putative ventral-like hierarchy) of male adult rats, during the presentation of drifting gratings and noise movies. We found that the extent to which neuronal responses were entrained to the phase of the gratings sharply dropped from V1 to LL, along with the quality of the receptive fields inferred through reverse correlation. Concomitantly, the tendency of neurons to respond to different oriented gratings increased, whereas the sharpness of orientation tuning declined. Critically, these trends are consistent with the nonlinear summation of visual inputs that is expected to take place along the ventral stream, according to the predictions of hierarchical models of ventral computations and a meta-analysis of the monkey literature. This suggests an intriguing homology between the mechanisms responsible for building up shape selectivity and transformation tolerance in the visual cortex of primates and rodents, reasserting the potential of the latter as models to investigate ventral stream functions at the circuitry level.SIGNIFICANCE STATEMENT Despite the growing popularity of rodents as models of visual functions, it remains unclear whether their visual cortex contains specialized modules for processing shape information. To addresses this question, we compared how neuronal tuning evolves from rat primary visual cortex (V1) to a downstream visual cortical region (area LL) that previous work has implicated in shape processing. In our experiments, LL neurons displayed a stronger tendency to respond to drifting gratings with different orientations while maintaining a sustained response across the whole duration of the drift cycle. These trends match the increased complexity of pattern selectivity and the augmented tolerance to stimulus translation found in monkey visual temporal cortex, thus revealing a homology between shape processing in rodents and primates.


Assuntos
Modelos Neurológicos , Reconhecimento Visual de Modelos , Córtex Visual/fisiologia , Animais , Masculino , Ratos , Ratos Long-Evans , Campos Visuais
14.
Biol Cybern ; 114(2): 139-167, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32285205

RESUMO

This hybrid of review and personal essay argues that models of visual construction are essential to extend spatial navigation models to models that link episodic memory and imagination. The starting point is the TAM-WG model, combining the Taxon Affordance Model and the World Graph model of spatial navigation. The key here is to reject approaches in which memory is restricted to unanalyzed views from familiar places, and their later recall. Instead, we will seek mechanisms for imagining truly novel scenes and episodes. We thus introduce a specific variant of schema theory and VISIONS, a cooperative computation model of visual scene understanding in which a scene is represented by an assemblage of schema instances with links to lower-level "patches" of relevant visual data. We sketch a new conceptual framework for future modeling, Visual Integration of Diverse Multi-Modal Aspects, by extending VISIONS from static scenes to episodes combining agents, actions and objects and assess its relevance to both navigation and episodic memory. We can then analyze imagination as a constructive process that combines aspects of memories of prior episodes along with other schemas and adjusts them into a coherent whole which, through expectations associated with diverse episodes and schemas, may yield the linkage of episodes that constitutes a dream or a narrative. The result is IBSEN, a conceptual model of Imagination in Brain Systems for Episodes and Navigation. The essay closes by analyzing other papers in this Special Issue to assess to what extent their results relate to the research proposed here.


Assuntos
Imaginação , Memória Episódica , Robótica/instrumentação , Navegação Espacial , Vias Visuais , Animais , Mapeamento Encefálico , Cognição , Simulação por Computador , Humanos , Rememoração Mental/fisiologia , Modelos Neurológicos , Ratos
15.
Cereb Cortex ; 29(7): 3168-3181, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-30169596

RESUMO

Neural responses to small manipulable objects ("tools") in high-level visual areas in ventral temporal cortex (VTC) provide an opportunity to test how anatomically remote regions modulate ventral stream processing in a domain-specific manner. Prior patient studies indicate that grasp-relevant information can be computed about objects by dorsal stream structures independently of processing in VTC. Prior functional neuroimaging studies indicate privileged functional connectivity between regions of VTC exhibiting tool preferences and regions of parietal cortex supporting object-directed action. Here we test whether lesions to parietal cortex modulate tool preferences within ventral and lateral temporal cortex. We found that lesions to the left anterior intraparietal sulcus, a region that supports hand-shaping during object grasping and manipulation, modulate tool preferences in left VTC and in the left posterior middle temporal gyrus. Control analyses demonstrated that neural responses to "place" stimuli in left VTC were unaffected by lesions to parietal cortex, indicating domain-specific consequences for ventral stream neural responses in the setting of parietal lesions. These findings provide causal evidence that neural specificity for "tools" in ventral and lateral temporal lobe areas may arise, in part, from online inputs to VTC from parietal areas that receive inputs via the dorsal visual pathway.


Assuntos
Vias Neurais/fisiologia , Lobo Parietal/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Desempenho Psicomotor/fisiologia , Vias Visuais/fisiologia
16.
Proc Natl Acad Sci U S A ; 114(31): E6437-E6446, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28652333

RESUMO

Brain systems supporting face and voice processing both contribute to the extraction of important information for social interaction (e.g., person identity). How does the brain reorganize when one of these channels is absent? Here, we explore this question by combining behavioral and multimodal neuroimaging measures (magneto-encephalography and functional imaging) in a group of early deaf humans. We show enhanced selective neural response for faces and for individual face coding in a specific region of the auditory cortex that is typically specialized for voice perception in hearing individuals. In this region, selectivity to face signals emerges early in the visual processing hierarchy, shortly after typical face-selective responses in the ventral visual pathway. Functional and effective connectivity analyses suggest reorganization in long-range connections from early visual areas to the face-selective temporal area in individuals with early and profound deafness. Altogether, these observations demonstrate that regions that typically specialize for voice processing in the hearing brain preferentially reorganize for face processing in born-deaf people. Our results support the idea that cross-modal plasticity in the case of early sensory deprivation relates to the original functional specialization of the reorganized brain regions.


Assuntos
Córtex Auditivo/fisiologia , Surdez/fisiopatologia , Reconhecimento Facial/fisiologia , Plasticidade Neuronal/fisiologia , Vias Visuais/fisiologia , Estimulação Acústica , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Neuroimagem/métodos , Estimulação Luminosa , Privação Sensorial/fisiologia , Percepção Visual/fisiologia
17.
Acta Clin Croat ; 59(4): 721-728, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34285443

RESUMO

The generally accepted model of sensory processing of visual and auditory stimuli assumes two major parallel processing streams, ventral and dorsal, which comprise functionally and anatomically distinct but interacting processes in which the ventral stream supports stimulus identification, and the dorsal stream is involved in recognizing the stimulus spatial location and sensori-motor integration functions. However, recent studies suggest the existence of a third, very fast sensory processing pathway, a gating stream that directly links the primary auditory cortices to the executive prefrontal cortex within the first 50 milliseconds after presentation of a stimulus, bypassing hierarchical structure of the ventral and dorsal pathways. Gating stream propagates the sensory gating phenomenon, which serves as a basic protective mechanism preventing irrelevant, repeated information from recurrent sensory processing. The goal of the present paper is to introduce the novel 'three-stream' model of auditory processing, including the new fast sensory processing stream, i.e. gating stream, alongside the well-affirmed dorsal and ventral sensory processing pathways. The impairments in sensory processing along the gating stream have been found to be strongly involved in the pathophysiological sensory processing in Alzheimer's disease and could be the underlying issue in numerous neuropsychiatric disorders and diseases that are linked to the pathological sensory gating inhibition, such as schizophrenia, post-traumatic stress disorder, bipolar disorder or attention deficit hyperactivity disorder.


Assuntos
Córtex Auditivo , Percepção Auditiva , Humanos , Córtex Pré-Frontal
18.
Hum Brain Mapp ; 40(10): 2867-2883, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30900321

RESUMO

Interacting with manipulable objects (tools) requires the integration of diverse computations supported by anatomically remote regions. Previous functional neuroimaging research has demonstrated the left supramarginal (SMG) exhibits functional connectivity to both ventral and dorsal pathways, supporting the integration of ventrally-mediated tool properties and conceptual knowledge with dorsally-computed volumetric and structural representations of tools. This architecture affords us the opportunity to test whether interactions between the left SMG, ventral visual pathway, and dorsal visual pathway are differentially modulated when participants plan and generate tool-directed gestures emphasizing functional manipulation (tool use gesturing) or structure-based grasping (tool transport gesturing). We found that functional connectivity between the left SMG, ventral temporal cortex (bilateral fusiform gyri), and dorsal visual pathway (left superior parietal lobule/posterior intraparietal sulcus) was maximal for tool transport planning and gesturing, whereas functional connectivity between the left SMG, left ventral anterior temporal lobe, and left frontal operculum was maximal for tool use planning and gesturing. These results demonstrate that functional connectivity to the left SMG is differentially modulated by tool use and tool transport gesturing, suggesting that distinct tool features computed by the two object processing pathways are integrated in the parietal lobe in the service of tool-directed action.


Assuntos
Gestos , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Comportamento de Utilização de Ferramentas/fisiologia , Vias Visuais/fisiologia , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
19.
J Comput Neurosci ; 46(1): 125-140, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30317462

RESUMO

Language is mediated by pathways connecting distant brain regions that have diverse functional roles. For word production, the network includes a ventral pathway, connecting temporal and inferior frontal regions, and a dorsal pathway, connecting parietal and frontal regions. Despite the importance of word production for scientific and clinical purposes, the functional connectivity underlying this task has received relatively limited attention, and mostly from techniques limited in either spatial or temporal resolution. Here, we exploited data obtained from depth intra-cerebral electrodes stereotactically implanted in eight epileptic patients. The signal was recorded directly from various structures of the neocortex with high spatial and temporal resolution. The neurophysiological activity elicited by a picture naming task was analyzed in the time-frequency domain (10-150 Hz), and functional connectivity between brain areas among ten regions of interest was examined. Task related-activities detected within a network of the regions of interest were consistent with findings in the literature, showing task-evoked desynchronization in the beta band and synchronization in the gamma band. Surprisingly, long-range functional connectivity was not particularly stronger in the beta than in the high-gamma band. The latter revealed meaningful sub-networks involving, notably, the temporal pole and the inferior frontal gyrus (ventral pathway), and parietal regions and inferior frontal gyrus (dorsal pathway). These findings are consistent with the hypothesized network, but were not detected in every patient. Further research will have to explore their robustness with larger samples.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Fala/fisiologia , Adulto , Mapeamento Encefálico , Eletroencefalografia , Epilepsia/fisiopatologia , Feminino , Humanos , Idioma , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos
20.
Brain Inj ; 33(10): 1354-1363, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31317788

RESUMO

Cortical visual processing involves the ventral stream (form perception) and the dorsal stream (motion perception). We assessed whether mild traumatic brain injury (TBI) differentially affects these two streams. Eleven adults with mild TBI (28 ± 9 yrs, 17 ± 5 months post injury) and 25 controls (25 ± 5 yrs) participated. Participants completed tests of global processing involving Glass patterns (form) and random dot kinematograms (motion), measurement of contrast thresholds for motion direction discrimination, a comprehensive vision screening and the Post-Concussion Symptom Inventory (PCSI). Our results showed that the mild TBI group had significantly higher (worse) global form (mean ± SD: TBI 25 ± 6%, control 21 ± 5%) and motion (TBI 14 ± 7%, control 11 ± 3%) coherence thresholds than controls. The magnitude of the mild TBI group deficit did not differ between the two tasks. Contrast thresholds for motion direction discrimination did not differ between the groups, but were positively correlated with PCSI score (r2 = 0.51. p = 0.01) in the mild TBI group. The mild TBI group had worse outcomes than controls for all clinical measurements of vision except distance visual acuity. In conclusion, mild TBI affects processing in both the dorsal and ventral cortical processing streams equally. In addition, spatiotemporal contrast sensitivity may be related to the symptoms of mild TBI.


Assuntos
Concussão Encefálica/psicologia , Percepção de Forma , Percepção de Movimento , Percepção Visual , Adolescente , Adulto , Sensibilidades de Contraste , Percepção de Profundidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reconhecimento Visual de Modelos , Estimulação Luminosa , Limiar Sensorial , Acuidade Visual , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA