Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.843
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Genet ; 51: 311-333, 2017 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-28876981

RESUMO

Bacteria use diffusible chemical messengers, termed pheromones, to coordinate gene expression and behavior among cells in a community by a process known as quorum sensing. Pheromones of many gram-positive bacteria, such as Bacillus and Streptococcus, are small, linear peptides secreted from cells and subsequently detected by sensory receptors such as those belonging to the large family of RRNPP proteins. These proteins are cytoplasmic pheromone receptors sharing a structurally similar pheromone-binding domain that functions allosterically to regulate receptor activity. X-ray crystal structures of prototypical RRNPP members have provided atomic-level insights into their mechanism and regulation by pheromones. This review provides an overview of RRNPP prototype signaling; describes the structure-function of this protein family, which is spread widely among gram-positive bacteria; and suggests approaches to target RRNPP systems in order to manipulate beneficial and harmful bacterial behaviors.


Assuntos
Bacillus/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Feromônios/genética , Receptores de Feromônios/genética , Streptococcus/genética , Bacillus/classificação , Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Modelos Moleculares , Peptídeos/genética , Peptídeos/metabolismo , Feromônios/metabolismo , Filogenia , Percepção de Quorum/genética , Receptores de Feromônios/metabolismo , Transdução de Sinais , Streptococcus/classificação , Streptococcus/metabolismo , Relação Estrutura-Atividade , Transativadores/genética , Transativadores/metabolismo
2.
Nucleic Acids Res ; 51(22): 12352-12366, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37971327

RESUMO

Bacterial transformation is an important mode of horizontal gene transfer that helps spread genetic material across species boundaries. Yet, the factors that pose barriers to genome-wide cross-species gene transfer are poorly characterized. Here, we develop a replacement accumulation assay to study the effects of genomic distance on transfer dynamics. Using Bacillus subtilis as recipient and various species of the genus Bacillus as donors, we find that the rate of orthologous replacement decreases exponentially with the divergence of their core genomes. We reveal that at least 96% of the B. subtilis core genes are accessible to replacement by alleles from Bacillus spizizenii. For the more distantly related Bacillus atrophaeus, gene replacement events cluster at genomic locations with high sequence identity and preferentially replace ribosomal genes. Orthologous replacement also creates mosaic patterns between donor and recipient genomes, rearranges the genome architecture, and governs gain and loss of accessory genes. We conclude that cross-species gene transfer is dominated by orthologous replacement of core genes which occurs nearly unrestricted between closely related species. At a lower rate, the exchange of accessory genes gives rise to more complex genome dynamics.


Assuntos
Bacillus , Genoma Bacteriano , Transformação Genética , Bacillus/classificação , Bacillus/genética , Bacillus subtilis/genética , Transferência Genética Horizontal , Genoma Bacteriano/genética , Filogenia
3.
Microb Pathog ; 192: 106707, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38777241

RESUMO

Bacterial wilt of tomato caused by Ralstonia solanacearum is a critical soilborne disease that drastically reduces yield. In the current study, an endophytic strain NEAU-CP5 with strong antagonistic activity against R. solanacearum was isolated from tomato seeds and characterized. The strain was identified as Bacillus velezensis based on 16S rRNA gene and whole genome sequence analysis. NEAU-CP5 can secrete amylase, protease, and cellulase, and also produce known antibacterial metabolites, including cyclo (leucylprolyl), cyclo (phenylalanyl-prolyl), cyclo (Pro-Gly), 3-benzyl-2,5-piperazinedione, pentadecanoic acid, eicosane, 2-methyoic acid, isovaleric acid, dibuty phthalate, and esters of fatty acids (HFDU), which may be responsible for its strong antibacterial activity. Fourteen gene clusters associated with antibacterial properties were also identified in the whole genome sequence of NEAU-CP5. Pot experiment demonstrated that the application of 108 CFU/mL NEAU-CP5 on tomato plants significantly reduced the incidence of tomato bacterial wilt by 68.36 ± 1.67 %. NEAU-CP5 also increased the activity of defense-related enzymes (CAT, POD, PPO, SOD, and PAL) in tomato plants. This is the first report of an effective control of bacterial wilt on tomato plants by B. velezensis and highlights the potential of NEAU-CP5 as a potential biocontrol agent for the management of tomato bacterial wilt.


Assuntos
Bacillus , Filogenia , Doenças das Plantas , RNA Ribossômico 16S , Ralstonia solanacearum , Sementes , Solanum lycopersicum , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Ralstonia solanacearum/genética , Bacillus/isolamento & purificação , Bacillus/genética , Bacillus/metabolismo , Bacillus/classificação , Sementes/microbiologia , RNA Ribossômico 16S/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/metabolismo , Genoma Bacteriano , Sequenciamento Completo do Genoma , Antibiose , Família Multigênica , Amilases/metabolismo , Amilases/genética , DNA Bacteriano/genética
4.
Microb Cell Fact ; 23(1): 139, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750603

RESUMO

BACKGROUND: Increasing concerns about climate change and global petroleum supply draw attention to the urgent need for the development of alternative methods to produce fuels. Consequently, the scientific community must devise novel ways to obtain fuels that are both sustainable and eco-friendly. Bacterial alkanes have numerous potential applications in the industry sector. One significant application is biofuel production, where bacterial alkanes can serve as a sustainable eco-friendly alternative to fossil fuels. This study represents the first report on the production of alkanes by endophytic bacteria. RESULTS: In this study, three Bacillus species, namely Bacillus atrophaeus Camph.1 (OR343176.1), Bacillus spizizenii Camph.2 (OR343177.1), and Bacillus aerophilus Camph.3 (OR343178.1), were isolated from the leaves of C. camphora. The isolates were then screened to determine their ability to produce alkanes in different culture media including nutrient broth (NB), Luria-Bertani (LB) broth, and tryptic soy broth (TSB). Depending on the bacterial isolate and the culture media used, different profiles of alkanes ranging from C8 to C31 were detected. CONCLUSIONS: The endophytic B. atrophaeus Camph.1 (OR343176.1), B. spizizenii Camph.2 (OR343177.1), and B. aerophilus Camph.3 (OR343178.1), associated with C. camphora leaves, represent new eco-friendly approaches for biofuel production, aiming towards a sustainable future. Further research is needed to optimize the fermentation process and scale up alkane production by these bacterial isolates.


Assuntos
Alcanos , Bacillus , Biocombustíveis , Cinnamomum camphora , Bacillus/metabolismo , Bacillus/isolamento & purificação , Bacillus/classificação , Biocombustíveis/microbiologia , Cinnamomum camphora/metabolismo , Cinnamomum camphora/microbiologia , Alcanos/metabolismo , Folhas de Planta/microbiologia , Endófitos/metabolismo , Endófitos/isolamento & purificação , Meios de Cultura
5.
Curr Microbiol ; 81(8): 260, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980435

RESUMO

Viral diseases are a serious threat to humans while the most antiviral drugs have low efficiency and side effects on human health. Therefore, using microbial biopolymers as the drugs alternate to treat viral infections seems cost-effective and human friendly option. In the present study, thirty-four exopolysaccharides (EPSs) producing bacteria were isolated, and EPSs production capacity of five salt-tolerant isolates was determined under 0, 100 and 150 mM NaCl. Among these, two isolates exhibiting high anti-coliphage activity were identified through 16S rRNA gene analysis. Moreover, the EPSs were characterized by Fourier-transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) analysis, and their composition was determined. Five salt-tolerant bacteria (MK1, MK2, MK10, MK22 and MK29) exhibited higher production of EPSs at 100 mM NaCl compared to that under non-saline control. At 100 mM NaCl, the yield of EPSs ranged between 105 and 330 mg 100 mL-1 broth. The EPSs produced by the isolates MK1 and MK2 exhibited higher anti-coliphage activity (plaque forming unit decreased from 43 × 106 mL-1 to 3 × 106 and 4 × 106 mL-1, respectively), and were comprised of glucose, fructose, galactose, sucrose, lactose and xylose sugars. FTIR spectroscopy depicted that EPSs are mainly composed of hydroxyl, aliphatic, carboxyl, sulfate and phosphate functional groups, which could have bound coliphage and thus conferred higher anti-coliphage activities to the EPSs. Phylogenetic analysis revealed that MK1 and MK2 isolates formed clades within genus Priestia and Bacillus sequences, respectively. High EPSs production capacity of bacterial isolates under saline condition and high anti-coliphage activity of the EPSs implies that bacterial biopolymers could be useful in antiviral drugs therapy.


Assuntos
Antivirais , Bacillus , Polissacarídeos Bacterianos , RNA Ribossômico 16S , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/metabolismo , Antivirais/farmacologia , Antivirais/química , RNA Ribossômico 16S/genética , Bacillus/genética , Bacillus/metabolismo , Bacillus/química , Bacillus/classificação , Filogenia , Espectroscopia de Infravermelho com Transformada de Fourier , Cloreto de Sódio/farmacologia , Cloreto de Sódio/metabolismo
6.
Nucleic Acids Res ; 50(11): 6211-6223, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35061904

RESUMO

In eukaryotes, fine-scale maps of meiotic recombination events have greatly advanced our understanding of the factors that affect genomic variation patterns and evolution of traits. However, in bacteria that lack natural systems for sexual reproduction, unbiased characterization of recombination landscapes has remained challenging due to variable rates of genetic exchange and influence of natural selection. Here, to overcome these limitations and to gain a genome-wide view on recombination, we crossed Bacillus strains with different genetic distances using protoplast fusion. The offspring displayed complex inheritance patterns with one of the parents consistently contributing the major part of the chromosome backbone and multiple unselected fragments originating from the second parent. Our results demonstrate that this bias was in part due to the action of restriction-modification systems, whereas genome features like GC content and local nucleotide identity did not affect distribution of recombination events around the chromosome. Furthermore, we found that recombination occurred uniformly across the genome without concentration into hotspots. Notably, our results show that species-level genetic distance did not affect genome-wide recombination. This study provides a new insight into the dynamics of recombination in bacteria and a platform for studying recombination patterns in diverse bacterial species.


Assuntos
Bacillus , Bacillus/classificação , Bacillus/genética , Mapeamento Cromossômico , Evolução Molecular , Técnicas Genéticas , Recombinação Homóloga , Técnicas Microbiológicas , Protoplastos
7.
Genomics ; 113(1 Pt 2): 647-653, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010389

RESUMO

1-Deoxynojirumycin (1-DNJ) is a representative iminosugar with α-glucosidase inhibition (AGI) activity. In this study, the full genome sequencing of 1-DNJ-producing Bacillus velezensis K26 was performed. The genome consists of a circular chromosome (4,047,350 bps) with two types of putative virulence factors, five antibiotic resistance genes, and seven secondary metabolite biosynthetic gene clusters. Genomic analysis of a wide range of Bacillus species revealed that a 1-DNJ biosynthetic gene cluster was commonly present in four Bacillus species (B. velezensis, B. pseudomycoides, B. amyloliquefaciens, and B. atrophaeus). In vitro experiments revealed that the increased mRNA expression levels of the three 1-DNJ biosynthetic genes were closely related to increased AGI activity. Genomic comparison and alignment of multiple gene sequences indicated the conservation of the 1-DNJ biosynthetic gene cluster in each Bacillus species. This genomic analysis of Bacillus species having a 1-DNJ biosynthetic gene cluster could provide a basis for further research on 1-DNJ-producing bacteria.


Assuntos
Bacillus/genética , Genes Bacterianos , Glucosamina/análogos & derivados , 1-Desoxinojirimicina , Bacillus/classificação , Bacillus/metabolismo , Glucosamina/biossíntese , Glucosamina/genética , Família Multigênica , Filogenia , Homologia de Sequência
8.
BMC Biotechnol ; 21(1): 16, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618710

RESUMO

BACKGROUND: A plant growth-promoting endophytic bacterium PVL1 isolated from the leaf of Vanda cristata has the ability to colonize with roots of plants and protect the plant. PVL1 was isolated using laboratory synthetic media. 16S rRNA gene sequencing method has been employed for identification before and after root colonization ability. RESULTS: Original isolated and remunerated strain from colonized roots were identified as Bacillus spp. as per EzBiocloud database. The presence of bacteria in the root section of the plantlet was confirmed through Epifluorescence microscopy of colonized roots. The in-vitro plantlet colonized by PVL1 as well as DLMB attained higher growth than the control. PVL1 capable of producing plant beneficial phytohormone under in vitro cultivation. HPLC and GC-MS analysis suggest that colonized plants contain Indole Acetic Acid (IAA). The methanol extract of Bacillus spp., contains 0.015 µg in 1 µl concentration of IAA. PVL1 has the ability to produce antimicrobial compounds such as ethyl iso-allocholate, which exhibits immune restoring property. One-way ANOVA shows that results were statistically significant at P ≤ 0.05 level. CONCLUSIONS: Hence, it has been concluded that Bacillus spp. PVL1 can promote plant growth through secretion of IAA during root colonization and ethyl iso-allocholate to protect plants from foreign infections. Thus, this study supports to support Koch's postulates of bacteria establishment.


Assuntos
Fenômenos Fisiológicos Bacterianos , Endófitos/fisiologia , Orchidaceae/microbiologia , Orchidaceae/fisiologia , Desenvolvimento Vegetal , Bacillus/classificação , Bacillus/genética , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Ácidos Indolacéticos , Filogenia , Reguladores de Crescimento de Plantas , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Simbiose
9.
BMC Microbiol ; 21(1): 187, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34157975

RESUMO

BACKGROUND: Tyrosinases and laccases are oxidoreductase enzymes that are used widely in the food, feed, textile, and biofuel industries. The rapidly growing industrial demand for bacterial oxido-reductases has encouraged research on this enzyme worldwide. These enzymes also play a key role in the formation of humic substances (HS) that are involved in controlling the biogeochemical carbon cycle, providing nutrients and bio-stimulants for plant growth, and interacting with inorganic and organic pollutants besides increasing carbon sequestration and mitigating greenhouse gas emission in the environment. The present study aimed to screen and characterize extracellular tyrosinase and laccase-producing soil bacteria that could be utilized in the polymerization of phenols. RESULTS: Twenty isolates from different soil samples collected from forest ecosystems were characterized through ARDRA using restriction digestion with AluI, HpaII, and HaeIII restriction enzymes. The results of Hierarchical Cluster Analysis (HCA) revealed a 60 % similarity coefficient among 13 out of 20 isolates, of which, the isolate TFG5 exhibited only 10 % similarity when compared to all the other isolates. The isolate TFG5 exhibited both tyrosinase (1.34 U.mL- 1) and laccase (2.01 U.mL- 1) activity and was identified as Bacillus aryabhattai. The increased polymerization activity was observed when B. aryabhattai TFG5 was treated with phenols. The monomers such as catechol, p-Hydroxy benzoic acid, ferulic acid, and salicylic acid were polymerized efficiently, as evidenced by their FT-IR spectra depicting increased functional groups compared to the standard mushroom tyrosinase. CONCLUSIONS: The polymerization ability of B. aryabhattai TFG5 could be applied to phenol-rich wastewater treatment for efficient precipitation of phenols. Furthermore, tyrosinases can be used for enhancing the synthesis of HS in soil.


Assuntos
Bacillus/enzimologia , Lacase/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fenóis/metabolismo , Bacillus/classificação , Análise por Conglomerados , Fenóis/química , Polimerização
10.
BMC Microbiol ; 21(1): 254, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34548024

RESUMO

BACKGROUND: Cellulolytic microorganisms are considered a key player in the degradation of plant biomass in various environments. These microorganisms can be isolated from various environments, such as soils, the insect gut, the mammalian rumen and oceans. The Red Sea exhibits a unique environment in terms of presenting a high seawater temperature, high salinity, low nutrient levels and high biodiversity. However, there is little information regarding cellulase genes in the Red Sea environment. This study aimed to examine whether the Red Sea can be a resource for the bioprospecting of microbial cellulases by isolating cellulase-producing microorganisms from the Red Sea environment and characterizing cellulase genes. RESULTS: Three bacterial strains were successfully isolated from the plankton fraction and the surface of seagrass. The isolated strains were identified as Bacillus paralicheniformis and showed strong cellulase activity. These results suggested that these three isolates secreted active cellulases. By whole genome sequencing, we found 10 cellulase genes from the three isolates. We compared the expression of these cellulase genes under cellulase-inducing and non-inducing conditions and found that most of the cellulase genes were generally upregulated during cellulolysis in the isolates. Our operon structure analysis also showed that cellulase genes form operons with genes involved in various kinds of cellular reactions, such as protein metabolism, which suggests the existence of crosstalk between cellulolysis and other metabolic pathways in the bacterial isolates. These results suggest that multiple cellulases are playing important roles in cellulolysis. CONCLUSIONS: Our study reports the isolation and characterization of cellulase-producing bacteria from the Red Sea. Our whole-genome sequencing classified our three isolates as Bacillus paralicheniformis, and we revealed the presence of ten cellulase orthologues in each of three isolates' genomes. Our comparative expression analysis also identified that most of the cellulase genes were upregulated under the inducing conditions in general. Although cellulases have been roughly classified into three enzyme groups of beta-glucosidase, endo-ß-1,4-glucanase and exoglucanase, these findings suggest the importance to consider microbial cellulolysis as a more complex reaction with various kinds of cellulase enzymes.


Assuntos
Bacillus/enzimologia , Bacillus/genética , Celulase/genética , Genoma Bacteriano , Água do Mar/microbiologia , Sequenciamento Completo do Genoma , Bacillus/classificação , Bacillus/isolamento & purificação , Celulose/metabolismo , Mapeamento Cromossômico , Oceano Índico , Redes e Vias Metabólicas , Filogenia
11.
BMC Microbiol ; 21(1): 4, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33402095

RESUMO

BACKGROUND: Buruli ulcer (BU) is a skin disease caused by Mycobacterium ulcerans and is the second most common mycobacterial disease after tuberculosis in Ghana and Côte d'Ivoire. M. ulcerans produces mycolactone, an immunosuppressant macrolide toxin, responsible for the characteristic painless nature of the infection. Secondary infection of ulcers before, during and after treatment has been associated with delayed wound healing and resistance to streptomycin and rifampicin. However, not much is known of the bacteria causing these infections as well as antimicrobial drugs for treating the secondary microorganism. This study sought to identify secondary microbial infections in BU lesions and to determine their levels of antibiotic resistance due to the prolonged antibiotic therapy required for Buruli ulcer. RESULTS: Swabs from fifty-one suspected BU cases were sampled in the Amansie Central District from St. Peters Hospital (Jacobu) and through an active case surveillance. Forty of the samples were M. ulcerans (BU) positive. Secondary bacteria were identified in all sampled lesions (N = 51). The predominant bacteria identified in both BU and Non-BU groups were Staphylococci spp and Bacilli spp. The most diverse secondary bacteria were detected among BU patients who were not yet on antibiotic treatment. Fungal species identified were Candida spp, Penicillium spp and Trichodema spp. Selected secondary bacteria isolates were all susceptible to clarithromycin and amikacin among both BU and Non-BU patients. Majority, however, had high resistance to streptomycin. CONCLUSIONS: Microorganisms other than M. ulcerans colonize and proliferate on BU lesions. Secondary microorganisms of BU wounds were mainly Staphylococcus spp, Bacillus spp and Pseudomonas spp. These secondary microorganisms were less predominant in BU patients under treatment compared to those without treatment. The delay in healing that are experienced by some BU patients could be as a result of these bacteria and fungi colonizing and proliferating in BU lesions. Clarithromycin and amikacin are likely suitable drugs for clearance of secondary infection of Buruli ulcer.


Assuntos
Antibacterianos/farmacologia , Bactérias/classificação , Úlcera de Buruli/microbiologia , Coinfecção/microbiologia , Fungos/classificação , Adulto , Amicacina/farmacologia , Bacillus/classificação , Bacillus/isolamento & purificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Úlcera de Buruli/tratamento farmacológico , Candida/classificação , Candida/isolamento & purificação , Claritromicina/farmacologia , Coinfecção/tratamento farmacológico , Côte d'Ivoire , Estudos Transversais , Feminino , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Gana , Humanos , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Penicillium/classificação , Penicillium/isolamento & purificação , Staphylococcus/classificação , Staphylococcus/isolamento & purificação , Estreptomicina/farmacologia , Trichoderma/classificação , Trichoderma/isolamento & purificação , Conduta Expectante , Adulto Jovem
12.
Arch Microbiol ; 203(2): 719-723, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33047173

RESUMO

A Gram-stain-negative, rod-shaped, facultatively anaerobic, motile and spore-forming strain designated FJAT-44921T was isolated from red mud collected from Chiping County, Shandong Province, China. The 16S rRNA gene sequence result showed that strain FJAT-44921T shared a low sequence identity (96.6%) with the members of the genus Bacillus. Growth was observed at pH 8.0-10.0 (optimum pH 9.0), 10-40 °C (optimum 20-25 °C) with 0-8% (v/w %) NaCl (optimum 4-6 v/w %). FJAT-44921T consists of MK-7 as the isoprenoid quinone and meso-2,6-diaminopimelic acid as the cell-wall diamino acid. The predominant fatty acids were anteiso-C15:0, iso-C15:0, C16:0, and anteiso-C17:0. The polar lipids were diphosphatidylglycerol, phosphatidyl glycerol, phosphatidylmethylethanolamine, unidentified phospholipid, and unidentified aminophospholipid. The genomic DNA G + C content was 37.3 mol%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between FJAT-44921T and other closely related Bacillus members were lower than the recognized threshold values of ANI (95-96%) and dDDH (70%) recommended as the criterion for interspecies identity. The type strain is FJAT-44921T (=CCTCC AB 2016196T =DSM 104630T).


Assuntos
Óxido de Alumínio , Bacillus/classificação , Microbiologia do Solo , Bacillus/genética , Composição de Bases , Ácido Diaminopimélico/química , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
13.
Arch Microbiol ; 203(7): 4127-4132, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34057547

RESUMO

In this study, we report a novel Gram-positive bacterium, designated as strain CS13T, isolated from deep-sea sediment collected in the cold seep area of the South China Sea. Growth of strain CS13T occurred at 16-37 °C (optimum 25-28 °C), pH 7.0-9.0 (optimum, 7.0), and 0-8% (w/v) NaCl (optimum, 2-3%). Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain CS13T belonged to the genus Bacillus. The closest phylogenetic neighbors of strain CS13T are Bacillus carboniphilus JCM 9731T (96.0%), Bacillus pakistanensis NCCP-168T (95.7%) and Bacillus acidicola 105-2T (95.6%). The genomic DNA G + C content of strain CS13T is 43.7 mol%. The principal respiratory quinone was menaquinone 7 (MK-7). The polar lipids of CS13T contained diphosphatidylglycerol, phosphatidylglycerol, phospholipid, and glycolipid. The major fatty acids of CS13T contained anteiso-C15:0, anteiso-C17:0, C16:0 and C18:0. Strain CS13T harboured meso-diaminopimelic acid as the diagnostic diamino acid. Phylogenetic, physiological, biochemical, and morphological analyses suggested that strain CS13T represents a novel species of genus Bacillus, and the name Bacillus fonticola sp. nov. is proposed for the type species CS13T (= CCTCC AB 2019194T = JCM 33663T).


Assuntos
Bacillus , Sedimentos Geológicos , Bacillus/classificação , Bacillus/genética , Ácidos Graxos/análise , Sedimentos Geológicos/microbiologia , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Especificidade da Espécie
14.
Arch Microbiol ; 203(5): 2211-2217, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33625539

RESUMO

A Gram-staining-positive, endospore-forming, aerobic strain, designed WN066T, was isolated from saline-alkali wetland soil of Tianjin, China. Phylogenetic analysis based on 16S rRNA gene sequence indicated WN066T was a member of the genus of Bacillus, and most closely related to Bacillus drentensis DSM 15600T (98.9%), Bacillus cucumis CCM 8651T (98.8%), Bacillus bataviensis DSM 15601T (98.7%) and Bacillus niacini DSM 2923T (98.7%). However, the average nucleotide identity (ANI) and digital DNA-DNA hybridization (DDH) values between strain WN066T and the most closely related species were less than the previously proposed cutoff values for differentiating species within the genus, suggesting that this strain represented a novel Bacillus species. The strain grew at 19-42 °C (optimally 33-37 °C) in the presence of 3-20% (w/v) NaCl (optimally 8-12%(w/v)), and at pH 6.5-11.0 (optimally 7.5-8.5). The major cellular fatty acids were iso-C15:0 (24.8%) and anteiso-C15:0 (38.9%). The predominant polar lipids consisted of diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). The size of the draft genome was 6,213,503 bp in size and had a G + C content of 38.6 mol %. The peptidoglycan contained meso-diaminopimelic acid as the diagnostic diamino acid. On basis of phenotypic, phylogenetic, chemotaxonomic and genomic features, strain WN066T represented a novel species within the genus Bacillus, for which the name B. salipaludis sp. nov. is proposed. The type strain is WN066T (= KCTC 33953T = ACCC 60085T).


Assuntos
Bacillus/classificação , Bacillus/metabolismo , Bacillus/genética , Bacillus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases/genética , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Peptidoglicano/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química , Microbiologia do Solo , Áreas Alagadas
15.
Int Microbiol ; 24(3): 373-384, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33755814

RESUMO

Sabkhas in Kuwait are unique hypersaline marine environments under-explored for bacterial community composition and bioprospecting. The 16S rRNA sequence analysis of 46 isolates with distinct morphology from two Kuwait sabkhas recovered 11 genera. Phylum Firmicutes dominated these isolates, and Bacillus (32.6%) was recovered as the dominant genera, followed by Halococcus (17.4%). These isolates were moderately halophilic, and some of them showed tolerance and growth at extreme levels of salt (20%), pH (5 and/or 11), and temperature (55 °C). A higher percentage of isolates harbored protease (63.0), followed by DNase (41.3), amylase (41.3), and lipase (32.6). Selected isolates showed antimicrobial activity against E. faecalis and isolated Halomonas shengliensis, and Idiomarina piscisalsi harbored gene coding for dNDP-glucose 4,6-dehydratase (Glu 1), indicating their potential to produce biomolecules with deoxysugar moieties. Palmitic acid or oleic acid was the dominant fatty acid, and seven isolates had some polyunsaturated fatty acids (linolenic or γ-linolenic acid). Interestingly, six isolates belonging to Planococcus and Oceanobacillus genus produced squalene, a bioactive isoprenoid molecule. Their content increased 30-50% in the presence of Terbinafine. The potential bioactivities and extreme growth conditions make this untapped bacterial diversity a promising candidate for future bioprospecting studies.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Bioprospecção , Esqualeno/metabolismo , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antineoplásicos/metabolismo , Bacillus/classificação , Bacillus/genética , Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodiversidade , DNA Bacteriano , Enzimas/metabolismo , Ácidos Graxos/metabolismo , Firmicutes/classificação , Firmicutes/genética , Sedimentos Geológicos/microbiologia , Halococcus/classificação , Halococcus/genética , Kuweit , Filogenia , Planococáceas/classificação , Planococáceas/genética , Planococáceas/metabolismo , RNA Ribossômico 16S , Salinidade , Microbiologia da Água
16.
J Appl Microbiol ; 131(1): 449-459, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33058340

RESUMO

AIMS: This study aimed to evaluate the effects of three Bacillus probiotics on Salmonella Typhimurium, and interleukin-8 (IL-8) gene expression in the co-culture of the Bacillus and the pathogen in vitro. METHODS AND RESULTS: Bacillus subtilis, Bacillus indicus and Bacillus coagulans were initially turned to spore and heat-inactivated forms. The cellular damages of the probiotics on the HT-29 cells were investigated individually and in combination with S. Typhimurium using 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and fluorescence assays. To extract cell free supernatants (CFS) of the probiotics, they were cultured in selective media. The inhibitory activity of CFSs were then assayed against the pathogen. The gene expression of IL-8 of the HT-29 cells was evaluated by real-time PCR in all the groups. The results showed that the CFSs of three probiotics could inhibit the growth of S. Typhimurium by more than 50%. Inhibitory effects of B. indicus and B. subtilis CFSs were related to the production of pepsin-sensitive compounds, except B. coagulans in which the high inhibitory effect was due to organic acids. The spores of the three probiotics and the heat-inactivated forms of B. subtilis and B. coagulans could reduce the cytotoxicity of S. Typhimurium. The cell viability also increased applying both forms probiotics against the pathogen. In all co-culture groups, the IL-8 gene expression induced by S. Typhimurium was reduced. CONCLUSIONS: The three Bacillus probiotics can be considered as proper candidates for the prevention and treatment of S. Typhimurium food poisoning. SIGNIFICANCE AND IMPACT OF THE STUDY: Applying probiotics as live bacteria is universally noted in foods. This study tried to discover the effects of Bacillus probiotics in the form of spore or even heat-killed bacteria against S. Typhimurium and evaluate ratio of IL-8 gene expression in cell culture. The most effective Bacillus probiotic will be recommended. This approach will help to use probiotics as nonvegetative cells in foods to fight gastrointestinal pathogens.


Assuntos
Apoptose/efeitos dos fármacos , Bacillus/fisiologia , Interleucina-8/genética , Probióticos/farmacologia , Salmonella typhimurium/efeitos dos fármacos , Bacillus/classificação , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Interleucina-8/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Esporos Fúngicos/classificação , Esporos Fúngicos/fisiologia
17.
J Appl Microbiol ; 130(1): 233-246, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32654235

RESUMO

AIMS: This study was conducted to investigate the effects of dietary supplementation with a mixture of Bacillus, which serves as an alternative of antibiotics on the intestinal ecosystem of weaned piglets. METHODS AND RESULTS: We randomly assigned 120 piglets to three groups: a control group (a basal diet), a probiotics group (a basal diet supplemented with 4 × 109  CFU per gram Bacillus licheniformis-Bacillus subtilis mixture; BLS mix), and an antibiotics group (a basal diet supplemented with 0·04 kg t-1 virginiamycin, 0·2 kg t-1 colistin and 3000 mg kg-1 zinc oxide). All groups had five replicates with eight piglets per replicate. On days 7, 21 and 42 of the trial, intestine tissue and digesta samples were collected to determine intestinal morphology, gut microbiota and bacterial metabolite composition, and the expression of genes related to the gut barrier function and inflammatory status. The results showed that the BLS mix decreased the jejunum crypt depth, while increased the ileum villus height and the jejunum and ileum villus height to crypt depth ratio. The BLS mix increased Simpson's diversity index in the gut microbiota and the relative abundances of o_Bacteroidetes and f_Ruminococcaceae, but decreased the relative abundances of Blautia and Clostridium. Dietary BLS mix supplementation also modified the concentration of several bacterial metabolites compared to the control group. In addition, BLS mix upregulated the expression level of E-cadherin in the colon and pro-inflammatory cytokines and TLR-4 in ileum and colon. Lastly, Spearman's rank-order correlation revealed a potential link between alterations in gut microbiota and health parameters of the weaned piglets. CONCLUSION: These findings suggest that dietary BLS mix supplementation modifies the gut ecosystem in weaned piglets. The potential advantages of such modifications in terms of intestinal health are discussed. SIGNIFICANCE AND IMPACT OF THE STUDY: Weaning is the most important transition period of piglet growth and development. This study showed that dietary supplementation of a probiotic mixture of Bacillus, an effective alternative of antibiotics, was beneficial in improving the intestinal ecosystem of weaned piglets.


Assuntos
Bacillus/fisiologia , Suplementos Nutricionais , Ecossistema , Intestinos , Ração Animal/análise , Animais , Antibacterianos/análise , Antibacterianos/farmacologia , Bacillus/classificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Intestinos/microbiologia , Probióticos/farmacologia , Suínos , Desmame
18.
Food Microbiol ; 94: 103663, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33279088

RESUMO

To date, heat is still the most used technology in food preservation. The calculus of heat treatments is usually based on Bigelow observations i.e. treatment time is an exponential function of the heat treatment temperature. However, a number of researchers have reported deviations from linearity in heat inactivation curves that caused errors in the calculus. This research was designed to evaluate the variability of shoulder length among different sporulated species, the impact of treatment temperature on these shoulders and the relationship between the traditional DT value and shoulder length. The heat inactivation kinetics of five bacterial spores of importance for the food industry was evaluated. B. weihenstephanensis and B. cereus did not show shoulders and DT values calculated ranged from 0.99 to 0.23 and from 1.33 to 0.56 respectively at temperatures from 100 to 102.5 °C. On the other side B. subtilis, B. licheniformis and G. stearothermophilus showed shoulders of 1.75-0.42, 1.92-0.43 and 3.22-0.78 and DT values of 1.52-0.32, 2.12-0.59 and 2.22-0.48 respectively in the range of temperatures tested. From the results obtained it was concluded that the presence and magnitude of shoulders depended on the bacterial spore species, the longest being those on the bacterial spores which showed greatest heat resistance. It has also been proved that shoulder lengths vary with treatment temperature in the same proportion of traditional DT values, with the relationship Sl/DT being constant. Thus, an equation which included the constant Sl/DT was proposed.


Assuntos
Bacillus/química , Bacillus/crescimento & desenvolvimento , Esporos Bacterianos/crescimento & desenvolvimento , Esterilização/métodos , Bacillus/classificação , Temperatura Alta , Cinética , Viabilidade Microbiana , Esporos Bacterianos/química , Fatores de Tempo
19.
Genomics ; 112(6): 4525-4535, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32781202

RESUMO

Bacillus sp. SFC 500-1E is used for the effective treatment of tannery effluents since it consistently removes hexavalent chromium from diverse contaminated matrices. The aim of the present study was to complete identification of the strain through a polyphasic characterization, which included the pattern of carbohydrate utilization, fatty acids profile, multilocus sequence analysis, multiplex PCR profile and the analysis of the complete genome sequence. Morpho-physiological and biochemical characterization results and analysis of 16S rRNA sequences were not conclusive. The strain formed a monophyletic clade with B. toyonensis BCT-7112, B. thuringiensis MC28 and B. cereus Rock 1-3. However, genomic comparisons with type strains of B. cereus and B. thuringiensis showed that the isolated belonged to a different species. Results of this study highlight the relevance of the genome sequence of this strain, identified as Bacillus toyonensis SFC 500-1E, to expand knowledge of its bioremediation potential and to explore unknown decontamination activities.


Assuntos
Bacillus/classificação , Bacillus/citologia , Bacillus/genética , Bacillus/fisiologia , Bacillus cereus/classificação , Biodegradação Ambiental , Genoma Bacteriano , Genômica , Filogenia , RNA Ribossômico 16S/genética
20.
Genomics ; 112(5): 3191-3200, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32512145

RESUMO

The genus Bacillus constitutes a plethora of species that have medical, environmental, and industrial applications. While genus Bacillus has been the focus of several studies where genomic data have been used to resolve many taxonomic issues, there still exist several ambiguities. Through the use of in-silico genome-based methods, we tried to resolve the taxonomic anomalies of a large set of Bacillus genomes (n = 178). We also proposed species names for uncharacterized strains and reported genome sequence of a novel isolate Bacillus sp. RL. In the hierarchical clustering on genome-to-genome distances, we observed 11 distinct monophyletic clusters and investigated the functional pathways annotated as the property of these clusters and core-gene content of the entire dataset. Thus, we were able to assert the possible outlier strains (n = 17) for this genus. Analyses of secondary metabolite potential of each strain helped us unravel still unexplored diversity for various biosynthetic genes.


Assuntos
Bacillus/genética , Genoma Bacteriano , Animais , Bacillus/classificação , Bacillus/isolamento & purificação , Bacillus/metabolismo , Bovinos , Genômica , Filogenia , Metabolismo Secundário/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA