Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.444
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 22(8): 100606, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356495

RESUMO

Osteoarthritis (OA) is the most prevalent rheumatic pathology. However, OA is not simply a process of wear and tear affecting articular cartilage but rather a disease of the entire joint. One of the most common locations of OA is the knee. Knee tissues have been studied using molecular strategies, generating a large amount of complex data. As one of the goals of the Rheumatic and Autoimmune Diseases initiative of the Human Proteome Project, we applied a text-mining strategy to publicly available literature to collect relevant information and generate a systematically organized overview of the proteins most closely related to the different knee components. To this end, the PubPular literature-mining software was employed to identify protein-topic relationships and extract the most frequently cited proteins associated with the different knee joint components and OA. The text-mining approach searched over eight million articles in PubMed up to November 2022. Proteins associated with the six most representative knee components (articular cartilage, subchondral bone, synovial membrane, synovial fluid, meniscus, and cruciate ligament) were retrieved and ranked by their relevance to the tissue and OA. Gene ontology analyses showed the biological functions of these proteins. This study provided a systematic and prioritized description of knee-component proteins most frequently cited as associated with OA. The study also explored the relationship of these proteins to OA and identified the processes most relevant to proper knee function and OA pathophysiology.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Humanos , Cartilagem Articular/metabolismo , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Osteoartrite do Joelho/metabolismo
2.
J Cell Physiol ; 239(2): e31168, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149794

RESUMO

Arthrofibrosis, which causes joint motion restrictions, is a common complication following total knee arthroplasty (TKA). Key features associated with arthrofibrosis include myofibroblast activation, knee stiffness, and excessive scar tissue formation. We previously demonstrated that adiponectin levels are suppressed within the knee tissues of patients affected by arthrofibrosis and showed that AdipoRon, an adiponectin receptor agonist, exhibited anti-fibrotic properties in human mesenchymal stem cells. In this study, the therapeutic potential of AdipoRon was evaluated on TGFß1-mediated myofibroblast differentiation of primary human knee fibroblasts and in a mouse model of knee stiffness. Picrosirius red staining revealed that AdipoRon reduced TGFß1-induced collagen deposition in primary knee fibroblasts derived from patients undergoing primary TKA and revision TKA for arthrofibrosis. AdipoRon also reduced mRNA and protein levels of ACTA2, a key myofibroblast marker. RNA-seq analysis corroborated the anti-myofibrogenic effects of AdipoRon. In our knee stiffness mouse model, 6 weeks of knee immobilization, to induce a knee contracture, in conjunction with daily vehicle (DMSO) or AdipoRon (1, 5, and 25 mg/kg) via intraperitoneal injections were well tolerated based on animal behavior and weight measurements. Biomechanical testing demonstrated that passive extension angles (PEAs) of experimental knees were similar between vehicle and AdipoRon treatment groups in mice evaluated immediately following immobilization. Interestingly, relative to vehicle-treated mice, 5 mg/kg AdipoRon therapy improved the PEA of the experimental knees in mice that underwent 4 weeks of knee remobilization following the immobilization and therapy. Together, these studies revealed that AdipoRon may be an effective therapeutic modality for arthrofibrosis.


Assuntos
Artroplastia do Joelho , Artropatias , Animais , Humanos , Camundongos , Colágeno/metabolismo , Artropatias/tratamento farmacológico , Artropatias/metabolismo , Articulação do Joelho/metabolismo , Piperidinas/farmacologia , Feminino , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta1/farmacologia
3.
Mol Biol Rep ; 51(1): 862, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073659

RESUMO

BACKGROUND: Understanding how healthy articular cartilage responds to mechanical loading is critical. Moderate mechanical loading has positive effects on the cartilage, such as maintaining cartilage homeostasis. The degree of mechanical loading is determined by a combination of intensity, frequency, and duration; however, the best combination of these parameters for knee cartilage remains unclear. This study aimed to determine which combination of intensity, frequency, and duration provides the best mechanical loading on healthy knee articular cartilage in vitro and in vivo. METHODS AND RESULTS: In this study, 33 male mice were used. Chondrocytes isolated from mouse knee joints were subjected to different cyclic tensile strains (CTSs) and assessed by measuring the expression of cartilage matrix-related genes. Furthermore, the histological characteristics of mouse tibial cartilages were quantified using different treadmill exercises. Chondrocytes and mice were divided into the control group and eight intervention groups: high-intensity, high-frequency, and long-duration; high-intensity, high-frequency, and short-duration; high-intensity, low-frequency, and long-duration; high-intensity, low-frequency, and short-duration; low-intensity, high-frequency, and long-duration; low-intensity, high-frequency, and short-duration; low-intensity, low-frequency, and long-duration; low-intensity, low-frequency, and short-duration. In low-intensity CTSs, chondrocytes showed anabolic responses by altering the mRNA expression of COL2A1 in short durations and SOX9 in long durations. Furthermore, low-intensity, low-frequency, and long-duration treadmill exercises minimized chondrocyte hypertrophy and enhanced aggrecan synthesis in tibial cartilages. CONCLUSION: Low-intensity, low-frequency, and long-duration mechanical loading is the best combination for healthy knee cartilage to maintain homeostasis and activate anabolic responses. Our findings provide a significant scientific basis for exercise and lifestyle instructions.


Assuntos
Cartilagem Articular , Condrócitos , Estresse Mecânico , Suporte de Carga , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/fisiologia , Camundongos , Condrócitos/metabolismo , Masculino , Suporte de Carga/fisiologia , Condicionamento Físico Animal/fisiologia , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Colágeno Tipo II/metabolismo , Colágeno Tipo II/genética , Articulação do Joelho/metabolismo , Articulação do Joelho/fisiologia , Camundongos Endogâmicos C57BL
4.
Mol Biol Rep ; 51(1): 1018, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331223

RESUMO

BACKGROUND: Moderate mechanical stress generated by normal joint loading and movements helps maintain the health of articular cartilage. Despite growing interest in the pathogenesis of cartilage degeneration caused by reduced mechanical stress, its reversibility by mechanical reloading is less understood. This study aimed to investigate the response of articular cartilage exposed to mechanical reloading after unloading in vivo and in vitro. METHODS AND RESULTS: Disuse atrophy was induced in the knee joint cartilage of adult mice through hindlimb unloading by tail suspension. For in vivo experiments, mice were subjected to reloading with or without daily exercise intervention or surgical destabilization of the knee joint. Microcomputed tomography and histomorphometric analyses were performed on the harvested knee joints. Matrix loss and thinning of articular cartilage due to unloading were fully or partially restored by reloading, and exercise intervention enhanced the restoration. Subchondral bone density decreased by unloading and increased to above-normal levels by reloading. The severity of cartilage damage caused by joint instability was not different even with prior non-weight bearing. For in vitro experiments, articular chondrocytes isolated from the healthy or unloaded joints of the mice were embedded in agarose gel. After dynamic compression loading, the expression levels of anabolic (Sox9, Col2a1, and Acan) and catabolic (Mmp13 and Adamts5) factors of cartilage were analyzed. In chondrocytes isolated from the unloaded joints, similar to those from healthy joints, dynamic compression increased the expression of anabolic factors but suppressed the expression of catabolic factors. CONCLUSION: The results of this study indicate that the morphological changes in articular cartilage exposed to mechanical unloading may be restored in response to mechanical reloading by shifting extracellular matrix metabolism in chondrocytes to anabolism.


Assuntos
Proteína ADAMTS5 , Cartilagem Articular , Condrócitos , Elevação dos Membros Posteriores , Estresse Mecânico , Animais , Cartilagem Articular/patologia , Cartilagem Articular/metabolismo , Camundongos , Condrócitos/metabolismo , Condrócitos/patologia , Proteína ADAMTS5/metabolismo , Proteína ADAMTS5/genética , Elevação dos Membros Posteriores/efeitos adversos , Metaloproteinase 13 da Matriz/metabolismo , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição SOX9/genética , Agrecanas/metabolismo , Colágeno Tipo II/metabolismo , Masculino , Microtomografia por Raio-X , Suporte de Carga/fisiologia , Atrofia , Articulação do Joelho/patologia , Articulação do Joelho/fisiopatologia , Articulação do Joelho/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Condicionamento Físico Animal
5.
Clin Orthop Relat Res ; 482(7): 1246-1262, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38662932

RESUMO

BACKGROUND: Extracellular vesicles derived from mesenchymal stem cells (MSCs) show great promise in treating osteoarthritis (OA). However, studies from the perspective of clinical feasibility that consider an accessible cell source and a scalable preparation method for MSC-extracellular vesicles are lacking. QUESTIONS/PURPOSES: (1) Does an infrapatellar fat pad obtained from patients undergoing TKA provide a suitable source to provide MSC-extracellular vesicles purified by anion exchange chromatography? Using an in vivo mouse model for OA in the knee, (2) how does injection of the infrapatellar fat pad-derived MSC-extracellular vesicles alter gait, cartilage structure and composition, protein expression (Type II collagen, MMP13, and ADAMTS5), subchondral bone remodeling and osteophytes, and synovial inflammation? METHODS: The infrapatellar fat pad was collected from three patients (all female; 62, 74, 77 years) during TKA for infrapatellar fat pad-derived MSC culturing. Patients with infection, rheumatic arthritis, and age > 80 years were excluded. MSC-extracellular vesicles were purified by anion exchange chromatography. For the animal study, we used 30 male C57BL/6 mice aged 10 weeks, divided into six groups. MSC-extracellular vesicles were injected weekly into the joint of an OA mouse model during ACL transection (ACLT). To answer our first research question, we characterized MSCs based on their proliferative potential, differentiation capacity, and surface antigen expression, and we characterized MSC-extracellular vesicles by size, morphology, protein marker expression, and miRNA profile. To answer our second research question, we evaluated the effects of MSC-extracellular vesicles in the OA mouse model with quantitative gait analysis (mean pressure, footprint area, stride length, and propulsion time), histology (Osteoarthritis Research Society International Score based on histologic analysis [0 = normal to 24 = very severe degeneration]), immunohistochemistry staining of joint sections (protein expression of Type II collagen, MMP13, and ADAMTS5), and micro-CT of subchondral bone (BV/TV and Tb.Pf) and osteophyte formation. We also examined the mechanism of action of MSC-extracellular vesicles by immunofluorescent staining of the synovium membrane (number of M1 and M2 macrophage cells) and by analyzing their influence on the expression of inflammatory factors (relative mRNA level and protein expression of IL-1ß, IL-6, and TNF-α) in lipopolysaccharide-induced macrophages. RESULTS: Infrapatellar fat pads obtained from patients undergoing TKA provide a suitable cell source for producing MSC-extracellular vesicles, and anion exchange chromatography is applicable for isolating MSC-extracellular vesicles. Cultured MSCs were spindle-shaped, proliferative at Passage 4 (doubling time of 42.75 ± 1.35 hours), had trilineage differentiation capacity, positively expressed stem cell surface markers (CD44, CD73, CD90, and CD105), and negatively expressed hematopoietic markers (CD34 and CD45). MSC-extracellular vesicles purified by anion exchange chromatography had diameters between 30 and 200 nm and a typical cup shape, positively expressed exosomal marker proteins (CD63, CD81, CD9, Alix, and TSG101), and carried plentiful miRNA. Compared with the ACLT group, the ACLT + extracellular vesicle group showed alleviation of pain 8 weeks after the injection, indicated by increased area (0.67 ± 0.15 cm 2 versus 0.20 ± 0.03 cm 2 , -0.05 [95% confidence interval -0.09 to -0.01]; p = 0.01) and stride length (5.08 ± 0.53 cm versus 6.20 ± 0.33 cm, -1.12 [95% CI -1.86 to -0.37]; p = 0.005) and decreased propulsion time (0.22 ± 0.06 s versus 0.11 ± 0.04 s, 0.11 [95% CI 0.03 to 0.19]; p = 0.007) in the affected hindlimb. Compared with the ACLT group, the ACLT + extracellular vesicles group had lower Osteoarthritis Research Society International scores after 4 weeks (8.80 ± 2.28 versus 4.80 ± 2.28, 4.00 [95% CI 0.68 to 7.32]; p = 0.02) and 8 weeks (16.00 ± 3.16 versus 9.60 ± 2.51, 6.40 [95% CI 2.14 to 10.66]; p = 0.005). In the ACLT + extracellular vesicles group, there was more-severe OA at 8 weeks than at 4 weeks (9.60 ± 2.51 versus 4.80 ± 2.28, 4.80 [95% CI 0.82 to 8.78]; p = 0.02), indicating MSC-extracellular vesicles could only delay but not fully suppress OA progression. Compared with the ACLT group, the injection of MSC-extracellular vesicles increased Type II collagen expression, decreased MMP13 expression, and decreased ADAMTS5 expression at 4 and 8 weeks. Compared with the ACLT group, MSC-extracellular vesicle injection alleviated osteophyte formation at 8 weeks and inhibited bone loss at 4 weeks. MSC-extracellular vesicle injection suppressed inflammation; the ACLT + extracellular vesicles group had fewer M1 type macrophages than the ACLT group. Compared with lipopolysaccharide-treated cells, MSC-extracellular vesicles reduced mRNA expression and inhibited IL-1ß, IL-6, and TNF-α in cells. CONCLUSION: Using an OA mouse model, we found that infrapatellar fat pad-derived MSC-extracellular vesicles could delay OA progression via alleviating pain and suppressing cartilage degeneration, osteophyte formation, and synovial inflammation. The autologous origin of extracellular vesicles and scalable purification method make our strategy potentially viable for clinical translation. CLINICAL RELEVANCE: Infrapatellar fat pad-derived MSC-extracellular vesicles isolated by anion exchange chromatography can suppress OA progression in a mouse model. Further studies with large-animal models, larger animal groups, and subsequent clinical trials are necessary to confirm the feasibility of this technique for clinical OA treatment.


Assuntos
Tecido Adiposo , Modelos Animais de Doenças , Vesículas Extracelulares , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Osteoartrite do Joelho , Animais , Vesículas Extracelulares/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/metabolismo , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/cirurgia , Osteoartrite do Joelho/patologia , Idoso , Feminino , Pessoa de Meia-Idade , Cromatografia por Troca Iônica , Progressão da Doença , Camundongos , Transplante de Células-Tronco Mesenquimais , Articulação do Joelho/cirurgia , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Cartilagem Articular/metabolismo , Cartilagem Articular/cirurgia , Cartilagem Articular/patologia , Células Cultivadas
6.
PLoS Genet ; 17(4): e1009275, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33819267

RESUMO

Mammalian Hedgehog (HH) signalling pathway plays an essential role in tissue homeostasis and its deregulation is linked to rheumatological disorders. UBR5 is the mammalian homologue of the E3 ubiquitin-protein ligase Hyd, a negative regulator of the Hh-pathway in Drosophila. To investigate a possible role of UBR5 in regulation of the musculoskeletal system through modulation of mammalian HH signaling, we created a mouse model for specific loss of Ubr5 function in limb bud mesenchyme. Our findings revealed a role for UBR5 in maintaining cartilage homeostasis and suppressing metaplasia. Ubr5 loss of function resulted in progressive and dramatic articular cartilage degradation, enlarged, abnormally shaped sesamoid bones and extensive heterotopic tissue metaplasia linked to calcification of tendons and ossification of synovium. Genetic suppression of smoothened (Smo), a key mediator of HH signalling, dramatically enhanced the Ubr5 mutant phenotype. Analysis of HH signalling in both mouse and cell model systems revealed that loss of Ubr5 stimulated canonical HH-signalling while also increasing PKA activity. In addition, human osteoarthritic samples revealed similar correlations between UBR5 expression, canonical HH signalling and PKA activity markers. Our studies identified a crucial function for the Ubr5 gene in the maintenance of skeletal tissue homeostasis and an unexpected mode of regulation of the HH signalling pathway.


Assuntos
Artrite Reumatoide/genética , Proteínas de Drosophila/genética , Músculo Esquelético/metabolismo , Receptor Smoothened/genética , Ubiquitina-Proteína Ligases/genética , Animais , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Cartilagem/patologia , Condrócitos/metabolismo , Modelos Animais de Doenças , Drosophila melanogaster/genética , Proteínas Hedgehog/genética , Homeostase/genética , Humanos , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Camundongos , Músculo Esquelético/patologia , Osteogênese/genética , Transdução de Sinais/genética , Tendões/metabolismo , Tendões/patologia
7.
Arthroscopy ; 40(3): 830-843, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37474081

RESUMO

PURPOSE: To examine the biological changes in the joints of patients with knee osteoarthritis (OA) before and after around-knee osteotomy (AKO), focusing on synovial fluid (SF) and synovial pathological changes. METHODS: Patients who underwent AKO for medial compartment knee OA between 2019 and 2021 were examined. SF and synovium were obtained at the time of AKO and plate removal after bone union (mean, 16.8 months [range: 11-38 months] postoperatively). SF volume and interleukin (IL)-6 concentrations in SF were assayed using enzyme-linked immunosorbent assay. Synovitis was assessed histologically using a semiquantitative scoring system. Macrophage infiltration was assessed by immunohistochemistry using a semiquantitative score for F4/80 expression. The M1/M2 ratio was calculated using percentage of cells positive for CD80 and CD163. The expression of proinflammatory cytokines was assessed by the percentage of IL-1ß- and IL-6-positive cells. The number of vascular endothelial growth factor-positive luminal structures was counted to assess angiogenesis. The change in each parameter was compared before and after AKO using the Wilcoxon matched-pairs signed-rank test. RESULTS: Twenty-four knees of 21 patients were included. SF volume and IL-6 concentration significantly decreased postoperatively (12.6 ± 2.1 mL vs 4.2 ± 0.6 mL; P < .0001 and 50.5 ± 8.6 pg/mL vs 20.7 ± 3.8 pg/mL; P = .0001, respectively). A significant reduction in synovitis score (P = .0001), macrophage infiltration (P < .0003), M1/M2 ratio (P < .0007), angiogenesis (P < .0001), and the percentage of IL-1ß- and IL-6-positive cells in the intima (P < .008 and P < .002, respectively) was found after AKO. CONCLUSIONS: SF volume and IL-6 concentrations in the SF decreased and inflammatory synovium pathology improved after AKO. In addition to biomechanical changes, the biological environment of the joint can be improved after AKO. LEVEL OF EVIDENCE: Level IV, retrospective therapeutic case series.


Assuntos
Osteoartrite do Joelho , Sinovite , Humanos , Líquido Sinovial/química , Interleucina-6/metabolismo , Estudos Retrospectivos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Articulação do Joelho/cirurgia , Articulação do Joelho/metabolismo , Membrana Sinovial/patologia , Osteoartrite do Joelho/cirurgia , Osteoartrite do Joelho/metabolismo , Sinovite/cirurgia , Interleucina-1beta/metabolismo , Osteotomia , Inflamação/patologia
8.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673933

RESUMO

The aim of this study was to provide a comprehensive understanding of similarities and differences in mRNAs, lncRNAs, and circRNAs within cartilage for Kashin-Beck disease (KBD) compared to osteoarthritis (OA). We conducted a comparison of the expression profiles of mRNAs, lncRNAs, and circRNAs via whole-transcriptome sequencing in eight KBD and ten OA individuals. To facilitate functional annotation-enriched analysis for differentially expressed (DE) genes, DE lncRNAs, and DE circRNAs, we employed bioinformatic analysis utilizing Gene Ontology (GO) and KEGG. Additionally, using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), we validated the expression levels of four cartilage-related genes in chondrocytes. We identified a total of 43 DE mRNAs, 1451 DE lncRNAs, and 305 DE circRNAs in KBD cartilage tissue compared to OA (q value < 0.05; |log2FC| > 1). We also performed competing endogenous RNA network analysis, which identified a total of 65 lncRNA-mRNA interactions and 4714 miRNA-circRNA interactions. In particular, we observed that circRNA12218 had binding sites for three miRNAs targeting ACAN, while circRNA12487 had binding sites for seven miRNAs targeting COL2A1. Our results add a novel set of genes and non-coding RNAs that could potentially serve as candidate diagnostic biomarkers or therapeutic targets for KBD patients.


Assuntos
Doença de Kashin-Bek , Osteoartrite , RNA Circular , RNA Longo não Codificante , RNA Mensageiro , Transcriptoma , Humanos , Doença de Kashin-Bek/genética , RNA Longo não Codificante/genética , Masculino , Feminino , Pessoa de Meia-Idade , RNA Circular/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética , Osteoartrite/genética , Perfilação da Expressão Gênica/métodos , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Idoso , Articulação do Joelho/patologia , Articulação do Joelho/metabolismo , MicroRNAs/genética , Colágeno Tipo II/genética , Colágeno Tipo II/metabolismo , Biologia Computacional/métodos , Condrócitos/metabolismo , Agrecanas/genética , Agrecanas/metabolismo , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Regulação da Expressão Gênica , Ontologia Genética , Adulto
9.
Rheumatology (Oxford) ; 62(12): 3875-3885, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36944271

RESUMO

OBJECTIVES: Osteoarthritis has been the subject of abundant research in the last years with limited translation to the clinical practice, probably due to the disease's high heterogeneity. In this study, we aimed to identify different phenotypes in knee osteoarthritis (KOA) patients with joint effusion based on their metabolic and inflammatory profiles. METHODS: A non-supervised strategy based on statistical and machine learning methods was applied to 45 parameters measured on 168 female KOA patients with persistent joint effusion, consecutively recruited at our hospital after a monographic OA outpatient visit. Data comprised anthropometric and metabolic factors and a panel of systemic and local inflammatory markers. The resulting clusters were compared regarding their clinical, radiographic and ultrasound severity at baseline and their radiographic progression at two years. RESULTS: Our analyses identified four KOA inflammatory phenotypes (KOIP): a group characterized by metabolic syndrome, probably driven by body fat and obesity, and by high local and systemic inflammation (KOIP-1); a metabolically healthy phenotype with mild overall inflammation (KOIP-2); a non-metabolic phenotype with high inflammation levels (KOIP-3); and a metabolic phenotype with low inflammation and cardiovascular risk factors not associated with obesity (KOIP-4). Of interest, these groups exhibited differences regarding pain, functional disability and radiographic progression, pointing to a clinical relevance of the uncovered phenotypes. CONCLUSION: Our results support the existence of different KOA phenotypes with clinical relevance and differing pathways regarding their pathophysiology and disease evolution, which entails implications in patients' stratification, treatment tailoring and the search of novel and personalized therapies.


Assuntos
Osteoartrite do Joelho , Humanos , Feminino , Relevância Clínica , Fenótipo , Obesidade , Inflamação/diagnóstico por imagem , Articulação do Joelho/metabolismo
10.
Rheumatology (Oxford) ; 62(3): 1286-1295, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35924962

RESUMO

OBJECTIVES: The aim of this study was to identify biomarkers for radiographic OA severity and progression acting within the inflammation and metabolic pathways. METHODS: For 3517 Rotterdam Study participants, 184 plasma protein levels were measured using Olink inflammation and cardiometabolic panels. We studied associations with severity and progression of knee, hip and hand OA and a composite overall OA burden score by multivariable regression models, adjusting for age, sex, cell counts and BMI. RESULTS: We found 18 significantly associated proteins for overall OA burden, of which 5 stayed significant after multiple testing correction: circulating cartilage acidic protein 1 (CRTAC1), cartilage oligomeric matrix protein (COMP), thrombospondin 4, IL-18 receptor 1 (IL-18R1) and TNF ligand superfamily member 14. These proteins were also associated with progression of knee OA, with the exception of IL-18R1. The strongest association was found for the level of CRTAC1, with 1 s.d. increase in protein level resulting in an increase of 0.09 (95% CI 0.06, 0.12) in the overall OA Kellgren-Lawrence sum score (P = 2.9 × 10-8) in the model adjusted for age, sex, BMI and cell counts. This association was also present with the severity of OA in all three joints and progression of knee OA and was independent of BMI. We observed a stronger association for CRTAC1 with OA than for the well-known OA biomarker COMP. CONCLUSION: We identified several compelling biomarkers reflecting the overall OA burden and the increased risk for OA progression. CRTAC1 was the most compelling and robust biomarker for OA severity and progression. Such a biomarker may be used for disease monitoring.


Assuntos
Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/metabolismo , Proteômica , Biomarcadores , Proteína de Matriz Oligomérica de Cartilagem/metabolismo , Articulação do Joelho/metabolismo , Inflamação , Progressão da Doença , Proteínas de Ligação ao Cálcio
11.
FASEB J ; 36(2): e22142, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032407

RESUMO

The calcified cartilage zone (CCZ) is a thin interlayer between the hyaline articular cartilage and the subchondral bone and plays an important role in maintaining the joint homeostasis by providing biological and mechanical support from unmineralized cartilage to the underlying mineralized subchondral bone. The hallmark of CCZ characteristics in osteoarthritis (OA) is less well known. The aim of our study is to evaluate the structural, molecular, and biochemical composition of CCZ in tissues affected by primary knee OA and its relationship with disease severity. We collected osteochondral tissue samples stratified according to disease severity, from 16 knee OA patients who underwent knee replacement surgery. We also used meniscectomy-induced rat samples to confirm the pathophysiologic changes of human samples. We defined the characteristics of the calcified cartilage layer using a combination of morphological, biochemical, proteomic analyses on laser micro-dissected tissue. Our results demonstrated that the Calcium/Phosphate ratio is unchanged during the OA progression, but the calcium-binding protein and cadherin binding protein, as well as carbohydrate metabolism-related proteins, undergo significant changes. These changes were further accompanied by thinning of the CCZ, loss of collagen and proteoglycan content, the occurrence of the endochondral ossification, neovasculature, loss of the elastic module, loss of the collagen direction, and increase of the tortuosity indicating an altered structural and mechanical properties of the CCZ in OA. In conclusion, our results suggest that the calcified cartilage changes can reflect the disease progression.


Assuntos
Cartilagem Articular/metabolismo , Osteoartrite/metabolismo , Animais , Osso e Ossos/metabolismo , Calcificação Fisiológica/fisiologia , Progressão da Doença , Feminino , Humanos , Articulação do Joelho/metabolismo , Osteogênese/fisiologia , Proteoglicanas/metabolismo , Proteômica/métodos , Ratos
12.
Connect Tissue Res ; 64(1): 26-39, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35723580

RESUMO

PURPOSE: The two structural components contributing to joint contracture formation are myogenic and arthrogenic contracture, and myofibrosis is an important part of myogenic contracture. Myofibrosis is a response to long-time immobilization and is described as a condition with excessive deposition of endomysial and perimysial connective tissue components in skeletal muscle. The purpose of this study was to confirm whether metformin can attenuate the formation of myogenic contracture and myofibrosis through the phosphorylation level of adenosine monophosphate-activated protein kinase (AMPK) and inhabitation of subsequent transforming growth factor beta (TGF-ß) 1/Smad signaling pathway. MATERIALS AND METHODS: An immobilized rat model was used to determine whether metformin could inhibit myogenic contracture and myofibrosis. The contents of myogenic contracture of knee joint was calculated by measuring instrument of range of motion (ROM), and myofibrosis of rectus femoris were determined by ultrasound shear wave elastography and Masson staining. Protein expression of AMPK and subsequent TGF-ß1/Smad signaling pathway were determined by western blot. Subsequently, Compound C, a specific AMPK inhibitor, was used to further clarify the role of the AMPK-mediated inhibition of TGF-ß1/Smad signaling pathway. RESULTS: We revealed that the levels of myogenic contracture and myofibrosis were gradually increased during immobilization, and overexpression of TGF-ß1-induced formation of myofibrosis by activating Smad2/3 phosphorylation. Activation of AMPK by metformin suppressed overexpression of TGF-ß1 and TGF-ß1-induced Smad2/3 phosphorylation, further reducing myogenic contracture and myofibrosis during immobilization. In contrast, inhibition of AMPK by Compound C partially counteracted the inhibitory effect of TGF-ß1/Smad signaling pathway by metformin. CONCLUSION: Notably, we first illustrated the therapeutic effect of metformin through AMPK-mediated inhibition of TGF-ß1/Smad signaling pathway in myofibrosis, which may provide a new therapeutic strategy for myogenic contracture.


Assuntos
Contratura , Metformina , Ratos , Animais , Metformina/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Contratura/metabolismo , Transdução de Sinais , Articulação do Joelho/metabolismo , Proteínas Smad/metabolismo
13.
Inflamm Res ; 72(3): 387-394, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36562795

RESUMO

OBJECTIVE AND DESIGN: The purpose of this study was to explore pathological processes during the first 4 weeks after anterior cruciate ligament reconstruction (ACLR). SUBJECTS: Sixteen ACL-injured patients (8 females/8 males, mean age = 19.1, mean BMI = 28.6). METHODS: Arthrocentesis was performed 1 and 4 weeks after ACLR. Proteins in the synovial fluid were identified using nanoLC-ESI-MS/MS. Differentially up- or down-regulated proteins were identified and quantified, and a pathway analysis was performed. All identified proteins were mapped into a protein-protein interaction (PPI) network, and networks of PPIs with a combined score > 0.9 were then visualized. RESULTS: Seven pathways were upregulated after ACLR: PI3K-AKT signaling pathway, extracellular matrix (ECM)-receptor interaction, focal adhesion, protein digestion and absorption, ameobiasis, and platelet activation. Network analyses identified 8 proteins that were differentially upregulated with strong PPI interactions (periostin and 7 collagen-related proteins). Increases in periostin moderately correlated with increases in a synovial fluid biomarker of type II cartilage degradation (ρ = 0.51, p = 0.06). CONCLUSION: Pro-inflammatory pathways and periostin were upregulated after ACLR. Periostin demonstrated strong network connections with markers of collagen breakdown, and future work is needed to determine whether periostin may offer a biomarker of early cartilage degradation after ACLR and/or play an active role in early post-traumatic osteoarthritis (PTOA) progression.


Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Cartilagem Articular , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Lesões do Ligamento Cruzado Anterior/cirurgia , Lesões do Ligamento Cruzado Anterior/metabolismo , Lesões do Ligamento Cruzado Anterior/patologia , Biomarcadores/metabolismo , Cartilagem Articular/metabolismo , Colágeno/metabolismo , Articulação do Joelho/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Espectrometria de Massas em Tandem
14.
Cell Biol Int ; 47(5): 954-968, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36740226

RESUMO

Irreversible destruction of joints is the hallmark of rheumatoid arthritis (RA). Osteoclasts are the only bone-resorbing cells and play an important role in joint rebuilding. BML-111 (5(S),6(R),7-trihydroxyheptanoic acid methyl ester, C8 H16 O5 ) is a synthetic lipoxin A4 agonist with antioxidant and anti-inflammatory properties. The present study aimed to investigate the effect of BML-111 on osteoclasts in vivo and in vitro, to investigate its therapeutic effect on joint destruction in RA. Cell Counting Kit-8 assay and flow cytometry were used to exclude cytotoxic effects of BML-111 to bone marrow-derived macrophages (BMMs). Then, osteoclasts were differentiated in vitro from BMMs by used macrophage colony-stimulating factor and receptor activator of nuclear factor-κB ligand, and osteoclasts were observed following tartrate-resistant acid phosphatase staining with or without BML-111 treatment. Meanwhile, absorption pit assay and immunofluorescence staining of the fibrous actin ring were used to observe osteoclast function. Moreover, we examined mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) activation. We established collagen-induced arthritis in a rat model and, after treatment with BML-111, joint swelling was measured and the knee joints were processed for histology. We also examined serum and tissue for osteoclastogenesis-related markers. BML-111 inhibited osteoclast formation and differentiation in a time- and concentration-dependent manner, and downregulated the expression levels of MAPK and NF-κB in vitro. Meanwhile, BML-111 effectively alleviated joint structural damage and inhibited osteoclast formation in vivo. BML-111 inhibited osteoclast formation and differentiation in vitro and in vivo, and delayed the progression of joint destruction.


Assuntos
Reabsorção Óssea , Osteoclastos , Ratos , Animais , NF-kappa B/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Diferenciação Celular , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Ligante RANK/metabolismo
15.
Proc Natl Acad Sci U S A ; 117(6): 3135-3143, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980519

RESUMO

The objective of this study was to examine FoxO expression and FoxO function in meniscus. In menisci from human knee joints with osteoarthritis (OA), FoxO1 and 3 expression were significantly reduced compared with normal menisci from young and old normal donors. The expression of FoxO1 and 3 was also significantly reduced in mouse menisci during aging and OA induced by surgical meniscus destabilization or mechanical overuse. Deletion of FoxO1 and combined FoxO1, 3, and 4 deletions induced abnormal postnatal meniscus development in mice and these mutant mice spontaneously displayed meniscus pathology at 6 mo. Mice with Col2Cre-mediated deletion of FoxO3 or FoxO4 had normal meniscus development but had more severe aging-related damage. In mature AcanCreERT2 mice, the deletion of FoxO1, 3, and 4 aggravated meniscus lesions in all experimental OA models. FoxO deletion suppressed autophagy and antioxidant defense genes and altered several meniscus-specific genes. Expression of these genes was modulated by adenoviral FoxO1 in cultured human meniscus cells. These results suggest that FoxO1 plays a key role in meniscus development and maturation, and both FoxO1 and 3 support homeostasis and protect against meniscus damage in response to mechanical overuse and during aging and OA.


Assuntos
Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Articulação do Joelho/metabolismo , Menisco/metabolismo , Osteoartrite/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box O1/análise , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O3/análise , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Humanos , Masculino , Menisco/crescimento & desenvolvimento , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Adulto Jovem
16.
Phytother Res ; 37(8): 3363-3379, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37002905

RESUMO

Formononetin (FMN) is a phytoestrogen that belongs to the isoflavone family. It has antioxidant and anti-inflammatory effects, as well as, many other biological activities. Existing evidence has aroused interest in its ability to protect against osteoarthritis (OA) and promote bone remodeling. To date, research on this topic has not been thorough and many issues remain controversial. Therefore, the purpose of our study was to explore the protective effect of FMN against knee injury and clarify the possible molecular mechanisms. We found that FMN inhibited osteoclast formation induced by receptor activator of NF-κB ligand (RANKL). Inhibition of the phosphorylation and nuclear translocation of p65 in the NF-κB signaling pathway plays a role in this effect. Similarly, during the inflammatory response of primary knee cartilage cells activated by IL-1ß, FMN inhibited the NF-κB signaling pathway and the phosphorylation of the ERK and JNK proteins in the MAPK signaling pathway to suppress the inflammatory response. In addition, in vivo experiments showed that both low- and high-dose FMN had a clear protective effect against knee injury in the DMM (destabilization of the medial meniscus) model, and the therapeutic effect of high-dose FMN was stronger. In conclusion, these studies provide evidence of the protective effect of FMN against knee injury.


Assuntos
Traumatismos do Joelho , NF-kappa B , Humanos , NF-kappa B/metabolismo , Transdução de Sinais , Articulação do Joelho/metabolismo , Condrócitos
17.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834131

RESUMO

Osteoarthritis (OA) is a worldwide joint disease. However, the precise mechanism causing OA remains unclear. Our primary aim was to identify vital biomarkers associated with the mechano-inflammatory aspect of OA, providing potential diagnostic and therapeutic targets for OA. Thirty OA patients who underwent total knee arthroplasty were recruited, and cartilage samples were obtained from both the lateral tibial plateau (LTP) and medial tibial plateau (MTP). GO and KEGG enrichment analyses were performed, and the protein-protein interaction (PPI) assessment was conducted for hub genes. The effect of PSD95 inhibition on cartilage degeneration was also conducted and analyzed. A total of 1247 upregulated and 244 downregulated DEGs were identified. Significant differences were observed between MTP and LTP in mechanical stress-related genes and activated sensory neurons based on a self-contrast model of human knee OA. Cluster analysis identified DLG4 as the hub gene. Cyclic loading stress increased PSD95 (encoded by DLG4) expression in LTP cartilage, and PSD95 inhibitors could alleviate OA progression. This study suggests that inhibiting PSD95 could be a potential therapeutic strategy for preventing articular cartilage degradation.


Assuntos
Doenças das Cartilagens , Cartilagem Articular , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Articulação do Joelho/metabolismo , Doenças das Cartilagens/metabolismo , Tíbia , Fatores de Transcrição/metabolismo
18.
J Cell Biochem ; 123(5): 878-892, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35224764

RESUMO

Arthrofibrosis is characterized by excessive extracellular matrix (ECM) deposition that results in restricted joint motion after total knee arthroplasties (TKAs). Currently, treatment options are limited. Therefore, an in vitro model of knee-related myofibroblastogenesis is valuable to facilitate investigation of the arthrofibrotic process, diagnostic and therapeutic options. In this study, we obtained intraoperative posterior capsule (PC), quadriceps tendon (QT), and suprapatellar pouch (SP) tissues from the knees of four patients undergoing primary TKAs for osteoarthritis. From these tissues, we isolated primary cells by the outgrowth method and subsequently characterized these cells in the absence and presence of the pro-myofibroblastic cytokine, transforming growth factor beta 1 (TGFß1). Light microscopy of knee outgrowth cells revealed spindle-shaped cells, and immunofluorescence (IF) analysis demonstrated staining for the fibroblast-specific markers TE-7 and vimentin (VIM). These knee outgrowth fibroblasts differentiated readily into myofibroblasts as reflected by enhanced α-smooth muscle actin (ACTA2) mRNA and protein expression and increased mRNA expression of collagen type 1 (COL1A1) and type 3 (COL3A1) with collagenous matrix deposition in the presence of TGFß1. Outgrowth knee fibroblasts were more sensitive to TGFß1-mediated myofibroblastogenesis than adipose-derived mesenchymal stromal/stem cells (MSCs). While outgrowth knee fibroblasts isolated from three anatomical regions in four patients exhibited similar gene expression, these cells are distinct from other fibroblastic cell types (i.e., Dupuytren's fibroblasts) as revealed by RNA-sequencing. In conclusion, our study provides an in vitro myofibroblastic model of outgrowth knee fibroblasts derived from patients undergoing primary TKA that can be utilized to study myofibroblastogenesis and assess therapeutic strategies for arthrofibrosis.


Assuntos
Artroplastia do Joelho , Actinas/genética , Actinas/metabolismo , Fibroblastos/metabolismo , Humanos , Articulação do Joelho/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
19.
Osteoarthritis Cartilage ; 30(6): 886-895, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35358700

RESUMO

OBJECTIVE: Cartilage collagen has very limited repair potential, though some turnover and incorporation has not been fully excluded. We aim to determine the regional turnover of human osteoarthritis cartilage. DESIGN: Patients scheduled for knee joint replacement surgery due to osteoarthritis were recruited in this prospective study of four weeks duration. Deuterium oxide (D2O) was administered orally by weekly boluses at 70% D2O, initially 150 ml followed by three boluses of 50 ml. Cartilage from the medial tibia plateau was sampled centrally, under the meniscus, and from osteophytes and treated enzymatically with hyaluronidase and trypsin. Samples were analysed for deuterium incorporation in alanine using mass spectrometry and for gene expression by real-time reverse transcriptase polymerase chain reaction. RESULTS: Twenty participants completed the study: mean (SD) age 64 ± 9.1 years, 45% female, BMI 29.5 ± 4.8 kg/m2. Enzymatically treated cartilage from central and submeniscal regions showed similar enrichments at 0.063% APE, while osteophytes showed significantly greater enrichment at 0.072% APE (95% confidence interval of difference) [0.004-0.015]). Fractional synthesis rates were similar for central 0.027%/day and submeniscal cartilage 0.022%/day but 10-fold higher in osteophytes 0.22%/day [0.098-0.363]. When compared to central cartilage, submeniscal cartilage had increased gene expression of MMP-3 and decreased lubricin expression. Untreated cartilage had higher turnover (enrichments at 0.073% APE) than enzymatically treated cartilage (0.063% APE). CONCLUSIONS: In OA, despite regional differences in gene expression, the turnover of the articular cartilage matrix across the entire joint surface is very limited, but higher turnover was observed in osteophyte cartilage.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Osteófito , Idoso , Cartilagem Articular/metabolismo , Colágeno/metabolismo , Feminino , Humanos , Articulação do Joelho/metabolismo , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/cirurgia , Osteocondrodisplasias , Osteófito/metabolismo , Estudos Prospectivos
20.
Osteoarthritis Cartilage ; 30(11): 1482-1494, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36030059

RESUMO

OBJECTIVE: Iron accumulation is emerging as a player in aging-related disorders due to its propensity for generating reactive oxygen species (ROS). Studies investigating the role of iron in the pathogenesis of primary osteoarthritis (OA) are limited. We designed a proof-of-principle study to determine the effect of systemic iron deficiency, via an iron deficient diet, on knee OA in an animal model. METHODS: Twelve-week-old male Hartley guinea pigs received the standard diet (n = 6) or a diet devoid of iron (n = 6) for 19-weeks. Iron levels were determined in the serum, liver, and articular cartilage. Knees were collected to assess structural changes related to OA (microcomputed tomography, histopathology). Immunohistochemistry was performed to evaluate the presence and distribution of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) and ROS-driven 4-hydroxynonenal (4-HNE)-induced protein adducts. Transcript expression was also assessed. RESULTS: Relative to control animals, an iron deficient diet reduced the concentration of this mineral in serum, liver, and articular cartilage. Iron deficient animals had lower histologic OA scores; decreased subchondral bone mineral density was also noted. This reduction in knee joint pathology was accompanied by a decrease in: ADAMTS4 in synovium; and 4-HNE protein adducts from lipid peroxidation in both the menisci and articular cartilage of iron deficient animals. Expression of iron-related genes in these tissues was also altered in treated animals. CONCLUSIONS: Results from this study suggest that systemic iron levels may play a role in knee OA pathogenesis, with a short-term deficit in dietary iron reducing the severity of knee cartilage lesions.


Assuntos
Cartilagem Articular , Osteoartrite do Joelho , Cobaias , Masculino , Animais , Espécies Reativas de Oxigênio/metabolismo , Microtomografia por Raio-X , Ferro da Dieta/metabolismo , Ferro/metabolismo , Desintegrinas/metabolismo , Articulação do Joelho/metabolismo , Cartilagem Articular/patologia , Osteoartrite do Joelho/patologia , Trombospondinas , Dieta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA