Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Ecol Lett ; 27(1): e14352, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38115188

RESUMO

Despite the importance of virulence in epidemiological theory, the relative contributions of host and parasite to virulence outcomes remain poorly understood. Here, we use reciprocal cross experiments to disentangle the influence of host and parasite on core virulence components-infection and pathology-and understand dramatic differences in parasite-induced malformations in California amphibians. Surveys across 319 populations revealed that amphibians' malformation risk was 2.7× greater in low-elevation ponds, even while controlling for trematode infection load. Factorial experiments revealed that parasites from low-elevation sites induced higher per-parasite pathology (reduced host survival and growth), whereas there were no effects of host source on resistance or tolerance. Parasite populations also exhibited marked differences in within-host distribution: ~90% of low-elevation cysts aggregated around the hind limbs, relative to <60% from high-elevation. This offers a novel, mechanistic basis for regional variation in parasite-induced malformations while promoting a framework for partitioning host and parasite contributions to virulence.


Assuntos
Parasitos , Trematódeos , Infecções por Trematódeos , Animais , Virulência , Interações Hospedeiro-Parasita , Infecções por Trematódeos/parasitologia , Anfíbios/parasitologia
2.
J Evol Biol ; 37(2): 189-200, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38300809

RESUMO

Worldwide inequalities in vaccine availability are expected to affect the spread and spatial distribution of infectious diseases. It is unclear, however, how spatial variation in vaccination coverage can affect the long-term evolution of pathogens. Here we use an analytical model and numerical simulations to analyse the influence of different imperfect vaccines on the potential evolution of pathogen virulence in a two-population model where vaccination coverage varies between populations. We focus on four vaccines, with different modes of action on the life cycle of a pathogen infecting two host populations coupled by migration. We show that, for vaccines that reduce infection risk or transmissibility, spatial heterogeneity has little effect on pathogen prevalence and host mortality, and no effect on the evolution of pathogen virulence. In contrast, vaccines that reduce pathogen virulence can select for more virulent pathogens and may lead to the coexistence of different pathogen strains, depending on the degree of spatial heterogeneity in the metapopulation. This heterogeneity is driven by two parameters: pathogen migration and the difference in the vaccination rate between the two populations. We show that vaccines that only reduce pathogen virulence select mainly for a single pathogen strategy in the long term, while vaccines that reduce both transmission and virulence can favor the coexistence of two pathogen genotypes. We discuss the implications and potential extensions of our analysis.


Assuntos
Cobertura Vacinal , Vacinas , Humanos , Virulência/genética , Suscetibilidade a Doenças , Evolução Biológica
3.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34593634

RESUMO

Pathogen emergence is a complex phenomenon that, despite its public health relevance, remains poorly understood. Vibrio vulnificus, an emergent human pathogen, can cause a deadly septicaemia with over 50% mortality rate. To date, the ecological drivers that lead to the emergence of clinical strains and the unique genetic traits that allow these clones to colonize the human host remain mostly unknown. We recently surveyed a large estuary in eastern Florida, where outbreaks of the disease frequently occur, and found endemic populations of the bacterium. We established two sampling sites and observed strong correlations between location and pathogenic potential. One site is significantly enriched with strains that belong to one phylogenomic cluster (C1) in which the majority of clinical strains belong. Interestingly, strains isolated from this site exhibit phenotypic traits associated with clinical outcomes, whereas strains from the second site belong to a cluster that rarely causes disease in humans (C2). Analyses of C1 genomes indicate unique genetic markers in the form of clinical-associated alleles with a potential role in virulence. Finally, metagenomic and physicochemical analyses of the sampling sites indicate that this marked cluster distribution and genetic traits are strongly associated with distinct biotic and abiotic factors (e.g., salinity, nutrients, or biodiversity), revealing how ecosystems generate selective pressures that facilitate the emergence of specific strains with pathogenic potential in a population. This knowledge can be applied to assess the risk of pathogen emergence from environmental sources and integrated toward the development of novel strategies for the prevention of future outbreaks.


Assuntos
Vibrioses/microbiologia , Vibrio vulnificus/genética , Vibrio vulnificus/patogenicidade , Animais , Biodiversidade , Ecossistema , Doenças Endêmicas , Florida , Marcadores Genéticos/genética , Humanos , Ostreidae/microbiologia , Fenótipo , Filogenia , Virulência/genética
4.
Biol Lett ; 19(5): 20220553, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130550

RESUMO

Virulence, the harm to hosts caused by parasite infection, can be selected for by several ecological factors acting synergistically or antagonistically. Here, we focus on the potential for interspecific host competition to shape virulence through such a network of effects. We first summarize how host natural mortality, body mass changes, population density and community diversity affect virulence evolution. We then introduce an initial conceptual framework highlighting how these host factors, which change during host competition, may drive virulence evolution via impacts on life-history trade-offs. We argue that the multi-faceted nature of both interspecific host competition and virulence evolution still requires consideration and experimentation to disentangle contrasting mechanisms. It also necessitates a differential treatment for parasites with various transmission strategies. However, such a comprehensive approach focusing on the role of interspecific host competition is essential to understand the processes driving the evolution of virulence in a tangled bank.


Assuntos
Parasitos , Animais , Virulência , Interações Hospedeiro-Parasita , Evolução Biológica
5.
Bull Math Biol ; 85(4): 28, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36853371

RESUMO

Hosts can activate a defensive response to clear the parasite once being infected. To explore how host survival and fecundity are affected by host-parasite coevolution for chronic parasitic diseases, in this paper, we proposed an age-structured epidemic model with infection age, in which the parasite transmission rate and parasite-induced mortality rate are structured by the infection age. By use of critical function analysis method, we obtained the existence of the host immune evolutionary singular strategy which is a continuous singular strategy (CSS). Assume that parasite-induced mortality begins at infection age [Formula: see text] and is constant v thereafter. We got that the value of the CSS, [Formula: see text], monotonically decreases with respect to infection age [Formula: see text] (see Case (I)), while it is non-monotone if the constant v positively depends on the immune trait c (see Case (II)). This non-monotonicity is verified by numerical simulations and implies that the direction of immune evolution depends on the initial value of immune trait. Besides that, we adopted two special forms of the parasite transmission rate to study the parasite's virulence evolution, by maximizing the basic reproduction ratio [Formula: see text]. The values of the convergence stable parasite's virulence evolutionary singular strategies [Formula: see text] and [Formula: see text] increase monotonically with respect to time lag L (i.e., the time lag between the onset of transmission and mortality). At the singular strategy [Formula: see text] and [Formula: see text], we further obtained the expressions of the case mortalities [Formula: see text] and how they are affected by the time lag L. Finally, we only presented some preliminary results about host and parasite coevolution dynamics, including a general condition under which the coevolutionary singular strategy [Formula: see text] is evolutionarily stable.


Assuntos
Parasitos , Animais , Virulência , Conceitos Matemáticos , Modelos Biológicos , Número Básico de Reprodução
6.
Proc Natl Acad Sci U S A ; 117(35): 21658-21666, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817434

RESUMO

Symbiosis with microbes is a ubiquitous phenomenon with a massive impact on all living organisms, shaping the world around us today. Theoretical and experimental studies show that vertical transmission of symbionts leads to the evolution of mutualistic traits, whereas horizontal transmission facilitates the emergence of parasitic features. However, these studies focused on phenotypic data, and we know little about underlying molecular changes at the genomic level. Here, we combined an experimental evolution approach with infection assays, genome resequencing, and global gene expression analysis to study the effect of transmission mode on an obligate intracellular bacterial symbiont. We show that a dramatic shift in the frequency of genetic variants, coupled with major changes in gene expression, allow the symbiont to alter its position in the parasitism-mutualism continuum depending on the mode of between-host transmission. We found that increased parasitism in horizontally transmitted chlamydiae residing in amoebae was a result of processes occurring at the infectious stage of the symbiont's developmental cycle. Specifically, genes involved in energy production required for extracellular survival and the type III secretion system-the symbiont's primary virulence mechanism-were significantly up-regulated. Our results identify the genomic and transcriptional dynamics sufficient to favor parasitic or mutualistic strategies.


Assuntos
Chlamydia/genética , Interações entre Hospedeiro e Microrganismos/genética , Simbiose/genética , Amoeba/metabolismo , Amoeba/microbiologia , Animais , Bactérias/genética , Evolução Biológica , Chlamydia/metabolismo , Genoma Bacteriano/genética , Parasitos/genética , Virulência
7.
Am Nat ; 199(2): 252-265, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35077273

RESUMO

AbstractThe ecological and evolutionary consequences of microbiome treatments aimed at protecting plants and animals against infectious disease are not well understood, even as such biological control measures become more common in agriculture and medicine. Notably, we lack information on the impacts of symbionts on pathogen fitness with which to project the consequences of competition for the evolution of virulence. To address this gap, we estimated fitness consequences for a common plant pathogen, Ustilago maydis, over differing virulence levels and when the host plant (Zea mays) is coinfected with a defensive symbiont (Fusarium verticillioides) and compared these fitness estimates to those obtained when the symbiont is absent. Here, virulence is measured as the reduction in the growth of the host caused by pathogen infection. Results of aster statistical models demonstrate that the defensive symbiont most negatively affects pathogen infection and that these effects propagate through subsequent stages of disease development to cause lower pathogen fitness across all virulence levels. Moreover, the virulence level at which pathogen fitness is maximal is higher in the presence of the defensive symbiont than in its absence. Thus, as expected from theory for multiple parasites, competition from the defensive symbiont may cause selection for increased pathogen virulence. More broadly, we consider that the evolutionary impacts of interactions between pathogens and microbial symbionts will depend critically on biological context and environment and that interactions among diverse microbial symbionts in spatially heterogeneous communities contribute to the maintenance of the highly diverse symbiotic functions observed in these communities.


Assuntos
Microbiota , Parasitos , Animais , Plantas , Simbiose , Virulência
8.
Proc Natl Acad Sci U S A ; 116(16): 7982-7989, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30948646

RESUMO

The emergence of new pathogenic fungi has profoundly impacted global biota, but the underlying mechanisms behind host shifts remain largely unknown. The endophytic insect pathogen Metarhizium robertsii evolved from fungi that were plant associates, and entomopathogenicity is a more recently acquired adaptation. Here we report that the broad host-range entomopathogen M. robertsii has 18 genes that are derived via horizontal gene transfer (HGT). The necessity of degrading insect cuticle served as a major selective pressure to retain these genes, as 12 are up-regulated during penetration; 6 were confirmed to have a role in penetration, and their collective actions are indispensable for infection. Two lipid-carrier genes are involved in utilizing epicuticular lipids, and a third (MrNPC2a) facilitates hemocoel colonization. Three proteases degraded the procuticular protein matrix, which facilitated up-regulation of other cuticle-degrading enzymes. The three lipid carriers and one of the proteases are present in all analyzed Metarhizium species and are essential for entomopathogenicity. Acquisition of another protease (MAA_01413) in an ancestor of broad host-range lineages contributed to their host-range expansion, as heterologous expression in the locust specialist Metarhizium acridum enabled it to kill caterpillars. Our work reveals that HGT was a key mechanism in the emergence of entomopathogenicity in Metarhizium from a plant-associated ancestor and in subsequent host-range expansion by some Metarhizium lineages.


Assuntos
Transferência Genética Horizontal/genética , Especificidade de Hospedeiro/genética , Metarhizium , Virulência/genética , Animais , Gafanhotos/microbiologia , Metarhizium/genética , Metarhizium/patogenicidade
9.
New Phytol ; 231(4): 1570-1585, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33997993

RESUMO

Heterogeneity for plant defences determines both the capacity of host populations to buffer the effect of infection and the pathogen´s fitness. However, little information is known on how host population structure for tolerance, a major plant defence, impacts the evolution of plant-pathogen interactions. By performing 10 serial passages of Turnip mosaic virus (TuMV) in Arabidopsis thaliana populations with varying proportion of tolerant genotypes simulating different structures for this trait, we analysed how host heterogeneity for this defence shapes the evolution of both virus multiplication, the effect of infection on plant fecundity and mortality, and plant tolerance and resistance. Results indicated that a higher proportion of tolerant genotypes in the host population promotes virus multiplication and reduces the effect of infection on plant mortality, but not on plant fecundity. These changes resulted in more effective plant tolerance to virus infection. Conversely, a lower proportion of tolerant genotypes reduced virus multiplication, boosting plant resistance. Our work for the first time provides evidence of the main role of host population structure for tolerance on pathogen evolution and on the subsequent feedback loops on plant defences.


Assuntos
Arabidopsis , Cucumovirus , Potyvirus , Arabidopsis/genética , Interações Hospedeiro-Patógeno , Doenças das Plantas , Replicação Viral
10.
BMC Evol Biol ; 19(1): 139, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286867

RESUMO

BACKGROUND: Pathogens evolve in an arms race, frequently evolving virulence that defeats resistance genes in their hosts. Infection of multiple hosts may accelerate this virulence evolution. Theory predicts that host diversity affects pathogen diversity, with more diverse hosts expected to harbour more diverse pathogens that reproduce sexually. We tested this hypothesis by comparing the microsatellite (SSR) genetic diversity of the barley leaf pathogen Pyrenophora teres f. teres (Ptt) from barley (monoculture) and barley grass (outbreeding). We also aim to investigate host specificity and attempt to track virulence on two barley cultivars, Maritime and Keel. RESULTS: Genetic diversity in barley Ptt populations was higher than in populations from barley grass. Barley Ptt populations also had higher linkage disequilibrium levels, indicating less frequent sexual reproduction, consistent with the Red Queen hypothesis theory that genetically diverse hosts should select for higher levels of sexual reproduction of the pathogen. SSR analyses indicate that host-associated Ptt populations do not share genotypes and have independent evolutionary histories. Pathogenicity studies showed host specificity as host-associated Ptt isolates could not cross-infect hosts. Minimum spanning network analyses indicated two major clusters of barley Ptt. One cluster represents Maritime virulent and isolates from Western Australia (WA). Low PhiPt population differentiation between WA populations and those from Maritime and Keel, indicated a WA origin of the Maritime and Keel virulences. The main minimum spanning network cluster is represented by a panmictic population structure, represented by isolates from all over Australia. CONCLUSIONS: Although barley Ptt populations are more diverse than barley grass Ptt populations, this may be a result of the size and number of founder Ptt populations to Australia, with larger and more barley Ptt populations introduced. More frequent sexual reproduction of Ptt on barley grass support the Red Queen Hypothesis and suggest evolutionary potential of pathogens on diverse hosts are high. Extensive gene flow of Ptt between regions in Australia is suggested to maintain a panmictic population structure, with human-mediated dispersal aiding in virulence evolution of Ptt on barley.


Assuntos
Ascomicetos/genética , Ascomicetos/fisiologia , Evolução Molecular , Hordeum/microbiologia , Especificidade de Hospedeiro/genética , Doenças das Plantas/microbiologia , Genótipo , Desequilíbrio de Ligação , Repetições de Microssatélites/genética
11.
Am Nat ; 193(1): E1-E14, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624111

RESUMO

In many taxa, there is a conflict between the sexes over mating rate. The outcome of sexually antagonistic coevolution depends on the costs of mating and natural selection against sexually antagonistic traits. A sexually transmitted infection (STI) changes the relative strength of these costs. We study the three-way evolutionary interaction among male persistence, female resistance, and STI virulence for two types of STIs: a viability-reducing STI and a reproduction-reducing STI. A viability-reducing STI escalates conflict between the sexes. This leads to increased STI virulence (i.e., full coevolution) if the costs of sexually antagonistic traits occur through viability but not through reproduction. In contrast, a reproduction-reducing STI de-escalates the sexual conflict, but STI virulence does not coevolve in response. We also investigated the establishment probability of STIs under different combinations of evolvability. Successful invasion by a viability-reducing STI becomes less likely if hosts (but not parasites) are evolvable, especially if only the female trait can evolve. A reproduction-reducing STI can almost always invade because it does not kill its host. We discuss how the evolution of host and parasite traits in a system with sexual conflict differs from a system with female mate choice.


Assuntos
Coevolução Biológica , Modelos Biológicos , Infecções Sexualmente Transmissíveis , Animais , Feminino , Masculino , Reprodução , Comportamento Sexual Animal , Virulência
12.
Parasitology ; 146(7): 897-902, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30777585

RESUMO

Why some parasites evolve and maintain extreme levels of virulence is a question that remains largely unanswered. A body of theory predicts that parasites that form long-lived spores able to persist in the environment evolve higher virulence, known as the sit and wait hypothesis. Such parasites can obliterate their local host population and wait in the environment for further hosts to arrive, reducing some of the costs of high virulence. On the other hand, some models predict the opposite to be true, that virulence and environmental persistence are both costly and traded off, the resource allocation hypothesis. I conducted a meta-analysis on published data on the relationship between environmental persistence and virulence collected to date. I first examined all data available to date and then conducted a smaller analysis focussing on just those studies testing the specific predictions of the sit and wait hypothesis. Empirical work supports both hypotheses; however, the direction of the effect is largely associated with parasite type. In both analyses, viruses tend to show evidence of resource allocation trade-offs, these traits are positively correlated in bacterial and fungal parasites.


Assuntos
Meio Ambiente , Interações Hospedeiro-Patógeno , Virulência , Animais , Bactérias/patogenicidade , Evolução Biológica , Fungos/patogenicidade , Humanos , Vírus/patogenicidade
13.
J Evol Biol ; 31(11): 1704-1714, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30107064

RESUMO

Emergent infectious diseases can have a devastating impact on host populations. The high selective pressures on both the hosts and the pathogens frequently lead to rapid adaptations not only in pathogen virulence but also host resistance following an initial outbreak. However, it is often unclear whether hosts will evolve to avoid infection-associated fitness costs by preventing the establishment of infection (here referred to as qualitative resistance) or by limiting its deleterious effects through immune functioning (here referred to as quantitative resistance). Equally, the evolutionary repercussions these different resistance mechanisms have for the pathogen are often unknown. Here, we investigate the co-evolutionary dynamics of pathogen virulence and host resistance following the epizootic outbreak of the highly pathogenic bacterium Mycoplasma gallisepticum in North American house finches (Haemorhous mexicanus). Using an evolutionary modelling approach and with a specific emphasis on the evolved resistance trait, we demonstrate that the rapid increase in the frequency of resistant birds following the outbreak is indicative of strong selection pressure to reduce infection-associated mortality. This, in turn, created the ecological conditions that selected for increased bacterial virulence. Our results thus suggest that quantitative host resistance was the key factor underlying the evolutionary interactions in this natural host-pathogen system.


Assuntos
Doenças das Aves/microbiologia , Tentilhões , Infecções por Mycoplasma/veterinária , Mycoplasma gallisepticum/patogenicidade , Animais , Evolução Biológica , Modelos Biológicos , Infecções por Mycoplasma/microbiologia , Mycoplasma gallisepticum/genética , Virulência/genética
14.
Parasitology ; 145(11): 1452-1457, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29547364

RESUMO

The microsporidian parasite Hamiltosporidium tvaerminnensis can infect Daphnia magna both horizontally (through environmental spores) and vertically (through parthenogenetic and sexually produced eggs). The spores of H. tvaerminnensis come in three distinguishable morphologies, which are thought to have different roles in the transmission of the parasite. In this study, we examined the role of the two most common spore morphologies (i.e. oval-shaped spores and pear-shaped spores) in horizontal transmission of H. tvaerminnensis. To this end, we infected hosts with solutions consisting of either mostly oval- or mostly pear-shaped spores, and quantified infection rates, parasite-induced host mortality and mean number of parasite spores produced per host. We found that spore morphology by itself did not influence infection rates and parasite-induced host mortality. Instead, host clone and parasite isolate interacted with spore morphology in shaping infection outcome and mortality. Thus, there appear to be strong genotype-by-genotype (G × G) interactions in this system. While there is no dispute that H. tvaerminnensis can transmit both vertically and horizontally, our findings do not support theoretical predictions that different spore morphologies hold different roles in horizontal transmission of H. tvaerminnensis.


Assuntos
Daphnia/parasitologia , Microsporídios não Classificados/fisiologia , Microsporidiose/transmissão , Esporos Fúngicos/fisiologia , Animais , Feminino , Genótipo , Interações Hospedeiro-Parasita , Microsporídios não Classificados/genética , Esporos Fúngicos/genética
15.
J Nematol ; 50(2): 79-90, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30451429

RESUMO

With recently discovered soybean cyst nematode (SCN) viruses, biological control of the nematodes is a theoretical possibility. This study explores the question of what kinds of viruses would make useful biocontrol agents, taking into account evolutionary and population dynamics. An agent-based model, Soybean Cyst Nematode Simulation (SCNSim), was developed to simulate within-host virulence evolution in a virus-nematode-soybean ecosystem. SCNSim was used to predict nematode suppression under a range of viral mutation rates, initial virulences, and release strategies. The simulation model suggested that virus-based biocontrol worked best when the nematodes were inundated with the viruses. Under lower infection prevalence, the viral burden thinned out rapidly due to the limited mobility and high reproductive rate of the SCN. In accordance with the generally accepted trade-off theory, SCNSim predicted the optimal initial virulence for the maximum nematode suppression. Higher initial virulence resulted in shorter lifetime transmission, whereas viruses with lower initial virulence values evolved toward avirulence. SCNSim also indicated that a greater viral mutation rate reinforced the virulence pathotype, suggesting the presence of a virulence threshold necessary to achieve biocontrol against SCN.

16.
Arch Microbiol ; 198(3): 241-50, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26757724

RESUMO

Virulence genes are distinct regions of DNA which are present in the genome of pathogenic bacteria and absent in nonpathogenic strains of the same or related species. Virulence genes are frequently associated with bacterial pathogenicity in genus Legionella. In the present study, an assay was performed to detect ten virulence genes, including iraA, iraB, lvrA, lvrB, lvhD, cpxR, cpxA, dotA, icmC and icmD in different pathogenicity islands of 47 Legionella reference strains, 235 environmental strains isolated from water, and 4 clinical strains isolated from the lung tissue of pneumonia patients. The distribution frequencies of these genes in reference or/and environmental L. pneumophila strains were much higher than those in reference non-L. pneumophila or/and environmental non-L. pneumophila strains, respectively. L. pneumophila clinical strains also maintained higher frequencies of these genes compared to four other types of Legionella strains. Distribution frequencies of these genes in reference L. pneumophila strains were similar to those in environmental L. pneumophila strains. In contrast, environmental non-L. pneumophila maintained higher frequencies of these genes compared to those found in reference non-L. pneumophila strains. This study illustrates the association of virulence genes with Legionella pathogenicity and reveals the possible virulence evolution of non-L. pneumophia strains isolated from environmental water.


Assuntos
Legionella/genética , Legionelose/microbiologia , Virulência/genética , Microbiologia da Água , Sequência de Bases , Genoma Bacteriano/genética , Ilhas Genômicas/genética , Humanos , Legionella/isolamento & purificação , Legionella/patogenicidade , Legionella pneumophila/genética , Legionella pneumophila/isolamento & purificação , Dados de Sequência Molecular , Alinhamento de Sequência
17.
Mol Biol Evol ; 31(11): 2913-28, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25086002

RESUMO

Ralstonia solanacearum, the causal agent of a lethal bacterial wilt plant disease, infects an unusually wide range of hosts. These hosts can further be split into plants where R. solanacearum is known to cause disease (original hosts) and those where this bacterium can grow asymptomatically (distant hosts). Moreover, this pathogen is able to adapt to many plants as supported by field observations reporting emergence of strains with enlarged pathogenic properties. To investigate the genetic bases of host adaptation, we conducted evolution experiments by serial passages of a single clone of the pathogen on three original and two distant hosts over 300 bacterial generations and then analyzed the whole-genome of nine evolved clones. Phenotypic analysis of the evolved clones showed that the pathogen can increase its fitness on both original and distant hosts although the magnitude of fitness increase was greater on distant hosts. Only few genomic modifications were detected in evolved clones compared with the ancestor but parallel evolutionary changes in two genes were observed in independent evolved populations. Independent mutations in the regulatory gene efpR were selected for in three populations evolved on beans, a distant host. Reverse genetic approaches confirmed that these mutations were associated with fitness gain on bean plants. This work provides a first step toward understanding the within-host evolutionary dynamics of R. solanacearum during infection and identifying bacterial genes subjected to in planta selection. The discovery of EfpR as a determinant conditioning host adaptation of the pathogen illustrates how experimental evolution coupled with whole-genome sequencing is a potent tool to identify novel molecular players involved in central life-history traits.


Assuntos
Adaptação Fisiológica/genética , Genes Bacterianos , Genes Reguladores , Genoma Bacteriano , Ralstonia solanacearum/genética , Ralstonia solanacearum/patogenicidade , Brassicaceae/microbiologia , Células Clonais , Fabaceae/microbiologia , Geraniaceae/microbiologia , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Mutação , Doenças das Plantas/microbiologia , Ralstonia solanacearum/metabolismo , Seleção Genética , Solanaceae/microbiologia , Virulência
18.
Proc Biol Sci ; 282(1814)2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26336170

RESUMO

Host resistance consists of defences that limit pathogen burden, and can be classified as either adaptations targeting recovery from infection or those focused upon infection avoidance. Conventional theory treats avoidance as a fixed strategy which does not vary from one interaction to the next. However, there is increasing empirical evidence that many avoidance strategies are triggered by external stimuli, and thus should be treated as phenotypically plastic responses. Here, we consider the implications of avoidance plasticity for host-pathogen coevolution. We uncover a number of predictions challenging current theory. First, in the absence of pathogen trade-offs, plasticity can restrain pathogen evolution; moreover, the pathogen exploits conditions in which the host would otherwise invest less in resistance, causing resistance escalation. Second, when transmission trades off with pathogen-induced mortality, plasticity encourages avirulence, resulting in a superior fitness outcome for both host and pathogen. Third, plasticity ensures the sterilizing effect of pathogens has consequences for pathogen evolution. When pathogens castrate hosts, selection forces them to minimize mortality virulence; moreover, when transmission trades off with sterility alone, resistance plasticity is sufficient to prevent pathogens from evolving to fully castrate.


Assuntos
Evolução Biológica , Interações Hospedeiro-Patógeno , Modelos Biológicos , Adaptação Fisiológica , Animais , Variação Genética , Infertilidade , Seleção Genética , Virulência
19.
Proc Biol Sci ; 282(1801): 20141734, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25589600

RESUMO

Long-distance animal migrations have important consequences for infectious disease dynamics. In some cases, migration lowers pathogen transmission by removing infected individuals during strenuous journeys and allowing animals to periodically escape contaminated habitats. Human activities are now causing some migratory animals to travel shorter distances or form sedentary (non-migratory) populations. We focused on North American monarch butterflies and a specialist protozoan parasite to investigate how the loss of migratory behaviours affects pathogen spread and evolution. Each autumn, monarchs migrate from breeding grounds in the eastern US and Canada to wintering sites in central Mexico. However, some monarchs have become non-migratory and breed year-round on exotic milkweed in the southern US. We used field sampling, citizen science data and experimental inoculations to quantify infection prevalence and parasite virulence among migratory and sedentary populations. Infection prevalence was markedly higher among sedentary monarchs compared with migratory monarchs, indicating that diminished migration increases infection risk. Virulence differed among parasite strains but was similar between migratory and sedentary populations, potentially owing to high gene flow or insufficient time for evolutionary divergence. More broadly, our findings suggest that human activities that alter animal migrations can influence pathogen dynamics, with implications for wildlife conservation and future disease risks.


Assuntos
Migração Animal , Apicomplexa/fisiologia , Comportamento Animal/fisiologia , Borboletas/fisiologia , Animais , México , Dinâmica Populacional , Estações do Ano , Estados Unidos
20.
Proc Biol Sci ; 282(1798): 20141069, 2015 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-25429011

RESUMO

The human papillomavirus (HPV) vaccines hold great promise for preventing several cancers caused by HPV infections. Yet little attention has been given to whether HPV could respond evolutionarily to the new selection pressures imposed on it by the novel immunity response created by the vaccine. Here, we present and theoretically validate a mechanism by which the vaccine alters the transmission-recovery trade-off that constrains HPV's virulence such that higher oncogene expression is favoured. With a high oncogene expression strategy, the virus is able to increase its viral load and infected cell population before clearance by the vaccine, thus improving its chances of transmission. This new rapid cell-proliferation strategy is able to circulate between hosts with medium to high turnover rates of sexual partners. We also discuss the importance of better quantifying the duration of challenge infections and the degree to which a vaccinated host can shed virus. The generality of the models presented here suggests a wider applicability of this mechanism, and thus highlights the need to investigate viral oncogenicity from an evolutionary perspective.


Assuntos
Evolução Molecular , Papillomaviridae/genética , Papillomaviridae/patogenicidade , Infecções por Papillomavirus/transmissão , Vacinas contra Papillomavirus/farmacologia , Virulência , Expressão Gênica , Humanos , Modelos Genéticos , Oncogenes , Papillomaviridae/fisiologia , Infecções por Papillomavirus/virologia , Parceiros Sexuais , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA