Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
FASEB J ; 35(6): e21548, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33956354

RESUMO

To determine whether ellagic acid (EA) induces the "beige remodeling" of white adipose tissue (WAT), we treated cold-exposed mice and mouse stromal vascular fraction (SVF) cells with EA, a phytochemical abundant in fruits and vegetables, in particular berries. We then investigated the mechanism of EA in beige remodeling with a particular focus on DRP1-mediated mitochondrial fission and SIRT3. EA induced the trans-differentiation of white adipocytes to beige adipocytes by promoting the expression of UCP1 and other brown and beige adipocytes/fat factors (PRDM16, UCP1, PGC1α, CD137, and TBX1) and mitochondrial dynamics-related factors (SIRT3, NRF1, CPT1ß, DRP1, and FIS1) in 3T3-L1/SVF cells, and these were confirmed in the inguinal WAT of a cold-exposed mouse model. The browning effect of EA was abolished by a potent DRP1 inhibitor Mdivi-1 or SIRT3 knockdown, suggesting that EA induces beige remodeling of WAT by regulating the mitochondrial dynamics and SIRT3.


Assuntos
Adipócitos Bege/fisiologia , Tecido Adiposo Branco/fisiologia , Ácido Elágico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Dinâmica Mitocondrial , Sirtuína 3/metabolismo , Adipócitos Bege/citologia , Adipócitos Bege/efeitos dos fármacos , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sirtuína 3/genética , Termogênese
2.
FASEB J ; 35(5): e21534, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33817830

RESUMO

The adipocyte precursors (APs) located in white adipose tissue (WAT) are functionally significant in adipose plasticity and browning. Modifying adipogenesis or WAT browning targeted on APs is a promising mechanism for anti-obesity drug. We herein explored the in vitro actions and mechanisms of glucose-dependent insulinotropic polypeptide (GIP), a gut-derived peptide, in human adipose-derived mesenchymal stem cells (hADSCs) isolated from omentum. The hADSCs were cotreated with 100 nM GIP with or without equimolar concentration of GIP3-42 (a GIP receptor antagonist), and subsequently examined in vitro. CCK-8, EdU incorporation, and flow cytometry assays were used to assess cellular proliferation. Annexin V FTIC/PI double stain, TUNEL staining, and Western blot were applied for apoptosis evaluation. Adipogenesis was reflected by Western blot, real-time PCR, Oil Red O staining, mitochondrial staining, and mitochondrial DNA analysis. Results showed that GIP promoted proliferation and inhibited apoptosis of hADSCs via pleiotropic effects. Besides, GIP facilitated de novo beige adipogenesis, by accelerating mitotic clonal expansion (MCE), upregulating core adipogenic regulators (C/EBPα and PPARγ), augmenting beige-related genes (UCP1, PGC1α, and PRDM16), increasing mitochondrial content and improving beige adipocyte functionalities. Above all, our study expands knowledge on the mechanisms of GIP modifying adipogenesis especially in inducing beige adipogenesis, and thus provides a theoretical support for clinical usage of GIP on obesity treatment.


Assuntos
Adipócitos Bege/citologia , Adipócitos/citologia , Adipogenia , Polipeptídeo Inibidor Gástrico/farmacologia , Fármacos Gastrointestinais/farmacologia , Células-Tronco Mesenquimais/citologia , Omento/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Diferenciação Celular , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Omento/efeitos dos fármacos , Omento/metabolismo , Transdução de Sinais
3.
Biochem Biophys Res Commun ; 545: 189-194, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33561654

RESUMO

The prevalence of obesity is increasing globally and is associated with many metabolic disorders, such as type 2 diabetes and cardiovascular diseases. In recent years, a number of studies suggest that promotion of white adipose browning represents a promising strategy to combat obesity and its related metabolic disorders. The aim of this study was to identify compounds that induce adipocyte browning and elucidate their mechanism of action. Among the 500 natural compounds screened, a small molecule named Rutaecarpine, was identified as a positive regulator of adipocyte browning both in vitro and in vivo. KEGG pathway analysis from RNA-seq data suggested that the AMPK signaling pathway was regulated by Rutaecarpine, which was validated by Western blot analysis. Furthermore, inhibition of AMPK signaling mitigated the browning effect of Rutaecaripine. The effect of Rutaecaripine on adipocyte browning was also abolished upon deletion of Prdm16, a downstream target of AMPK pathway. In collusion, Rutaecarpine is a potent chemical agent to induce adipocyte browning and may serve as a potential drug candidate to treat obesity.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Alcaloides Indólicos/farmacologia , Quinazolinas/farmacologia , Fatores de Transcrição/metabolismo , Adipócitos Bege/citologia , Adipócitos Brancos/citologia , Animais , Produtos Biológicos/farmacologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Termogênese/genética , Termogênese/fisiologia
4.
Biochem Biophys Res Commun ; 548: 211-216, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33647798

RESUMO

In the past decades, remarkable efforts have been made to unravel the regulation of adipose tissue metabolism, given the increasing prevalence of obesity and its huge impact on human health. Wnt signaling pathway is closely involved in this entity. As extracellular inhibitors to Wnt signaling, secreted protein Dickkopfs (Dkks) may be potential targets to combat obesity and related metabolic disorders. In this study, we showed that Dkk2 was a beige fat-enriched adipokine to regulate adipogenesis. Dkk2 was strikingly expressed in beige fat depot compared to classic white, brown, and subcutaneous fat. Dkk2 treatment inhibited adipogenesis in 3T3-L1 pre-adipocytes, C3H10T1/2 mesenchymal stem cells, and primary bone marrow mesenchymal stromal cells. Activation of the master adipogenic factor PPARγ by the synthetic Thiazolidinedione ligand rosiglitazone largely rescued the inhibition of adipogenesis by Dkk2. Furthermore, adenoviral overexpression of Dkk2 in the liver to mimic its gain-of-function showed minimal effect on whole-body metabolism. These results collectively suggest that Dkk2 is a first-in-class beige fat adipokine and functions mainly through a paracrine manner to inhibit adipogenesis rather than as an endocrine factor. Our findings aid a better understanding of beige fat function and regulation and further, provide a potential therapeutic target for treating obesity.


Assuntos
Adipogenia , Adipocinas/metabolismo , Tecido Adiposo Bege/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células 3T3-L1 , Adenoviridae/metabolismo , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Rosiglitazona/farmacologia
5.
FASEB J ; 34(5): 6854-6870, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32275102

RESUMO

Adipocytes are key players in maintaining energy homeostasis and are classified into two different categories: white and brown adipocytes. While white adipocytes store energy as triacylglycerols in lipid droplets, brown adipocytes combust excess chemical energy and release in the form of heat through uncoupled respiration. This characteristic phenomenon of brown fat attracts researchers and pharmacological industries to view brown fat as one of the potential therapeutic targets for obesity and associated metabolic disease. In the current study, we investigated the effect of a small molecule, sesaminol (SML) on brown fat activity and found that SML induces the thermogenic program in primary white adipocytes as well as chow diet fed mice. In particular, SML treatment to mice elevated mitochondrial complex proteins and the rate of oxygen consumption in brown and white fat. Administration of SML to high fat diet (HFD) challenged mice decreased weight gain, adiposity and cholesterol levels along with an increase of brown fat gene program in brown and white fat. Mechanistically, SML repressed the myogenic gene program in C2C12 myoblasts and increased all mitochondrial marker genes as appeared in brown adipose cells. Together, our results demonstrate that SML stimulates brown adipose function and protects mice against diet-induced weight gain.


Assuntos
Adipócitos Bege/efeitos dos fármacos , Adipócitos Marrons/efeitos dos fármacos , Dioxóis/farmacologia , Furanos/farmacologia , Desenvolvimento Muscular/efeitos dos fármacos , Adipócitos Bege/citologia , Adipócitos Bege/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Adipócitos Brancos/citologia , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Adipogenia/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Animais , Células Cultivadas , Reprogramação Celular/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Termogênese/efeitos dos fármacos , Termogênese/fisiologia , Aumento de Peso/efeitos dos fármacos
6.
Bull Exp Biol Med ; 171(6): 722-726, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34705171

RESUMO

We studied the effect of bacterial pathogen-associated molecular patterns and myokines on the secretion of adipokines by mesenchymal stem cells (MSC) and products of their adipogenic differentiation. The secretion of adiponectin, adipsin, leptin, and insulin by adipogenically differentiated cell cultures was quantitatively determined using multiplex ELISA. MSC obtained from the stromal vascular fraction of human subcutaneous adipose tissue were shown to secrete a known adipokine adipsin. The ability of white adipocytes to secrete significant amounts of insulin (in vitro) has been shown for the first time. Control cultures of white adipocytes secreted much higher levels of adiponectin, leptin, and insulin when compared to other adipocytes cultures. On the other hand, beige and brown adipocyte cultures secreted more adipsin than white adipocyte cultures. The influence of myokine ß-aminoisobutyric acid on the secretion of adipsin in MSC, white, beige, and brown adipocytes was also studied.


Assuntos
Adipócitos Bege/efeitos dos fármacos , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Adipocinas/farmacologia , Ácidos Aminoisobutíricos/farmacologia , Flagelina/farmacologia , Lipopolissacarídeos/farmacologia , Adipócitos Bege/citologia , Adipócitos Bege/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Adipócitos Brancos/citologia , Adipócitos Brancos/metabolismo , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/cirurgia , Diferenciação Celular/efeitos dos fármacos , Fator D do Complemento/genética , Fator D do Complemento/metabolismo , Regulação da Expressão Gênica , Humanos , Insulina/genética , Insulina/metabolismo , Leptina/genética , Leptina/metabolismo , Lipectomia/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Especificidade de Órgãos , Cultura Primária de Células
7.
Am J Physiol Endocrinol Metab ; 318(4): E453-E461, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31961706

RESUMO

Beige adipocytes have become a promising therapeutic target to combat obesity. Our senior author Dr. B. Xue previously discovered a transient but significant induction of beige adipocytes in mice during early postnatal development, which peaked at postnatal day (P) 20 and then disappeared thereafter. However, the physiological mechanism underlying the transient induction of the developmental beige cells remains mystery. Interestingly, there exists a postnatal surge of leptin in mice at P10 before the appearance of the developmental beige adipocytes. Given the neurotropic effect of leptin during neuronal development and its role in activating the sympathetic nervous system (SNS), we tested the hypothesis that postnatal leptin surge is required for the transient induction of developmental beige adipocytes through sympathetic innervation. Unlike wild-type (WT) mice that were able to acquire the developmentally induced beige adipocytes at P20, ob/ob mice had much less uncoupling protein 1 (UCP1)-positive multilocular cells in inguinal white adipose tissue at the same age. This was consistent with reduced expression of UCP1 mRNA and protein levels in white fat of ob/ob mice. In contrast, daily injection of ob/ob mice with leptin between P8 and P16, mimicking the postnatal leptin surge, largely rescued the ability of these mice to acquire the developmentally induced beige adipocytes at P20, which was associated with enhanced sympathetic nerve innervation assessed by whole mount adipose tissue immunostaining of tyrosine hydroxylase. Our data demonstrate that the postnatal leptin surge is essential for the developmentally induced beige adipocyte formation in mice, possibly through increasing sympathetic nerve innervation.


Assuntos
Adipócitos Bege/metabolismo , Tecido Adiposo/crescimento & desenvolvimento , Leptina/metabolismo , Adipócitos Bege/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/inervação , Envelhecimento , Animais , Relação Dose-Resposta a Droga , Feminino , Leptina/farmacologia , Masculino , Camundongos , Camundongos Obesos , Sistema Nervoso Simpático , Tirosina 3-Mono-Oxigenase/metabolismo , Proteína Desacopladora 1/metabolismo
8.
FASEB J ; 33(1): 844-856, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052487

RESUMO

Aging of white adipose tissue (WAT) is associated with reduced insulin sensitivity, which contributes to whole-body glucose intolerance. WAT aging in mice impairs cold-induced beige adipocyte recruitment (beiging), which has been attributed to the senescence of adipose progenitor cells. Tumor suppressor p53 has also been implicated in WAT aging. However, whether p53-related cellular aging in mature white adipocytes is causative of age-impaired WAT beiging remains unknown. It is also unclear whether transient p53 inhibition can rescue WAT beiging. Herein, we report that p53 increased in adipose tissues of 28-wk-old (aged) mice with impaired beiging capability. Cold exposure decreased p53 in beiging WAT of young mice but not in aged mice. In aged mice, inducible p53 ablation in differentiated adipocytes restored cold-induced WAT beiging and augmented whole-body energy expenditure and insulin sensitivity. Transient pharmacological inhibition of p53 led to the same beneficial effects. Mechanistically, cold exposure repressed autophagy in beiging WAT of young mice yet increased autophagy in aged WAT. p53-ablation reduced microtubule-associated protein light chain 3-mediated mitochondria clearance (mitophagy) and hence facilitated the increase of mitochondria during beiging. These findings suggest that p53-induced mitophagy in aged white adipocytes impedes WAT beiging and may be therapeutically targeted to improve insulin sensitivity in aged WAT.-Fu, W., Liu, Y., Sun, C., Yin, H. Transient p53 inhibition sensitizes aged white adipose tissue for beige adipocyte recruitment by blocking mitophagy.


Assuntos
Adipócitos Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Envelhecimento/metabolismo , Mitofagia , Proteína Supressora de Tumor p53/metabolismo , Adipócitos Bege/citologia , Adipócitos Bege/efeitos dos fármacos , Adiponectina/genética , Adiposidade , Animais , Benzotiazóis/farmacologia , Células Cultivadas , Temperatura Baixa , Metabolismo Energético , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Sirolimo/farmacologia , Tolueno/análogos & derivados , Tolueno/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores
9.
Arch Toxicol ; 94(9): 3087-3103, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32683515

RESUMO

Triphenyl phosphate (TPhP) is an environmental PPARγ ligand, and growing evidence suggests that it is a metabolic disruptor. We have shown previously that the structurally similar ligand, tributyltin, does not induce brite adipocyte gene expression. Here, using in vivo and in vitro models, we tested the hypothesis that TPhP is a selective PPARγ ligand, which fails to induce brite adipogenesis. C57BL/6 J male mice were fed either a low or very high-fat diet for 13 weeks. From weeks 7-13, mice were injected intraperitoneally, daily, with vehicle, rosiglitazone (Rosi), or TPhP (10 mg/kg). Compared to Rosi, TPhP did not induce expression of browning-related genes (e.g. Elovl3, Cidea, Acaa2, CoxIV) in mature adipocytes isolated from inguinal adipose. To determine if this resulted from an effect directly on the adipocytes, 3T3-L1 cells and primary human preadipocytes were differentiated into adipocytes in the presence of Rosi or TPhP. Rosi, but not TPhP, induced expression of brite adipocyte genes, mitochondrial biogenesis and cellular respiration. Further, Rosi and TPhP-induced distinct proteomes and phosphoproteomes; Rosi enriched more regulatory pathways related to fatty acid oxidation and mitochondrial proteins. We assessed the role of phosphorylation of PPARγ in these differences in 3T3-L1 cells. Only Rosi protected PPARγ from phosphorylation at Ser273. TPhP gained the ability to stimulate brite adipocyte gene expression in the presence of the CDK5 inhibitor and in 3T3-L1 cells expressing alanine at position 273. We conclude that TPhP is a selective PPARγ modulator that fails to protect PPARγ from phosphorylation at ser273.


Assuntos
Adipócitos Bege/efeitos dos fármacos , Organofosfatos/toxicidade , PPAR gama/metabolismo , Células 3T3-L1 , Adipócitos , Adipogenia/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Diferenciação Celular , Camundongos , Rosiglitazona/farmacologia , Testes de Toxicidade
10.
J Sci Food Agric ; 100(6): 2389-2398, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31916584

RESUMO

BACKGROUND: Promoting brown and beige adipogenesis contributes to adaptive thermogenesis, which provides a defense against obesity and related disorders. Apple polyphenols (APs) play a significant role in treating variety of metabolic diseases. This study was conducted to determine the effects of APs on the development of brown and beige adipocytes and thermogenesis and investigate whether these effects are mediated by adenosine monophosphate-activated protein kinase (AMPK). High-fat diet (HFD)-induced obese mice and differentiated 3T3-L1 adipocytes were subjected to APs treatment. The thermogenic program and associated regulatory factors, and the involvement of AMPKα was assessed. RESULTS: Dietary APs supplementation reduced adiposity and improved insulin sensitivity in HFD-induced obese mice. Moreover, APs increased the oxygen consumption and heat production and decreased respiratory exchange ratio, which were accompanied by the upregulation of thermogenic genes expression and the activation of AMPKα in brown fat and inguinal white fat. Further, APs treatment directly increased expression of brown adipogenic markers and induced phosphorylation of AMPKα in differentiated 3T3-L1 adipocytes, whereas the beneficial effects of APs were reversed by AMPK inhibition. CONCLUSION: Our results provide new insights into the function of APs in regulating brown/beige adipogenesis and adaptive thermogenesis and suggest the potential application of APs in the prevention and therapeutics of obesity and associated metabolic diseases. © 2020 Society of Chemical Industry.


Assuntos
Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Polifenóis/farmacologia , Termogênese/efeitos dos fármacos , Células 3T3-L1 , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Diferenciação Celular , Dieta , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Resistência à Insulina , Masculino , Malus/química , Camundongos , Camundongos Endogâmicos C57BL
11.
Biochem Biophys Res Commun ; 509(4): 1001-1007, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30654939

RESUMO

Obesity is a serious health challenge in the world, and searching effective drugs to cure obesity is of great importance. 1-Deoxynojirimycin (DNJ) is extracted from mulberry leaves and acts as an α-glucosidase inhibitor to lower blood glucose. Recent studies demonstrated that it also has anti-obesity effect, but the mechanisms remain unknown. In our present study, we mainly examined the effects of DNJ on beige remodeling of 3T3-L1 preadipocytes. We observed that DNJ didn't affect the mRNA levels of fatty acid binding protein 4 (aP2), peroxisome proliferator-activated receptor γ (PPARγ), preadipocyte factor-1 (Pref-1) as well as the mitochondrial uncoupling protein 1 (UCP1), PR domain containing protein 16 (PRDM16), transmembrane protein 26 (TMEM26) in undifferentiated preadipocytes. But after inducing 3T3-L1 preadipocytes to differentiation with white or beige adipogenic medium, DNJ significantly reduced aP2, PPARγ and Pref-1 expressions, while up-regulated the expressions of UCP1, PRDM16 and TMEM26, accompanying with decreased lipid deposition. The ratio of p-AMPK/AMPK was up-regulated by DNJ (10 µM) treatment for 10 days, and the effects of DNJ on p-AMPK/AMPK, UCP1 and PRDM16 could be blocked by AMPK inhibitor Compound C. These results demonstrated that hypoglycemic agent DNJ could suppress the adipogenesis during the differentiation of white preadipocytes, and promote the switch of white preadipocytes to beige adipocytes via activating AMPK, which provided new mechanisms for explaining the benefits of DNJ on obesity-related disorders.


Assuntos
1-Desoxinojirimicina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adipócitos Bege/metabolismo , Adipócitos/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases/farmacologia , Obesidade/tratamento farmacológico , 1-Desoxinojirimicina/uso terapêutico , Células 3T3-L1 , Adipócitos Bege/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Animais , Diferenciação Celular , Inibidores de Glicosídeo Hidrolases/uso terapêutico , Hipoglicemiantes/farmacologia , Camundongos , Regulação para Cima/efeitos dos fármacos
12.
Int J Mol Sci ; 20(20)2019 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-31614705

RESUMO

Adipose tissue is traditionally categorized into white and brown relating to their function and morphology. The classical white adipose tissue builds up energy in the form of triglycerides and is useful for preventing fatigue during periods of low caloric intake and the brown adipose tissue more energetically active, with a greater number of mitochondria and energy production in the form of heat. Since adult humans possess significant amounts of active brown fat depots and its mass inversely correlates with adiposity, brown fat might play an important role in human obesity and energy homeostasis. New evidence suggests two types of thermogenic adipocytes with distinct developmental and anatomical features: classical brown adipocytes and beige adipocytes. Beige adipocyte has recently attracted special interest because of its ability to dissipate energy and the possible ability to differentiate themselves from white adipocytes. The presence of brown and beige adipocyte in human adults has acquired attention as a possible therapeutic intervention for metabolic diseases. Importantly, adult human brown appears to be mainly composed of beige-like adipocytes, making this cell type an attractive therapeutic target for obesity and obesity-related diseases, such as atherosclerosis, arterial hypertension and diabetes mellitus type 2. Because many epigenetics changes can affect beige adipocyte differentiation from adipose progenitor cells, the knowledge of the circumstances that affect the development of beige adipocyte cells may be important to new pathways in the treatment of metabolic diseases. New molecules have emerged as possible therapeutic targets, which through the impulse to develop beige adipocytes can be useful for clinical studies. In this review will discuss some recent observations arising from the unique physiological capacity of these cells and their possible role as ways to treat obesity and diabetes mellitus type 2.


Assuntos
Adipócitos Bege/metabolismo , Doenças Metabólicas/metabolismo , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/fisiologia , Animais , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Exercício Físico , Humanos , Doenças Metabólicas/tratamento farmacológico , Termogênese
13.
Biochem Biophys Res Commun ; 501(1): 9-15, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29654753

RESUMO

A close relationship between epigenetic regulation and obesity has been demonstrated in several recent studies. Histone methyltransferase enhancer of Zeste homolog 2 (Ezh2), which mainly catalyzes trimethylation of histone H3K27 to form H3K27me3 was found to be required for the differentiation of white and brown adipocytes in vitro. Here, we investigated the effects of the Ezh2-specific inhibitor GSK126 in a mouse model of obesity induced by a high-fat diet (HFD). We found that GSK126 treatment reduced body fat, improved glucose tolerance, increased lipolysis and improved cold tolerance in mice by promoting the differentiation of thermogenic beige adipocytes. Moreover, we discovered that GSK126 inhibited the differentiation of white adipocytes, and the decrease of Ezh2 enzymatic activity and H3K27me3 also changed the morphology of brown adipocytes but did not alter the expression of thermogenic genes in these cells. Our results indicated that GSK126 was a novel chemical inducer of beige adipocytes and may be a potential therapeutic agent for the management of obesity. Furthermore, they also prompted that Ezh2 and H3K27me3 play different roles in the differentiation of the white, brown, and beige adipocytes in vivo.


Assuntos
Adipócitos Bege/efeitos dos fármacos , Indóis/farmacologia , Obesidade/tratamento farmacológico , Piridonas/farmacologia , Adipócitos Bege/metabolismo , Adipócitos Bege/patologia , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Glicemia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Epigênese Genética/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/patologia , Termogênese/efeitos dos fármacos , Termogênese/genética
14.
FASEB J ; 31(10): 4612-4622, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28679528

RESUMO

Clinically, low and moderate alcohol intake improves human health with protection against metabolic syndromes, including type 2 diabetes; however, mechanisms that are associated with these effects remain to be elucidated. The aims of this study were to investigate the effects of moderate alcohol intake on thermogenic brown/beige adipocyte formation and glucose and lipid homeostasis, as well as the involvement of retinoic acid (RA) signaling in the entire process. C57BL6 male mice were supplemented with 8% (w/v) alcohol in water for 1 or 4 mo. Alcohol intake prevented body weight gain, induced the formation of uncoupling protein 1-positive beige adipocytes in white adipose tissue, and increased thermogenesis in mice, which is associated with decreased serum glucose and triacylglycerol levels. Mechanistically, alcohol intake increased RA levels in serum and adipose tissue, which was associated with increased expression of aldehyde dehydrogenase family 1 subfamily A1 (Aldh1a1). When RA receptor-α signaling was conditionally blocked in platelet-derived growth factor receptor-α-positive adipose progenitors, the effects of alcohol on beige adipogenesis were largely abolished. Finally, moderate alcohol prevented high-fat diet-induced obesity and metabolic dysfunction. In conclusion, moderate alcohol intake induces thermogenic brown/beige adipocyte formation and promotes glucose and lipid oxidation via elevation of RA signaling.-Wang, B., Wang, Z., de Avila, J. M., Zhu, M.-J., Zhang, F., Gomez, N. A., Zhao, L., Tian, Q., Zhao, J., Maricelli, J., Zhang, H., Rodgers, B. D., Du, M. Moderate alcohol intake induces thermogenic brown/beige adipocyte formation via elevating retinoic acid signaling.


Assuntos
Adipócitos Bege/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Álcoois/farmacologia , Termogênese/efeitos dos fármacos , Adipócitos Bege/metabolismo , Adipogenia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Obesidade/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tretinoína/metabolismo
15.
Arch Toxicol ; 92(9): 2859-2874, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30027469

RESUMO

Tributyltin (TBT), a peroxisome proliferator-activated receptor γ (PPARγ)/retinoid X receptor (RXR) ligand and founding member of the environmental obesogen chemical class, induces adipocyte differentiation and suppresses bone formation. A growing number of environmental PPARγ ligands are being identified. However, the potential for environmental PPARγ ligands to induce adverse metabolic effects has been questioned because PPARγ is a therapeutic target in treatment of type II diabetes. We evaluated the molecular consequences of TBT exposure during bone marrow multipotent mesenchymal stromal cell (BM-MSC) differentiation in comparison to rosiglitazone, a therapeutic PPARγ ligand, and LG100268, a synthetic RXR ligand. Mouse primary BM-MSCs (female, C57BL/6J) undergoing bone differentiation were exposed to maximally efficacious and human relevant concentrations of rosiglitazone (100 nM), LG100268 (100 nM) or TBT (80 nM) for 4 days. Gene expression was assessed using microarrays, and in silico functional annotation was performed using pathway enrichment analysis approaches. Pathways related to osteogenesis were downregulated by all three ligands, while pathways related to adipogenesis were upregulated by rosiglitazone and TBT. However, pathways related to mitochondrial biogenesis and brown-in-white (brite) adipocyte differentiation were more significantly upregulated in rosiglitazone-treated than TBT-treated cells. The lack of induction of genes involved in adipocyte energy dissipation by TBT was confirmed by an independent gene expression analysis in BM-MSCs undergoing adipocyte differentiation and by analysis of a publically available 3T3 L1 data set. Furthermore, rosiglitazone, but not TBT, induced mitochondrial biogenesis and respiration. This study is the first to show that an environmental PPARγ ligand has a limited capacity to induce health-promoting activities of PPARγ.


Assuntos
Adipócitos Bege/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos de Trialquitina/toxicidade , Células 3T3-L1 , Adipócitos Bege/metabolismo , Animais , Células da Medula Óssea , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/genética , PPAR gama/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Rosiglitazona/farmacologia , Transcrição Gênica/efeitos dos fármacos
16.
J Physiol ; 595(5): 1547-1562, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27891610

RESUMO

KEY POINTS: Maternal high-fat diet impairs brown adipocyte function and correlates with obesity in offspring. Maternal resveratrol administration recovers metabolic activity of offspring brown adipose tissue. Maternal resveratrol promotes beige adipocyte development in offspring white adipose tissue. Maternal resveratrol intervention protects offspring against high-fat diet-induced obesity. ABSTRACT: Promoting beige/brite adipogenesis and thermogenic activity is considered as a promising therapeutic approach to reduce obesity and metabolic syndrome. Maternal obesity impairs offspring brown adipocyte function and correlates with obesity in offspring. We previously found that dietary resveratrol (RES) induces beige adipocyte formation in adult mice. Here, we evaluated further the effect of resveratrol supplementation of pregnant mice on offspring thermogenesis and energy expenditure. Female C57BL/6 J mice were fed a control diet (CON) or a high-fat diet (HFD) with or without 0.2% (w/w) RES during pregnancy and lactation. Male offspring were weaned onto a HFD and maintained on this diet for 11 weeks. The offspring thermogenesis and related regulatory factors in adipose tissue were evaluated. At weaning, HFD offspring had lower thermogenesis in brown and white adipose tissues compared with CON offspring, which was recovered by maternal RES supplementation, along with the appearance of multilocular brown/beige adipocytes and elevated thermogenic gene expression. Adult offspring of RES-treated mothers showed increased energy expenditure and insulin sensitivity when on an obesogenic diet compared with HFD offspring. The elevated metabolic activity was correlated with enhanced brown adipose function and white adipose tissue browning in HFD+RES compared with HFD offspring. In conclusion, RES supplementation of HFD-fed dams during pregnancy and lactation promoted white adipose browning and thermogenesis in offspring at weaning accompanied by persistent beneficial effects in protecting against HFD-induced obesity and metabolic disorders.


Assuntos
Adipócitos Bege/efeitos dos fármacos , Adipócitos Marrons/efeitos dos fármacos , Dieta Hiperlipídica , Obesidade/prevenção & controle , Estilbenos/farmacologia , Adipócitos Bege/metabolismo , Adipócitos Marrons/metabolismo , Animais , Metabolismo Energético/efeitos dos fármacos , Feminino , Masculino , Camundongos , Gravidez , Resveratrol , Termogênese/efeitos dos fármacos
17.
Am J Physiol Endocrinol Metab ; 310(8): E676-E687, 2016 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-26884382

RESUMO

Emergence of thermogenic adipocytes such as brown and beige adipocytes is critical for whole body energy metabolism. Promoting the emergence of these adipocytes, which increase energy expenditure, could be a viable strategy in treating obesity and its related diseases. However, little is known regarding the mechanisms that regulate the emergence of these adipocytes in obese adipose tissue. Here, we demonstrated that classically activated macrophages (M1 Mϕ) suppress the induction of thermogenic adipocytes in obese adipose tissues of mice. Cold exposure significantly induced the expression levels of uncoupling protein-1 (UCP1), which is a mitochondrial protein unique in thermogenic adipocytes, in C57BL/6 mice fed a normal diet. However, UCP1 induction was significantly suppressed in adipose tissues of C57BL/6 mice fed a high-fat diet, into which M1 Mϕ infiltrated. Depletion of M1 Mϕ using clodronate liposomes eliminated the suppressive effect and markedly reduced the mRNA level of tumor necrosis factor-α (TNFα) in the adipose tissues. Importantly, consistent with the observed changes in the expression levels of marker genes for thermogenic adipocytes, combination treatment of clodronate liposome and cold exposure resulted in metabolic benefits such as lowered body weight and blood glucose level in obese mice. Moreover, intraperitoneal injection of recombinant TNFα protein suppressed UCP1 induction in lean adipose tissues of mice. Collectively, our data indicate that infiltrated M1 Mϕ suppress the induction of thermogenic adipocytes in obese adipose tissues via TNFα. This report suggests that inflammation induced by infiltrated Mϕ could cause not only insulin resistance but also reduction of energy expenditure in adipose tissues.


Assuntos
Tecido Adiposo/metabolismo , Diferenciação Celular/imunologia , Resistência à Insulina/imunologia , Macrófagos/imunologia , Obesidade/metabolismo , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Proteína Desacopladora 1/genética , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Ácido Clodrônico/farmacologia , Temperatura Baixa , Dieta Hiperlipídica , Metabolismo Energético/imunologia , Immunoblotting , Imuno-Histoquímica , Lipossomos , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/imunologia , RNA Mensageiro/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Termogênese , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Proteína Desacopladora 1/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo
18.
Biochem Biophys Res Commun ; 478(2): 689-95, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27498007

RESUMO

The accumulation of fat, which results in obesity, is related to many metabolic disorders. Besides white and brown adipose tissue, beige adipose tissue has recently been recognized as a new type of accumulated fat. Mesenchymal stem cells (MSCs) have been shown to differentiate into brown adipocytes. Through analyzing levels of mRNA and protein markers associated with beige adipocyte, we found concomitant beige adipocyte differentiation upon induction of MSCs into brown adipocytes in a defined medium containing triiodothyronine, insulin, dexamethasone, and indomethacin. Moreover, we found that protein kinase A (PKA) modulators regulated MSC differentiation into brown or beige adipocytes. Activation of PKA by isobutylmethylxanthine or forskolin increased brown adipocyte differentiation and reduced beige adipocyte differentiation, while inactivation of PKA by KT-5720 or SC-3010 or the knockdown of PKA downstream cAMP response element-binding protein (CREB) decreased brown adipocyte differentiation and increased beige adipocyte differentiation. We also showed that increased brown adipocyte differentiation was accompanied by an increase in mitochondrial mass. In conclusion, we propose a model of beige/brown co-differentiation in MSCs and develop a method for controlling this differentiation via PKA modulation.


Assuntos
Adipócitos Bege/efeitos dos fármacos , Adipócitos Marrons/efeitos dos fármacos , Meios de Cultura/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , 1-Metil-3-Isobutilxantina/farmacologia , Adipócitos Bege/citologia , Adipócitos Bege/metabolismo , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Carbazóis/farmacologia , Diferenciação Celular/efeitos dos fármacos , Colforsina/farmacologia , Meios de Cultura/química , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/antagonistas & inibidores , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dexametasona/farmacologia , Regulação da Expressão Gênica , Humanos , Indometacina/farmacologia , Insulina/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Cultura Primária de Células , Pirróis/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Tri-Iodotironina/farmacologia
19.
Nat Aging ; 4(6): 839-853, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858606

RESUMO

Thermogenic beige adipocytes are recognized as potential therapeutic targets for combating metabolic diseases. However, the metabolic advantages that they offer are compromised with aging. Here we show that treating mice with estrogen (E2), a hormone that decreases with age, can counteract the age-related decline in beige adipogenesis when exposed to cold temperature while concurrently enhancing energy expenditure and improving glucose tolerance in mice. Mechanistically, we found that nicotinamide phosphoribosyl transferase (NAMPT) plays a pivotal role in facilitating the formation of E2-induced beige adipocytes, which subsequently suppresses the onset of age-related endoplasmic reticulum (ER) stress. Furthermore, we found that targeting NAMPT signaling, either genetically or pharmacologically, can restore the formation of beige adipocytes by increasing the number of perivascular adipocyte progenitor cells. Conversely, the absence of NAMPT signaling prevents this process. Together, our findings shed light on the mechanisms regulating the age-dependent impairment of beige adipocyte formation and underscore the E2-NAMPT-controlled ER stress pathway as a key regulator of this process.


Assuntos
Adipócitos Bege , Adipogenia , Envelhecimento , Estresse do Retículo Endoplasmático , Estrogênios , Nicotinamida Fosforribosiltransferase , Nicotinamida Fosforribosiltransferase/metabolismo , Animais , Adipogenia/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Camundongos , Envelhecimento/efeitos dos fármacos , Envelhecimento/fisiologia , Estrogênios/metabolismo , Estrogênios/farmacologia , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Feminino , Camundongos Endogâmicos C57BL , Metabolismo Energético/efeitos dos fármacos
20.
Biochim Biophys Acta Mol Basis Dis ; 1867(5): 166099, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33556486

RESUMO

Endoplasmic reticulum (ER) stress is closely associated with various metabolic diseases, such as obesity and diabetes. Development of beige/brite adipocytes increases thermogenesis and helps to reduce obesity. Although the relationship between ER stress and white adipocytes has been studied considerably, the possible role of ER stress and the unfolded protein response (UPR) induction in beige adipocytes differentiation remain to be investigated. In this study we investigated how ER stress affected beige adipocytes differentiation both in vitro and in vivo. Phosphorylation of eIF2α was transiently decreased in the early phase (day 2), whereas it was induced at the late phase with concomitant induction of C/EBP homologous protein (CHOP) during beige adipocytes differentiation. Forced expression of CHOP inhibited the expression of beige adipocytes markers, including Ucp1, Cox8b, Cidea, Prdm16, and Pgc-1α, following the induction of beige adipocytes differentiation. When ER stress was reduced by the chemical chaperone tauroursodeoxycholic acid (TUDCA), the expression of the beige adipocytes marker uncoupling protein 1 (UCP1) was significantly enhanced in inguinal white adipose tissue (iWAT) and high fat diet (HFD)-induced abnormal metabolic phenotype was improved. In summary, we found that ER stress and the UPR induction were closely involved in beige adipogenesis. These results suggest that modulating ER stress could be a potential therapeutic intervention against metabolic dysfunctions via activation of iWAT browning.


Assuntos
Adipócitos Bege/citologia , Diferenciação Celular , Dieta Hiperlipídica/efeitos adversos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Síndrome Metabólica/prevenção & controle , Obesidade/complicações , Ácido Tauroquenodesoxicólico/farmacologia , Adipócitos Bege/efeitos dos fármacos , Adipogenia , Animais , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Transdução de Sinais , Termogênese , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA