Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Appl Toxicol ; 42(6): 1067-1077, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34967033

RESUMO

Anisodamine is one of the major components of the tropine alkaloid family and is widely used in the treatment of pain, motion sickness, pupil dilatation, and detoxification of organophosphorus poisoning. As a muscarinic receptor antagonist, the low toxicity and moderate drug effect of anisodamine often result in high doses for clinical use, making it important to fully investigate its toxicity. In this study, zebrafish embryos were exposed to 1.3-, 2.6-, and 5.2-mM anisodamine for 7 days to study the toxic effects of drug exposure on pigmentation, mineral density, craniofacial area, and eye development. The results showed that exposure to anisodamine at 1.3 mM resulted in cranial malformations and abnormal pigmentation in zebrafish embryos; 2.6- and 5.2-mM anisodamine resulted in significant eye development defects and reduced bone density in zebrafish embryos. The associated toxicities were correlated with functional development of neural crest cells through gene expression (col1a2, ddb1, dicer1, mab21l1, mab21l2, sox10, tyrp1b, and mitfa) in the dose of 5.2-mM exposed group. In conclusion, this study provides new evidence of the developmental toxicity of high doses of anisodamine in aqueous solutions to organisms and provides a warning for the safe use of this drug.


Assuntos
Alcaloides de Solanáceas , Peixe-Zebra , Animais , Embrião não Mamífero , Minerais/metabolismo , Minerais/farmacologia , Pigmentação , Alcaloides de Solanáceas/metabolismo , Alcaloides de Solanáceas/farmacologia , Alcaloides de Solanáceas/uso terapêutico , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
2.
BMC Plant Biol ; 21(1): 60, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482727

RESUMO

BACKGROUND: Glycoalkaloids are bioactive compounds that contribute to the defence response of plants against herbivore attack and during pathogenesis. Solanaceous plants, including cultivated and wild potato species, are sources of steroidal glycoalkaloids. Solanum plants differ in the content and composition of glycoalkaloids in organs. In wild and cultivated potato species, more than 50 steroidal glycoalkaloids were recognized. Steroidal glycoalkaloids are recognized as potential allelopathic/phytotoxic compounds that may modify the growth of target plants. There are limited data on the impact of the composition of glycoalkaloids on their phytotoxic potential. RESULTS: The presence of α-solasonine and α-solamargine in potato leaf extracts corresponded to the high phytotoxic potential of the extracts. Among the differentially expressed genes between potato leaf bulks with high and low phytotoxic potential, the most upregulated transcripts in sample of high phytotoxic potential were anthocyanin 5-aromatic acyltransferase-like and subtilisin-like protease SBT1.7-transcript variant X2. The most downregulated genes were carbonic anhydrase chloroplastic-like and miraculin-like. An analysis of differentially expressed proteins revealed that the most abundant group of proteins were those related to stress and defence, including glucan endo-1,3-beta-glucosidase acidic isoform, whose expression level was 47.96× higher in potato leaf extract with low phytotoxic. CONCLUSIONS: The phytotoxic potential of potato leaf extract possessing low glycoalkaloid content is determined by the specific composition of these compounds in leaf extract, where α-solasonine and α-solamargine may play significant roles. Differentially expressed gene and protein profiles did not correspond to the glycoalkaloid biosynthesis pathway in the expression of phytotoxic potential. We cannot exclude the possibility that the phytotoxic potential is influenced by other compounds that act antagonistically or may diminish the glycoalkaloids effect.


Assuntos
Compostos Fitoquímicos/metabolismo , Extratos Vegetais/análise , Proteoma , Alcaloides de Solanáceas/metabolismo , Solanum/genética , Transcriptoma , Quimera , Perfilação da Expressão Gênica , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteômica , Solanum/química , Solanum/metabolismo , Toxinas Biológicas/metabolismo
3.
Phytother Res ; 34(1): 201-213, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31823440

RESUMO

Nasopharyngeal carcinoma (NPC) is a common head and neck malignancy with higher incidence in Southern China and Southeast Asia. Solamargine (SM), a steroidal alkaloid glycoside, has been shown to have anticancer properties. However, the underlying mechanism involved remains undetermined. In this study, we showed that SM inhibited the growth of NPC cells. Mechanistically, we found that solamargine decreased lncRNA colon cancer-associated transcript-1 (CCAT1) and increased miR7-5p expression. There was a reciprocal interaction of CCAT1 and miR7-5p. In addition, SM inhibited the expression of SP1 protein and promoter activity, which was strengthened by miR7-5p mimics and inhibited by overexpressed CCAT1. MiR7-5p could bind to 3'-UTR of SP1 and attenuated SP1 gene expression. Exogenously expressed SP1 feedback resisted SM-increased miR7-5p expression and more importantly reversed SM-inhibited growth of NPC cells. Finally, SM inhibited NPC tumor growth in vivo. Collectively, our results show that SM inhibits the growth of NPC cells through reciprocal regulation of CCAT1 and miR7-5p, followed by inhibition of SP1 gene expression in vitro and in vivo. The interregulation and correlation among CCAT1, miR7-5p and SP1, and the feedback regulatory loop unveil the novel molecular mechanism underlying the overall responses of SM in anti-NPC.


Assuntos
Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/metabolismo , Carcinoma Nasofaríngeo/genética , Alcaloides de Solanáceas/metabolismo , Fator de Transcrição Sp1/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , China , Modelos Animais de Doenças , Humanos , Camundongos , Transfecção
4.
Plant J ; 94(6): 975-990, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29569783

RESUMO

Steroidal glycoalkaloids (SGAs) are specialized anti-nutritional metabolites that accumulate in Solanum lycopersicum (tomato) and Solanum tuberosum (potato). A series of SGA biosynthetic genes is known to be upregulated in Solanaceae species by jasmonate-responsive Ethylene Response Factor transcription factors, including JRE4 (otherwise known as GAME9), but the exact regulatory significance in planta of each factor has remained unaddressed. Here, via TILLING-based screening of an EMS-mutagenized tomato population, we isolated a JRE4 loss-of-function line that carries an amino acid residue missense change in a region of the protein important for DNA binding. In this jre4 mutant, we observed downregulated expression of SGA biosynthetic genes and decreased SGA accumulation. Moreover, JRE4 overexpression stimulated SGA production. Further characterization of jre4 plants revealed their increased susceptibility to the generalist herbivore Spodoptera litura larvae. This susceptibility illustrates that herbivory resistance is dependent on JRE4-mediated defense responses, which include SGA accumulation. Ethylene treatment attenuated the jasmonate-mediated JRE4 expression induction and downstream SGA biosynthesis in tomato leaves and hairy roots. Overall, this study indicated that JRE4 functions as a primary master regulator of SGA biosynthesis, and thereby contributes toward plant defense against chewing insects.


Assuntos
Proteínas de Plantas/metabolismo , Alcaloides de Solanáceas/metabolismo , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Animais , Regulação da Expressão Gênica de Plantas , Herbivoria , Larva , Solanum lycopersicum/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Spodoptera , Fatores de Transcrição/fisiologia
5.
FEMS Yeast Res ; 15(6)2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26162798

RESUMO

Candida albicans undergoes yeast-to-hyphal transition that has been recognized as a virulence factor as well as the key point for the development of mature biofilm. In this study, we found that a natural product, solasodine-3-O-ß-D-glucopyranoside (SG), a steroidal alkaloid glycoside, isolated from Solanum. nigrum L., could attenuate the virulence of C. albicans by inhibiting the adhesion and morphological transition. Moreover, SG dramatically inhibited the biofilm formation and displayed killing activity against the mature biofilm. In vivo study using Caenorhabditis elegans showed that SG prolonged the survival time of C. albicans infected worms. The mechanism investigation revealed that SG could inhibit the expression of adhesions and hyphae-specific genes by regulating Ras-cAMP-PKA signaling pathway. The inhibitory effects on yeast-to-hyphal conversion and biofilm formation caused by SG could be rescued by addition of exogenerous cAMP, suggesting that the retarded cAMP synthesis is responsible for these actions. Taken together, our work uncovers the underlying mechanism of SG-dependent inhibition of the yeast-to-hyphal switch and biofilm formation and provides a potential application in treating relevant fungal infections.


Assuntos
Antifúngicos/metabolismo , Biofilmes/efeitos dos fármacos , Produtos Biológicos/metabolismo , Candida albicans/efeitos dos fármacos , Hifas/efeitos dos fármacos , Alcaloides de Solanáceas/metabolismo , Fatores de Virulência/antagonistas & inibidores , Animais , Antifúngicos/isolamento & purificação , Biofilmes/crescimento & desenvolvimento , Produtos Biológicos/isolamento & purificação , Caenorhabditis elegans/microbiologia , Candida albicans/fisiologia , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Glicosídeos/isolamento & purificação , Glicosídeos/metabolismo , Hifas/crescimento & desenvolvimento , Viabilidade Microbiana/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Alcaloides de Solanáceas/isolamento & purificação , Solanum/química , Análise de Sobrevida
6.
Molecules ; 20(5): 8560-73, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25985357

RESUMO

A higher yield of glycoalkaloids was recovered from potato peels using pressurized liquid extraction (1.92 mg/g dried potato peels) compared to conventional solid-liquid extraction (0.981 mg/g dried potato peels). Response surface methodology deduced the optimal temperature and extracting solvent (methanol) for the pressurized liquid extraction (PLE) of glycoalkaloids as 80 °C in 89% methanol. Using these two optimum PLE conditions, levels of individual steroidal alkaloids obtained were of 597, 873, 374 and 75 µg/g dried potato peel for α-solanine, α-chaconine, solanidine and demissidine respectively. Corresponding values for solid liquid extraction were 59%, 46%, 40% and 52% lower for α-solanine, α-chaconine, solanidine and demissidine respectively.


Assuntos
Alcaloides/metabolismo , Compostos Fitoquímicos/metabolismo , Solanum tuberosum/metabolismo , Extração em Fase Sólida/métodos , Diosgenina/metabolismo , Metanol/química , Alcaloides de Solanáceas/metabolismo , Solanina/análogos & derivados , Solanina/metabolismo
7.
Acta Biol Hung ; 66(3): 304-15, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26344026

RESUMO

The family Solanaceae includes several melliferous plants, which tend to produce copious amounts of nectar. Floral nectar is a chemically complex aqueous solution, dominated by sugars, but minor components such as amino acids, proteins, flavonoids and alkaloids are present as well. This study aimed at analysing the protein and alkaloid profile of the nectar in seven solanaceous species. Proteins were examined with SDS-PAGE and alkaloids were analyzed with HPLC. The investigation of protein profile revealed significant differences in nectar-protein patterns not only between different plant genera, but also between the three Nicotiana species investigated. SDS-PAGE suggested the presence of several Nectarin proteins with antimicrobial activity in Nicotiana species. The nectar of all tobacco species contained the alkaloid nicotine, N. tabacum having the highest nicotine content. The nectar of Brugmansia suaveolens, Datura stramonium, Hyoscyamus niger and Lycium barbarum contained scopolamine, the highest content of which was measured in B. suaveolens. The alkaloid concentrations in the nectars of most solanaceous species investigated can cause deterrence in honeybees, and the nectar of N. rustica and N. tabacum can be considered toxic for honeybees.


Assuntos
Néctar de Plantas/química , Proteínas de Plantas/análise , Solanaceae/química , Alcaloides de Solanáceas/análise , Animais , Abelhas , Néctar de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Solanaceae/metabolismo , Alcaloides de Solanáceas/metabolismo
8.
Bioorg Med Chem ; 22(8): 2435-41, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24657053

RESUMO

We report on the identification of the required configuration and binding orientation of nor-tropane alkaloid calystegines against ß-glucocerebrosidase. Calystegine B2 is a potent competitive inhibitor of human lysosomal ß-glucocerebrosidase with Ki value of 3.3 µM. A molecular docking study revealed that calystegine B2 had a favorable van der Waals interactions (Phe128, Trp179, and Phe246) and the hydrogen bonding (Glu235, Glu340, Asp127, Trp179, Asn234, Trp381 and Asn396) was similar to that of isofagomine. All calystegine isomers bound into the same active site as calystegine B2 and the essential hydrogen bonds formed to Asp127, Glu235 and Glu340 were maintained. However, their binding orientations were obviously different. Calystegine A3 bound to ß-glucocerebrosidase with the same orientations as calystegine B2 (Type 1), while calystegine B3 and B4 had different binding orientations (Type 2). It is noteworthy that Type 1 orientated calystegines B2 and A3 effectively stabilized ß-glucocerebrosidase, and consequently increased intracellular ß-glucocerebrosidase activities in N370S fibroblasts, while Type 2 orientated calystegines B3 and B4 could not keep the enzyme activity. These results clearly indicate that the binding orientations of calystegines are changed by the configuration of the hydroxyl groups on the nor-tropane ring and the suitable binding orientation is a requirement for achieving a strong affinity to ß-glucocerebrosidase.


Assuntos
Tropanos/metabolismo , Sítios de Ligação , Domínio Catalítico , Linhagem Celular , Doença de Gaucher/enzimologia , Doença de Gaucher/patologia , Glucosilceramidase/antagonistas & inibidores , Glucosilceramidase/metabolismo , Humanos , Ligação de Hidrogênio , Imino Piranoses/química , Imino Piranoses/metabolismo , Isomerismo , Simulação de Acoplamento Molecular , Nortropanos/química , Nortropanos/metabolismo , Alcaloides de Solanáceas/química , Alcaloides de Solanáceas/metabolismo , Eletricidade Estática , Relação Estrutura-Atividade , Tropanos/química
9.
Drug Chem Toxicol ; 37(1): 100-6, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24274456

RESUMO

Amiodarone (AMD) is a hepatotoxic drug that has been widely used as a class III antiarrhythmic drug. Because, to date, only a few kinds of protectants are able to reduce AMD hepatotoxicity, this article utilized gel-entrapped rat hepatocytes to screen effective protectants from a series of herbal compounds for their effects against AMD-induced toxicity. Herbal compounds, including matrine, silibinin, glycyrrhizic acid, schisandrin B, epigallocatechin gallate and anisodamine, were cotreated with AMD to assess their protective effect, whereas vitamin E, which has been shown to be protective in rats, was selected as a control. It was found that vitamin E, as with its function in rats, provided the best protection in gel-entrapped rat hepatocytes, whereas silibinin, a major component of silymarin, could largely reduce AMD-induced hepatotoxicity, performing a similar function as silymarin in rats. The results illustrated that gel-entrapped hepatocytes may reflect the protective effects of drugs and serve as a reliable model for screening hepatoprotectants. Moreover, matrine, a widely used monomer of the traditional Chinese medicine, Sophora flavescens, for treatment of arrhythmia, was evidenced to show some effective protections against AMD hepatotoxicity. Taken together, gel-entrapped rat hepatocytes may provide a platform for screening effective candidates from the herbal component library.


Assuntos
Amiodarona/toxicidade , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/efeitos dos fármacos , Alcaloides , Análise de Variância , Animais , Ciclo-Octanos/metabolismo , Ensaio de Imunoadsorção Enzimática , Ácido Glicirrízico/metabolismo , Lignanas/metabolismo , Compostos Policíclicos/metabolismo , Quinolizinas , Ratos , Silibina , Silimarina/metabolismo , Alcaloides de Solanáceas/metabolismo , Matrinas
10.
Phytochem Anal ; 25(1): 29-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23839972

RESUMO

INTRODUCTION: Hyoscyamine and scopolamine, anti-cholinergic agents widely used in medicine, are typically obtained from plants grown under natural conditions. Since field cultivation entails certain difficulties (changeable weather, pests, etc.), attempts have been made to develop a plant in vitro culture system as an alternative source for the production of these compounds. During experiments to locate the limiting steps in the biotechnological procedure, it is important to monitor not only the levels of the final products but also the changes in the concentration of their precursors. OBJECTIVE: To develop a HPTLC method for the separation and quantitation of the main tropane alkaloids hyoscyamine and scopolamine, their respective direct precursors littorine and anisodamine, and cuscohygrine, a product of a parallel biosynthetic pathway that shares a common precursor (N-methyl-∆(1) -pyrrolium cation) with tropane alkaloids. METHODS: Using alkaloid extracts from Atropa baetica hairy roots, different TLC chromatographic systems and developing procedures were investigated. RESULTS: Full separation of all compounds was obtained on HPTLC Si60 F254 plates preconditioned with mobile phase vapours (chloroform:methanol:acetone:25% ammonia ratios of 75:15:10:1.8, v/v/v/v). The chromatograms were developed twice (at distances of 4.0 and 3.0 cm) in a Camag twin trough chamber and visualised with Dragendorff's reagent. Densitometric detection (λ = 190 and 520 nm) was used for quantitative analyses of the different plant samples. CONCLUSION: This method can be recommended for quantitation of hyoscyamine, scopolamine, anisodamine, littorine and cuscohygrine in different plant material (field grown vs. in vitro cultures).


Assuntos
Derivados da Atropina/análise , Cromatografia em Camada Fina/métodos , Hiosciamina/análise , Escopolamina/análise , Solanaceae/química , Alcaloides de Solanáceas/análise , Acetona/análogos & derivados , Acetona/análise , Atropa/química , Atropa/metabolismo , Derivados da Atropina/metabolismo , Raízes de Plantas/química , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Pirrolidinas/análise , Reprodutibilidade dos Testes , Solanaceae/citologia , Solanaceae/metabolismo , Alcaloides de Solanáceas/metabolismo , Técnicas de Cultura de Tecidos
11.
J Biotechnol ; 391: 81-91, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38825191

RESUMO

Solanum xanthocarpum fruits are used in the treatment of cough, fever, and heart disorders. It possesses antipyretic, hypotensive, antiasthmatic, aphrodisiac and antianaphylactic properties. In the present study, 24 elicitors (both biotic and abiotic) were used to enhance the production of glycoalkaloids in cell cultures of S. xanthocarpum. Four concentrations of elicitors were added into the MS culture medium. The maximum accumulation (5.56-fold higher than control) of demissidine was induced by sodium nitroprusside at 50 mM concentration whereas the highest growth of cell biomass (4.51-fold higher than control) stimulated by systemin at 30 mM concentration. A total of 17 genes of biosynthetic pathways of glycoalkaloids were characterized from the cells of S. xanthocarpum. The greater accumulation of demissidine was confirmed with the expression analysis of 11 key biosynthetic pathway enzymes e.g., acetoacetic-CoA thiolase, 3- hydroxy 3-methyl glutaryl synthase, ß-hydroxy ß-methylglutaryl CoA reductase, mevalonate kinase, farnesyl diphosphate synthase, squalene synthase, squalene epoxidase, squalene-2,3- epoxide cyclase, cycloartenol synthase, UDP-glucose: solanidine glucosyltransferase and UDP-rhamnose: solanidine rhamno-galactosyl transferase. The maximum expression levels of UDP-rhamnose: solanidine rhamno-galactosyl transferase gene was recorded in this study.


Assuntos
Vias Biossintéticas , Solanum , Solanum/genética , Solanum/metabolismo , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Alcaloides/metabolismo , Alcaloides/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alcaloides de Solanáceas/metabolismo
12.
Mol Plant ; 17(8): 1236-1254, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38937971

RESUMO

Steroidal glycoalkaloids (SGAs) are specialized metabolites produced by hundreds of Solanum species, including important vegetable crops such as tomato, potato, and eggplant. Although it has been known that SGAs play important roles in defense in plants and "anti-nutritional" effects (e.g., toxicity and bitterness) to humans, many of these molecules have documented anti-cancer, anti-microbial, anti-inflammatory, anti-viral, and anti-pyretic activities. Among these, α-solasonine and α-solamargine isolated from black nightshade (Solanum nigrum) are reported to have potent anti-tumor, anti-proliferative, and anti-inflammatory activities. Notably, α-solasonine and α-solamargine, along with the core steroidal aglycone solasodine, are the most widespread SGAs produced among the Solanum plants. However, it is still unknown how plants synthesize these bioactive steroidal molecules. Through comparative metabolomic-transcriptome-guided approach, biosynthetic logic, combinatorial expression in Nicotiana benthamiana, and functional recombinant enzyme assays, here we report the discovery of 12 enzymes from S. nigrum that converts the starting cholesterol precursor to solasodine aglycone, and the downstream α-solasonine, α-solamargine, and malonyl-solamargine SGA products. We further identified six enzymes from cultivated eggplant that catalyze the production of α-solasonine, α-solamargine, and malonyl-solamargine SGAs from solasodine aglycone via glycosylation and atypical malonylation decorations. Our work provides the gene tool box and platform for engineering the production of high-value, steroidal bioactive molecules in heterologous hosts using synthetic biology.


Assuntos
Alcaloides , Solanum , Solanum/metabolismo , Alcaloides/biossíntese , Alcaloides/química , Alcaloides/metabolismo , Alcaloides de Solanáceas/biossíntese , Alcaloides de Solanáceas/metabolismo , Alcaloides de Solanáceas/química , Esteroides/biossíntese , Esteroides/metabolismo , Nicotiana/metabolismo , Nicotiana/genética , Solanum nigrum/metabolismo , Solanum nigrum/química
13.
Plant Cell Physiol ; 53(7): 1247-54, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22555816

RESUMO

In tobacco (Nicotiana tabacum), nicotine and related pyridine alkaloids are produced in the root, and then transported to the aerial parts where these toxic chemicals function as part of chemical defense against insect herbivory. Although a few tobacco transporters have been recently reported to take up nicotine into the vacuole from the cytoplasm or into the cytoplasm from the apoplast, it is not known how the long-range translocation of tobacco alkaloids between organs is controlled. Nicotiana langsdorffii and N. alata are closely related species of diploid Nicotiana section Alatae, but the latter does not accumulate tobacco alkaloids in the leaf. We show here that N. alata does synthesize alkaloids in the root, but lacks the capacity to mobilize the root-borne alkaloids to the aerial parts. Interspecific grafting experiments between N. alata and N. langsdorffii indicate that roots of N. alata are unable to translocate alkaloids to their shoot system. Interestingly, genetic studies involving interspecific hybrids between N. alata and N. langsdorffii and their self-crossed or back-crossed progeny showed that the non-translocation phenotype is dominant over the translocation phenotype. These results indicate that a mechanism to retain tobacco alkaloids within the root organ has evolved in N. alata, which may represent an interesting strategy to control the distribution of secondary products within a whole plant.


Assuntos
Nicotiana/metabolismo , Nicotina/biossíntese , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Alcaloides de Solanáceas/metabolismo , Transporte Biológico , Quimera/metabolismo , Regulação da Expressão Gênica de Plantas , Endogamia , Nicotina/química , Nicotina/genética , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Brotos de Planta/genética , Autofertilização , Nicotiana/genética , Xilema/metabolismo
14.
Transgenic Res ; 21(5): 967-82, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22200984

RESUMO

Solanum tuberosum ssp. tuberosum (cv. Spunta) was transformed with a chimeric transgene containing the Potato virus Y (PVY) coat protein (CP) sequence. Screening for PVY resistance under greenhouse conditions yielded over 100 independent candidate lines. Successive field testing of selected lines allowed the identification of two genetically stable PVY-resistant lines, SY230 and SY233, which were further evaluated in field trials at different potato-producing regions in Argentina. In total, more than 2,000 individuals from each line were tested along a 6-year period. While no or negligible PVY infection was observed in the transgenic lines, infection rates of control plants were consistently high and reached levels of up to 70-80%. Parallel field studies were performed in virus-free environments to assess the agronomical performance of the selected lines. Tubers collected from these assays exhibited agronomical traits and biochemical compositions indistinguishable from those of the non-transformed Spunta cultivar. In addition, an interspecific out-crossing trial to determine the magnitude of possible natural gene flow between transgenic line SY233 and its wild relative Solanum chacoense was performed. This trial yielded negative results, suggesting an extremely low probability for such an event to occur.


Assuntos
Resistência à Doença , Fluxo Gênico , Plantas Geneticamente Modificadas/genética , Potyvirus/patogenicidade , Solanum tuberosum/genética , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Argentina , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/imunologia , Produtos Agrícolas/virologia , Cruzamentos Genéticos , Vetores Genéticos , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/virologia , Potyvirus/genética , Potyvirus/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alcaloides de Solanáceas/análise , Alcaloides de Solanáceas/metabolismo , Solanum tuberosum/imunologia , Solanum tuberosum/virologia , Transformação Genética , Transgenes
15.
Chem Biodivers ; 8(12): 2226-37, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22162160

RESUMO

The main aim of this work was to study the leaf secondary metabolite profiles of artificially induced tetraploids (2n=4x=48) of Solanum commersonii, a diploid (2n=2x=24) wild potato species. The tetraploid genotypes of S. commersonii were produced by oryzalin treatment. Both HPLC-UV and LC/MS analyses revealed that there were no qualitative differences in the metabolite profiles between the diploid S. commersonii and its tetraploids. By contrast, the results showed that the phenylpropanoid content was generally significantly higher in the tetraploids than in the diploid S. commersonii. Concerning the glycoalkaloids (GAs), the results provided evidence that the content of minor GAs (solanidenediol triose, solanidadienol lycotetraose, and solanidenol lycotetraose) was higher in tetraploids than in the diploid progenitor, while the content of major GAs (dehydrodemissine and dehydrocommersonine) was significantly higher in diploid S. commersonii than in its tetraploid genotypes. The results are discussed from the practical perspective of potato biodiversity enhancement.


Assuntos
Folhas de Planta/metabolismo , Solanum/metabolismo , Tetraploidia , Ácidos Carbocíclicos/química , Ácidos Carbocíclicos/metabolismo , Dinitrobenzenos/farmacologia , Genótipo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Alcaloides de Solanáceas/química , Alcaloides de Solanáceas/metabolismo , Solanum/química , Solanum/genética , Sulfanilamidas/farmacologia
16.
J Biotechnol ; 323: 238-245, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32896528

RESUMO

An efficient genetic transfection technique has been established using A4 strain of Agrobacterium rhizogenes for the first time in a medicinally valuable plant Solanum erianthum D. Don. The explants were randomly pricked with sterile needle, inoculated with bacterial suspension. The infected leaves were then washed and transferred to MS basal medium fortified with cefotaxime for hairy root induction. A maximum transformation efficiency of 72 % has been recorded after two days of co-cultivation period. The transfer of rolA and rolB genes from the bacterium to the plant genome has been confirmed in five transformed hairy rootlines by standard Polymerase Chain Reaction technique. On the basis of growth analysis and secondary metabolite study two potential rhizoclones (A4-HR-A and A4-HR-B) were selected. Rhizoclone A4-HR-A can produce highest amount of alkaloid, phenolic and flavonoid, whereas A4-HR-B was observed to be highest tannin producer. Alkaloid like solasodine, commercially important for steroidal drug synthesis, was quantified from leaf and A4-HR-A clone by an improved High Performance Liquid Chromatography method. This showed a sustainable increase (1.33 fold) in production of solasodine in hairy rootline.


Assuntos
Agrobacterium/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Alcaloides de Solanáceas/metabolismo , Solanum/metabolismo , Transfecção , Clonagem Molecular , Flavonoides/metabolismo , Fenol/metabolismo , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Plantas Medicinais/metabolismo , Plantas Medicinais/microbiologia , Reação em Cadeia da Polimerase , Solanum/microbiologia
17.
Naunyn Schmiedebergs Arch Pharmacol ; 393(9): 1715-1728, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32388600

RESUMO

The present research work was designed to examine the neuroprotective effect of ethanolic extract of Solanum virginianum Linn. (SV) in chronic construction injury (CCI) of sciatic nerve-induced neuropathic pain in rats. The extract was initially standardized by high-performance thin-layer chromatography using solasodine as a biomarker and was then subjected to assess the degree of mechanical allodynia, thermal allodynia, mechanical hyperalgesia, thermal hyperalgesia and biochemical evaluations. Administration of SV (100 and 200 mg/kg; p.o.) and pregabalin (10 mg/kg; p.o.) as a reference standard significantly debilitated hyperalgesia and allodynia and notably restored the altered antioxidant level and pro-inflammatory cytokine (IL-1ß and TNF-α) expression in a dose-dependent manner. Further, to appraise the mechanistic approach of solasodine, docking simulation studies were done on the 3D structure of the voltage-gated N-type calcium channel (Cav 2.2), R-type calcium channel (Cav 2.3) and sodium channel (Nav 1.7), and the results revealed that solasodine properly positioned into Phe 19, Leu 32, Met 51 and Met 71 (FLMM pocket) of Cav 2.2 and Cav 2.3 and being a competitor of Ca2+/N-lobe it may inactivate these calcium channels but did not bind into the desired binding pocket of Nav 1.7. Thus, the study confirmed the role of solasodine as a major biomarker for the observed neuroprotective nature of Solanum virginianum.


Assuntos
Analgésicos/farmacologia , Hiperalgesia/prevenção & controle , Simulação de Acoplamento Molecular , Neuralgia/prevenção & controle , Limiar da Dor/efeitos dos fármacos , Extratos Vegetais/farmacologia , Neuropatia Ciática/tratamento farmacológico , Alcaloides de Solanáceas/farmacologia , Solanum , Analgésicos/isolamento & purificação , Analgésicos/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Sítios de Ligação , Ligação Competitiva , Canais de Cálcio Tipo N/efeitos dos fármacos , Canais de Cálcio Tipo N/metabolismo , Modelos Animais de Doenças , Etanol/química , Feminino , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Neuralgia/metabolismo , Neuralgia/fisiopatologia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Ligação Proteica , Ratos Wistar , Neuropatia Ciática/metabolismo , Neuropatia Ciática/fisiopatologia , Alcaloides de Solanáceas/isolamento & purificação , Alcaloides de Solanáceas/metabolismo , Solanum/química , Solventes/química
18.
Chem Biol Interact ; 308: 372-376, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31152736

RESUMO

According to recent research advance, it is interesting to identify new, potent and selective inhibitors of human butyrylcholinesterase (BChE) for therapeutic treatment of both the Alzheimer's disease (AD) and heroin abuse. In this study, we carried out a structure-based virtual screening followed by in vitro activity assays, with the goal to identify new inhibitors that are selective for BChE over acetylcholinesterase (AChE). As a result, a set of new, selective inhibitors of human BChE were identified from natural products with solanaceous alkaloid scaffolds. The most active one of the natural products (compound 1) identified has an IC50 of 16.8 nM against BChE. It has been demonstrated that the desirable selectivity of these inhibitors for BChE over AChE is mainly controlled by three key residues in the active site cavity, i.e. residues Q119, A277, and A328 in BChE versus the respective residues Y124, W286, and Y337 in AChE. Based on this structural insight, future rational design of new, potent and selective BChE inhibitors may focus on these key structural differences in the active site cavity.


Assuntos
Butirilcolinesterase/química , Inibidores da Colinesterase/química , Alcaloides de Solanáceas/química , Sítios de Ligação , Butirilcolinesterase/metabolismo , Domínio Catalítico , Inibidores da Colinesterase/metabolismo , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Alcaloides de Solanáceas/metabolismo , Relação Estrutura-Atividade
19.
Plant Sci ; 283: 301-310, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128700

RESUMO

Mandrakes (Mandragora spp., Solanaceae) are known to contain tropane alkaloids and have been used since antiquity in traditional medicine. Tropane alkaloids such as scopolamine and hyoscyamine are used in modern medicine to treat pain, motion sickness, as eye pupil dilators and antidotes against organo-phosphate poisoning. Hyoscyamine is converted to 6ß-hydroxyhyoscyamine (anisodamine) and scopolamine by hyoscyamine 6ß-hydroxylase (H6H), a 2-oxoglutarate dependent dioxygenase. We describe here a marked chemo-diversity in the tropane alkaloid content in Mandragora spp. M. officinarum and M. turcomanica lack anisodamine and scopolamine but display up to 10 fold higher hyoscyamine levels as compared with M. autumnalis. Transcriptomic analyses revealed that H6H is highly conserved among scopolamine-producing Solanaceae. MoH6H present in M. officinarum differs in several amino acid residues including a homozygotic mutation in the substrate binding region of the protein and its prevalence among accessions was confirmed by Cleaved-Amplified-Polymorphic-Sequence analyses. Functional expression revealed that MaH6H, a gene isolated from M. autumnalis encodes an active H6H enzyme while the MoH6H sequence isolated from M. officinarum was functionally inactive. A single G to T mutation in nucleotide 663 of MoH6H is associated with the lack of anisodamine and scopolamine in M. officinalis.


Assuntos
Alcaloides/metabolismo , Mandragora/metabolismo , Oxigenases de Função Mista/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas/genética , Mandragora/genética , Oxigenases de Função Mista/genética , Escopolamina/metabolismo , Análise de Sequência de DNA , Alcaloides de Solanáceas/metabolismo
20.
Nat Commun ; 10(1): 4036, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492848

RESUMO

The skeleton of tropane alkaloids is derived from ornithine-derived N-methylpyrrolinium and two malonyl-CoA units. The enzymatic mechanism that connects N-methylpyrrolinium and malonyl-CoA units remains unknown. Here, we report the characterization of three pyrrolidine ketide synthases (PYKS), AaPYKS, DsPYKS, and AbPYKS, from three different hyoscyamine- and scopolamine-producing plants. By examining the crystal structure and biochemical activity of AaPYKS, we show that the reaction mechanism involves PYKS-mediated malonyl-CoA condensation to generate a 3-oxo-glutaric acid intermediate that can undergo non-enzymatic Mannich-like condensation with N-methylpyrrolinium to yield the racemic 4-(1-methyl-2-pyrrolidinyl)-3-oxobutanoic acid. This study therefore provides a long sought-after biosynthetic mechanism to explain condensation between N-methylpyrrolinium and acetate units and, more importantly, identifies an unusual plant type III polyketide synthase that can only catalyze one round of malonyl-CoA condensation.


Assuntos
Malonil Coenzima A/metabolismo , Proteínas de Plantas/metabolismo , Policetídeo Sintases/metabolismo , Pirróis/metabolismo , Alcaloides de Solanáceas/metabolismo , Tropanos/metabolismo , Sequência de Aminoácidos , Biocatálise , Cromatografia Líquida/métodos , Cristalografia por Raios X , Malonil Coenzima A/química , Modelos Químicos , Estrutura Molecular , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Policetídeo Sintases/química , Policetídeo Sintases/genética , Pirróis/química , Homologia de Sequência de Aminoácidos , Alcaloides de Solanáceas/química , Espectrometria de Massas em Tandem/métodos , Tropanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA