Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
BMC Plant Biol ; 24(1): 285, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627617

RESUMO

Crop roots are colonized by large numbers of microorganisms, collectively known as the root-microbiome, which modulate plant growth, development and contribute to elemental nutrient uptake. In conditions of nitrogen limitation, the over-expressed Calcineurin B-like interacting protein kinase 2 (OsCIPK2) gene with root-specific promoter (RC) has been shown to enhance growth and nitrogen uptake in rice. Analysis of root-associated bacteria through high-throughput sequencing revealed that OsCIPK2 has a significant impact on the diversity of the root microbial community under low nitrogen stress. The quantification of nifH gene expression demonstrated a significant enhancement in nitrogen-fixing capabilities in the roots of RC transgenetic rice. Synthetic microbial communities (SynCom) consisting of six nitrogen-fixing bacterial strains were observed to be enriched in the roots of RC, leading to a substantial improvement in rice growth and nitrogen uptake in nitrogen-deficient soils. Forty and twenty-three metabolites exhibiting differential abundance were identified in the roots and rhizosphere soils of RC transgenic rice compared to wild-type (WT) rice. These findings suggest that OSCIPK2 plays a role in restructuring the microbial community in the roots through the regulation of metabolite synthesis and secretion. Further experiments involving the exogenous addition of citric acid revealed that an optimal concentration of this compound facilitated the growth of nitrogen-fixing bacteria and substantially augmented their population in the soil, highlighting the importance of citric acid in promoting nitrogen fixation under conditions of low nitrogen availability. These findings suggest that OsCIPK2 plays a role in enhancing nitrogen uptake by rice plants from the soil by influencing the assembly of root microbial communities, thereby offering valuable insights for enhancing nitrogen utilization in rice cultivation.


Assuntos
Bactérias Fixadoras de Nitrogênio , Oryza , Raízes de Plantas/metabolismo , Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/metabolismo , Solo , Rizosfera , Ácido Cítrico , Microbiologia do Solo
2.
BMC Microbiol ; 24(1): 247, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971740

RESUMO

BACKGROUND: Mercury (Hg) is highly toxic and has the potential to cause severe health problems for humans and foraging animals when transported into edible plant parts. Soil rhizobia that form symbiosis with legumes may possess mechanisms to prevent heavy metal translocation from roots to shoots in plants by exporting metals from nodules or compartmentalizing metal ions inside nodules. Horizontal gene transfer has potential to confer immediate de novo adaptations to stress. We used comparative genomics of high quality de novo assemblies to identify structural differences in the genomes of nitrogen-fixing rhizobia that were isolated from a mercury (Hg) mine site that show high variation in their tolerance to Hg. RESULTS: Our analyses identified multiple structurally conserved merA homologs in the genomes of Sinorhizobium medicae and Rhizobium leguminosarum but only the strains that possessed a Mer operon exhibited 10-fold increased tolerance to Hg. RNAseq analysis revealed nearly all genes in the Mer operon were significantly up-regulated in response to Hg stress in free-living conditions and in nodules. In both free-living and nodule environments, we found the Hg-tolerant strains with a Mer operon exhibited the fewest number of differentially expressed genes (DEGs) in the genome, indicating a rapid and efficient detoxification of Hg from the cells that reduced general stress responses to the Hg-treatment. Expression changes in S. medicae while in bacteroids showed that both rhizobia strain and host-plant tolerance affected the number of DEGs. Aside from Mer operon genes, nif genes which are involved in nitrogenase activity in S. medicae showed significant up-regulation in the most Hg-tolerant strain while inside the most Hg-accumulating host-plant. Transfer of a plasmid containing the Mer operon from the most tolerant strain to low-tolerant strains resulted in an immediate increase in Hg tolerance, indicating that the Mer operon is able to confer hyper tolerance to Hg. CONCLUSIONS: Mer operons have not been previously reported in nitrogen-fixing rhizobia. This study demonstrates a pivotal role of the Mer operon in effective mercury detoxification and hypertolerance in nitrogen-fixing rhizobia. This finding has major implications not only for soil bioremediation, but also host plants growing in mercury contaminated soils.


Assuntos
Transferência Genética Horizontal , Mercúrio , Óperon , Simbiose , Transcriptoma , Mercúrio/metabolismo , Mercúrio/toxicidade , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fixação de Nitrogênio , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Microbiologia do Solo
3.
BMC Microbiol ; 24(1): 261, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004720

RESUMO

BACKGROUND: The excessive application of chemical fertilizers in the cultivation of Astragalus mongholicus Bunge results in a reduction in the quality of the medicinal plant and compromises the sustainable productivity of the soil. PGPB inoculant is a hot topic in ecological agriculture research. In the cultivation of Astragalus mongholicus, the screened nitrogen-fixing bacteria can promote plant growth, however, whether it can promote the accumulation of main bioactive components remains unknown. In this study, mixed inoculants containing 5 strains of growth promoting bacteria (Rhizobium T16 , Sinorhizobium T21 , Bacillus J1 , Bacillus G4 and Arthrobacter J2) were used in the field experiment. The metabolic substances in the root tissues of Astragalus mongholicus were identified during the harvest period by non-targeted metabolomics method, and the differential metabolites between groups were identified by statistical analysis. Meanwhile, high-throughput sequencing was performed to analyze the changes of rhizosphere soil and endophytic microbial community structure after mixed microbial treatment. RESULTS: The results of non-targeted metabolism indicated a significant increase in the levels of 26 metabolites after treatment including 13 flavonoids, 3 saponins and 10 other components. The contents of three plant hormones (abscisic acid, salicylic acid and spermidine) also increased after treatment, which presumed to play an important role in regulating plant growth and metabolism. Studies on endosphere and rhizosphere bacterial communities showed that Rhzobiaceae, Micromonosporaceae, and Hypomicrobiaceae in endophytic, and Oxalobactereae in rhizosphere were significantly increased after treatment. These findings suggest their potential importance in plant growth promotion and secondary metabolism regulation. CONCLUSIONS: This finding provides a basis for developing nitrogen-fixing bacteria fertilizer and improving the ecological planting efficiency of Astragalus mongholicus.


Assuntos
Astrágalo , Microbiota , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Astrágalo/microbiologia , Astrágalo/metabolismo , Bactérias Fixadoras de Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/genética , Saponinas/metabolismo , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Metabolômica , Arthrobacter/metabolismo , Arthrobacter/genética , Endófitos/metabolismo , Endófitos/genética , Rhizobium/metabolismo
4.
Antonie Van Leeuwenhoek ; 117(1): 79, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38755437

RESUMO

A nitrogen-fixing strain designated SG130T was isolated from paddy soil in Fujian Province, China. Strain SG130T was Gram-staining-negative, rod-shaped, and strictly anaerobic. Strain SG130T showed the highest 16S rRNA gene sequence similarities with the type strains Dendrosporobacter quercicolus DSM 1736T (91.7%), Anaeroarcus burkinensis DSM 6283T (91.0%) and Anaerospora hongkongensis HKU 15T (90.9%). Furthermore, the phylogenetic and phylogenomic analysis also suggested strain SG130T clustered with members of the family Sporomusaceae and was distinguished from other genera within this family. Growth of strain SG130T was observed at 25-45 °C (optimum 30 °C), pH 6.0-9.5 (optimum 7.0) and 0-1% (w/v) NaCl (optimum 0.1%). The quinones were Q-8 and Q-9. The polar lipids were phosphatidylserine (PS), phosphatidylethanolamine (PE), glycolipid (GL), phospholipid (PL) and an unidentified lipid (UL). The major fatty acids (> 10%) were iso-C13:0 3OH (26.6%), iso-C17:1 (15.6%) and iso-C15:1 F (11.4%). The genomic DNA G + C content was 50.7%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T (ANI 68.0% and dDDH 20.3%) were both below the cut-off level for species delineation. The average amino acid identity (AAI) between strain SG130T and the most closely related type strain D. quercicolus DSM 1736T was 63.2%, which was below the cut-off value for bacterial genus delineation (65%). Strain SG130T possessed core genes (nifHDK) involved in nitrogen fixation, and nitrogenase activity (106.38 µmol C2H4 g-1 protein h-1) was examined using the acetylene reduction assay. Based on the above results, strain SG130T is confirmed to represent a novel genus of the family Sporomusaceae, for which the name Azotosporobacter soli gen. nov., sp. nov. is proposed. The type strain is SG130T (= GDMCC 1.3312T = JCM 35641T).


Assuntos
Composição de Bases , DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Técnicas de Tipagem Bacteriana , China , Fosfolipídeos/análise , Fixação de Nitrogênio , Análise de Sequência de DNA , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Bactérias Fixadoras de Nitrogênio/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34764222

RESUMO

Benthic N2 production by microbial denitrification and anammox is the largest sink for fixed nitrogen in the oceans. Most N2 production occurs on the continental shelves, where a high flux of reactive organic matter fuels the depletion of nitrate close to the sediment surface. By contrast, N2 production rates in abyssal sediments are low due to low inputs of reactive organics, and nitrogen transformations are dominated by aerobic nitrification and the release of nitrate to the bottom water. Here, we demonstrate that this trend is reversed in the deepest parts of the oceans, the hadal trenches, where focusing of reactive organic matter enhances benthic microbial activity. Thus, at ∼8-km depth in the Atacama Trench, underlying productive surface waters, nitrate is depleted within a few centimeters of the sediment surface, N2 production rates reach those reported from some continental margin sites, and fixed nitrogen loss is mainly conveyed by anammox bacteria. These bacteria are closely related to those known from shallow oxygen minimum zone waters, and comparison of activities measured in the laboratory and in situ suggest they are piezotolerant. Even the Kermadec Trench, underlying oligotrophic surface waters, exhibits substantial fixed N removal. Our results underline the role of hadal sediments as hot spots of deep-sea biological activity, revealing a fully functional benthic nitrogen cycle at high hydrostatic pressure and pointing to hadal sediments as a previously unexplored niche for anaerobic microbial ecology and diagenesis.


Assuntos
Sedimentos Geológicos/microbiologia , Fixação de Nitrogênio/fisiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Nitrogênio/metabolismo , Oxidação Anaeróbia da Amônia/fisiologia , Desnitrificação/fisiologia , Microbiota/fisiologia , Nitratos/metabolismo , Nitrificação/fisiologia , Ciclo do Nitrogênio/fisiologia , Oceanos e Mares
6.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33384333

RESUMO

Reduction of N2 gas to ammonia in legume root nodules is a key component of sustainable agricultural systems. Root nodules are the result of a symbiosis between leguminous plants and bacteria called rhizobia. Both symbiotic partners play active roles in establishing successful symbiosis and nitrogen fixation: while root nodule development is mostly controlled by the plant, the rhizobia induce nodule formation, invade, and perform N2 fixation once inside the plant cells. Many bacterial genes involved in the rhizobia-legume symbiosis are known, and there is much interest in engineering the symbiosis to include major nonlegume crops such as corn, wheat, and rice. We sought to identify and combine a minimal bacterial gene complement necessary and sufficient for symbiosis. We analyzed a model rhizobium, Sinorhizobium (Ensifer) meliloti, using a background strain in which the 1.35-Mb symbiotic megaplasmid pSymA was removed. Three regions representing 162 kb of pSymA were sufficient to recover a complete N2-fixing symbiosis with alfalfa, and a targeted assembly of this gene complement achieved high levels of symbiotic N2 fixation. The resulting gene set contained just 58 of 1,290 pSymA protein-coding genes. To generate a platform for future synthetic manipulation, the minimal symbiotic genes were reorganized into three discrete nod, nif, and fix modules. These constructs will facilitate directed studies toward expanding the symbiosis to other plant partners. They also enable forward-type approaches to identifying genetic components that may not be essential for symbiosis, but which modulate the rhizobium's competitiveness for nodulation and the effectiveness of particular rhizobia-plant symbioses.


Assuntos
Fixação de Nitrogênio/genética , Sinorhizobium meliloti/genética , Genes Bacterianos , Medicago truncatula/microbiologia , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Nodulação/genética , Raízes de Plantas/genética , Rhizobium/genética , Nódulos Radiculares de Plantas/microbiologia , Sinorhizobium/genética , Simbiose/genética
7.
BMC Plant Biol ; 23(1): 573, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978424

RESUMO

BACKGROUND: Drought limits crop growth and is an important issue in commercial sugarcane (Saccharum officinarum) production. Drought tolerance in sugarcane induced by endophytic nitrogen-fixing bacteria is a complex biological process that ranges from altered gene expression and cellular metabolism to changes in growth and productivity. RESULTS: In this study, changes in physiological features and transcriptome related to drought tolerance in sugarcane conferred by the Burkholderia endophytic nitrogen-fixing bacterial strain GXS16 were investigated. Sugarcane samples inoculated with GXS16 exhibited significantly higher leaf relative water content than those without GXS16 inoculation during the drought stages. Sugarcane treated with GXS16 had lower levels of H2O2 and higher levels of abscisic acid than sugarcane not treated with GXS16 in the non-watering groups. Transcriptomic analysis of sugarcane roots identified multiple differentially expressed genes between adjacent stages under different treatments. Moreover, both trend and weighted correlation network analyses revealed that carotenoid biosynthesis, terpenoid backbone biosynthesis, starch and sucrose metabolism, and plant hormone signal transduction strongly contributed to the drought-tolerant phenotype of sugarcane induced by GXS16 treatment. Accordingly, a gene regulatory network including four differentially regulated genes from carotenoid biosynthesis (crtB, crtZ, ZEP and CYP707A) and three genes from terpenoid backbone biosynthesis (dxs, dxr, and PCME) was constructed. CONCLUSIONS: This study provides insights into the molecular mechanisms underlying the application of GXS16 treatment to enhance drought tolerance in sugarcane, which will lay the foundation for crop development and improve productivity.


Assuntos
Bactérias Fixadoras de Nitrogênio , Saccharum , Saccharum/metabolismo , Resistência à Seca , Bactérias Fixadoras de Nitrogênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Ácido Abscísico/metabolismo , Secas , Água/metabolismo , Regulação da Expressão Gênica de Plantas
8.
J Basic Microbiol ; 61(3): 241-252, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33351219

RESUMO

Soil nitrogen (N)-fixing bacteria community plays an important role in the N cycling process in soil, but there is still limited information about how the soil microbes that drive this process to respond to combined application of tillage and crop residue management under the double-cropping rice (Oryza sativa L.) paddy field in southern of China. Therefore, the effects of 6-years short-term tillage treatment on soil N-fixing bacteria community under the double-cropping rice paddy field in southern China were studied by using the polymerase chain reaction-denaturing gradient gel electrophoresis method. The field experiment included four tillage treatments: conventional tillage with crop residue incorporation (CT), rotary tillage with crop residue incorporation (RT), no-tillage with crop residue retention (NT), rotary tillage with crop residue removed as control (RTO). The results showed that the diversity index and richness index of cbbLR and nifH genes with CT, RT, and NT treatments were increased, compared with RTO treatment. Compared with RTO treatment, the abundance of cbbLR gene with CT, RT, and NT treatments were increased by 6.54, 4.73, and 2.78 times, respectively. Meanwhile, the abundance of nifH gene with CT, RT, and NT treatments were 5.32, 3.71, and 2.45 times higher than that of RTO treatment. The results also indicated that soil autotrophic Azotobacter and nitrogenase activity with CT and RT treatments were significantly higher (p < .05) than that of RTO treatment. There was an obvious difference in characteristic of soil N-fixing bacteria community between the application of crop residue and without crop residue input treatments. In summary, the results indicated that the abundance of N-fixing bacteria community in the double-cropping rice paddy field increased with conventional tillage and rotary tillage practice.


Assuntos
Ciclo do Nitrogênio/fisiologia , Fixação de Nitrogênio/fisiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Oryza/microbiologia , Agricultura/métodos , Proteínas de Transporte/genética , China , Nitrogênio/análise , Bactérias Fixadoras de Nitrogênio/genética , Oxirredutases/genética , Solo/química , Microbiologia do Solo
9.
BMC Plant Biol ; 20(1): 220, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32423383

RESUMO

BACKGROUND: Nitrogen is an essential element for sugarcane growth and development and is generally applied in the form of urea often much more than at recommended rates, causing serious soil degradation, particularly soil acidification, as well as groundwater and air pollution. In spite of the importance of nitrogen for plant growth, fewer reports are available to understand the application and biological role of N2 fixing bacteria to improve N2 nutrition in the sugarcane plant. RESULTS: In this study, a total of 350 different bacterial strains were isolated from rhizospheric soil samples of the sugarcane plants. Out of these, 22 isolates were selected based on plant growth promotion traits, biocontrol, and nitrogenase activity. The presence and activity of the nifH gene and the ability of nitrogen-fixation proved that all 22 selected strains have the ability to fix nitrogen. These strains were used to perform 16S rRNA and rpoB genes for their identification. The resulted amplicons were sequenced and phylogenetic analysis was constructed. Among the screened strains for nitrogen fixation, CY5 (Bacillus megaterium) and CA1 (Bacillus mycoides) were the most prominent. These two strains were examined for functional diversity using Biolog phenotyping, which confirmed the consumption of diverse carbon and nitrogen sources and tolerance to low pH and osmotic stress. The inoculated bacterial strains colonized the sugarcane rhizosphere successfully and were mostly located in root and leaf. The expression of the nifH gene in both sugarcane varieties (GT11 and GXB9) inoculated with CY5 and CA1 was confirmed. The gene expression studies showed enhanced expression of genes of various enzymes such as catalase, phenylalanine-ammonia-lyase, superoxide dismutase, chitinase and glucanase in bacterial-inoculated sugarcane plants. CONCLUSION: The results showed that a substantial number of Bacillus isolates have N-fixation and biocontrol property against two sugarcane pathogens Sporisorium scitamineum and Ceratocystis paradoxa. The increased activity of genes controlling free radical metabolism may at least in part accounts for the increased tolerance to pathogens. Nitrogen-fixation was confirmed in sugarcane inoculated with B. megaterium and B. mycoides strains using N-balance and 15N2 isotope dilution in different plant parts of sugarcane. This is the first report of Bacillus mycoides as a nitrogen-fixing rhizobacterium in sugarcane.


Assuntos
Interações entre Hospedeiro e Microrganismos , Microbiota , Fixação de Nitrogênio , Bactérias Fixadoras de Nitrogênio/metabolismo , Saccharum/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Rizoma/crescimento & desenvolvimento , Rizoma/microbiologia , Saccharum/microbiologia
10.
Plant Cell Environ ; 43(5): 1130-1147, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32012309

RESUMO

Hydrogen sulfide (H2 S) is emerging as an important signalling molecule that regulates plant growth and abiotic stress responses. However, the roles of H2 S in symbiotic nitrogen (N) assimilation and remobilization have not been characterized. Therefore, we examined how H2 S influences the soybean (Glycine max)/rhizobia interaction in terms of symbiotic N fixation and mobilization during N deficiency-induced senescence. H2 S enhanced biomass accumulation and delayed leaf senescence through effects on nodule numbers, leaf chlorophyll contents, leaf N resorption efficiency, and the N contents in different tissues. Moreover, grain numbers and yield were regulated by H2 S and rhizobia, together with N accumulation in the organs, and N use efficiency. The synergistic effects of H2 S and rhizobia were also demonstrated by effects on the enzyme activities, protein abundances, and gene expressions associated with N metabolism, and senescence-associated genes (SAGs) expression in soybeans grown under conditions of N deficiency. Taken together, these results show that H2 S and rhizobia accelerate N assimilation and remobilization by regulation of the expression of SAGs during N deficiency-induced senescence. Thus, H2 S enhances the vegetative and reproductive growth of soybean, presumably through interactions with rhizobia under conditions of N deficiency.


Assuntos
Glycine max/metabolismo , Sulfeto de Hidrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/metabolismo , Nitrogênio/metabolismo , Envelhecimento/metabolismo , Western Blotting , Clorofila/metabolismo , Eletroforese em Gel de Poliacrilamida , Leghemoglobina/metabolismo , Nitrogênio/deficiência , Fixação de Nitrogênio , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/fisiologia , Glycine max/fisiologia
11.
Plant Cell Environ ; 43(5): 1117-1129, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31834628

RESUMO

Plant genomes contain two major classes of innate immune receptors to recognize different pathogens. The pattern recognition receptors perceive conserved pathogen-associated molecular patterns and the resistance genes with nucleotide-binding (NB) and leucine-rich repeat (LRR) domains recognize specific pathogen effectors. The precise regulation of resistance genes is important since the unregulated expression of NB-LRR genes can inhibit growth and may result in autoimmunity in the absence of pathogen infection. It was shown that a subset of miRNAs could target NB-LRR genes and act as an important regulator of plant immunity in the absence of pathogens. Plants not only interact with pathogens, but they can also establish symbiotic interactions with microbes. Nitrogen-fixing symbiotic interaction and nodule formation of legumes may also require the suppression of host defence to prevent immune responses. We found that upon symbiotic interactions, miRNAs repressing NB-LRR expression are upregulated in the developing nodules of Medicago truncatula. Furthermore, we show that the suppression of the activity of the NB-LRR genes targeted by these miRNAs is important during nodule development. Our results suggest that the downregulation of NB-LRR resistance genes in the developing nodule produces a suitable niche that facilitates bacterial colonization and the development of an N-fixing nodule.


Assuntos
Genes de Plantas/fisiologia , Medicago truncatula/metabolismo , MicroRNAs/metabolismo , Proteínas NLR/metabolismo , Bactérias Fixadoras de Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Northern Blotting , Regulação da Expressão Gênica de Plantas/genética , Hibridização In Situ , Medicago truncatula/microbiologia , Medicago truncatula/fisiologia , MicroRNAs/fisiologia , Proteínas NLR/fisiologia , Proteínas de Plantas/fisiologia , RNA de Plantas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Plântula/metabolismo , Plântula/fisiologia
12.
Genomics ; 111(6): 1824-1830, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30552976

RESUMO

Metagenome from refinery wastewater treatment plant running under nitrogen stress was analyzed for mining of novel aromatic hydrocarbon-degrading bacteria. The sequence data were assembled using metaspade followed by binning using the Metabat tool to assemble genome; where coverage and depth were calculated using bowtie and samtools. The analysis picked a novel genome belonging to family Bradyrhizobiaceae, identified based on 16S rDNA gene which was supported by CheckM and Kraken analysis. Using RAST, the assembled genome showed the capabilities for nitrogen fixation with the utilization of multiple hydrocarbon substrates with 14 different types of oxygenases as mapped by Minpath. An additional genetic feature like genes for stress and resistance towards heavy metals and antibiotic suggested that the genome has gone through the rigorous process of adaptation. If such bacteria could be cultivated then it will open the broad window of bioremediation strategies under nitrogen stress environment.


Assuntos
Genoma Bacteriano , Hidrocarbonetos Aromáticos/metabolismo , Fixação de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/genética , Biodegradação Ambiental , Bactérias Fixadoras de Nitrogênio/metabolismo
13.
Ecotoxicol Environ Saf ; 167: 459-466, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30368139

RESUMO

Managing municipal green waste is a challenge to municipalities, partly because of the slow rate of decomposition of green waste during composting due to its high lignin and cellulose contents. Hence, this study evaluated the effect of alkyl polyglycoside (APG), a biosurfactant, and the earthworm Eisenia fetida on the composting process. Addition of APG and E. fetida significantly increased total bacteria, cellulolytic fungi, phosphate solubilizing bacteria and nitrogen fixing bacteria populations, and the activities of cellulase, urease and alkaline phosphatase in composts as compared with the control. The APG and earthworm treatments also increased surface roughness and porosity of the green waste; Compared with control, APG and earthworm addition increased the degradation rate of TOC, lignin and cellulose by 5.9-17.9, 10.3-32.0 and 10.8-18.8%, respectively, and resulted in better compost quality, as was reflected in the neutral pH, higher cation exchange capacity (CEC) and nutrient concentrations (N, P, K, Ca, Mg, Fe, Cu, Zn, Mn). Final germination percentage and growth rate of tomato, eggplant and pepper seedlings were higher (P < 0.05) or similar in all composts produced with the addition of APG and earthworm, while plant growth was lower (P < 0.05) in the compost produced with the control than in peat substrate. The combination of APG+E. fetida enhanced the decomposition of green waste and improved final compost quality the most. Further research is needed to determine the best level of APG addition and optimum earthworm density for composting green waste.


Assuntos
Biodegradação Ambiental , Oligoquetos/metabolismo , Desenvolvimento Vegetal , Verduras/crescimento & desenvolvimento , Fosfatase Alcalina/metabolismo , Animais , Capsicum/crescimento & desenvolvimento , Celulase/metabolismo , Fenômenos Químicos , Compostagem , Concentração de Íons de Hidrogênio , Lignina/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Bactérias Fixadoras de Nitrogênio/metabolismo , Plântula/crescimento & desenvolvimento , Solo/química , Microbiologia do Solo , Solanum melongena/crescimento & desenvolvimento , Tensoativos/metabolismo , Urease/metabolismo
14.
Environ Geochem Health ; 41(5): 1953-1966, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30767095

RESUMO

Comprehensive studies on the effect of arsenic (As) on free-living diazotrophs that play a crucial role in soil fertility by nitrogen fixation are still scanty. Here, we isolated three free-living bacteria from rice field with potential nitrogen-fixing ability and investigated the impact of As on their nifH gene expression and extracellular polysaccharide (EPS) production in culture condition and soil system. 16S rRNA sequence analysis showed that the isolated bacteria were affiliated to ß-Proteobacteria, γ-Proteobacteria and Firmicutes. As(III) exposure to bacterial isolates followed by RT-qPCR analysis revealed that elevated levels of As reduced the expression of nifH gene in selective bacteria, both in culture medium and soil condition. We also noticed reduced production of EPS under higher concentration of As. All the three bacteria showed high tolerance to As(III), able to oxidize As and exhibited significant plant growth-promoting traits. This investigation indicated that an environment exposed with higher concentration of As might perturbed the activity of free-living diazotrophs in agricultural soil system.


Assuntos
Arsênio/toxicidade , Bactérias/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Bactérias Fixadoras de Nitrogênio/efeitos dos fármacos , Oxirredutases/genética , Microbiologia do Solo , Arsênio/análise , Arsênio/metabolismo , Meios de Cultura/química , Poluentes Ambientais/toxicidade , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Polissacarídeos Bacterianos/metabolismo , RNA Ribossômico 16S/genética , Solo/química
15.
World J Microbiol Biotechnol ; 35(7): 99, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222505

RESUMO

The purpose of this study was to develop an effective bacterial consortium and determine their ability to overcome nitrogen limitation for the enhanced remediation of diesel-contaminated soils. Towards this, various bacterial consortia were constructed using oil-degrading and nitrogen-fixing microbes. The diesel removal efficiency of various developed consortia was evaluated by delivering the bacterial consortia to the diesel-contaminated soils. The consortium Acinetobacter sp. K-6 + Rhodococcus sp. Y2-2 + NH4NO3 resulted in the highest removal (85.3%) of diesel from the contaminated soil. The consortium containing two different oil-degrading microbes (K-6 + Y2-2) and one nitrogen-fixing microbe Azotobacter vinelandii KCTC 2426 removed 83.1% of the diesel from the soil after 40 days of treatment. The total nitrogen content analysis revealed higher amounts of nitrogen in soil treated with the nitrogen-fixing microbe when compared with that of the soil supplemented with exogenous inorganic nitrogen. The findings in this present study reveal that the consortium containing the nitrogen-fixing microbe degraded similar amounts of diesel to that degraded by the consortium supplemented with exogenous inorganic nitrogen. This suggests that the developed consortium K-6 + Y2-2 + KCTC 2426 compensated for the nitrogen limitation and eliminated the need for exogenous nitrogen in bioremediation of diesel-contaminated soils.


Assuntos
Gasolina/análise , Bactérias Fixadoras de Nitrogênio/metabolismo , Nitrogênio/metabolismo , Microbiologia do Solo , Poluentes do Solo/química , Acinetobacter/metabolismo , Azotobacter vinelandii/metabolismo , Biodegradação Ambiental , Rhodococcus/metabolismo , Solo/química
16.
Anal Chem ; 90(8): 5082-5089, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29557648

RESUMO

Nitrogen (N) fixation is the conversion of inert nitrogen gas (N2) to bioavailable N essential for all forms of life. N2-fixing microorganisms (diazotrophs), which play a key role in global N cycling, remain largely obscure because a large majority are uncultured. Direct probing of active diazotrophs in the environment is still a major challenge. Herein, a novel culture-independent single-cell approach combining resonance Raman (RR) spectroscopy with 15N2 stable isotope probing (SIP) was developed to discern N2-fixing bacteria in a complex soil community. Strong RR signals of cytochrome c (Cyt c, frequently present in diverse N2-fixing bacteria), along with a marked 15N2-induced Cyt c band shift, generated a highly distinguishable biomarker for N2 fixation. 15N2-induced shift was consistent well with 15N abundance in cell determined by isotope ratio mass spectroscopy. By applying this biomarker and Raman imaging, N2-fixing bacteria in both artificial and complex soil communities were discerned and imaged at the single-cell level. The linear band shift of Cyt c versus 15N2 percentage allowed quantification of N2 fixation extent of diverse soil bacteria. This single-cell approach will advance the exploration of hitherto uncultured diazotrophs in diverse ecosystems.


Assuntos
Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Microbiologia do Solo , Análise Espectral Raman , Citocromos c/química , Marcação por Isótopo , Isótopos de Nitrogênio/química , Isótopos de Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/metabolismo , Análise de Célula Única
17.
Environ Microbiol ; 19(6): 2119-2132, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28142226

RESUMO

Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine systems, nitrogen availability is often the limiting factor in the growth of autotrophic organisms, intrinsically linking the nitrogen and carbon cycles. In order to elucidate the state of these cycles in the past, and help envisage present and future variability, it is essential to understand the specific microbial processes responsible for transforming bio-available nitrogen species. As most microorganisms are soft-bodied and seldom leave behind physical fossils in the sedimentary record, recalcitrant lipid biomarkers are used to unravel microbial processes in the geological past. This review emphasises the recent advances in marine nitrogen cycle lipid biomarkers, underlines the missing links still needed to fully elucidate past shifts in this biogeochemically-important cycle, and provides examples of biomarker applications in the geological past.


Assuntos
Cianobactérias/metabolismo , Desnitrificação/fisiologia , Lipídeos/fisiologia , Nitrificação/fisiologia , Fixação de Nitrogênio/fisiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Biomarcadores , Clima , Nitrogênio/metabolismo , Oxirredução
18.
Microb Ecol ; 73(1): 162-176, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27581036

RESUMO

The main goal of the study was to determine the diversity of the potential nitrogen-fixing (PNF) bacteria inhabiting agricultural (A) soils versus wastelands serving as controls (C). The soils were classified into three groups based on the formation process: autogenic soils (Albic Luvisols, Brunic Arenosols, Haplic Phaeozem) formed on loess material, hydrogenic soils (Mollic Gleysols, Eutric Fluvisol, Eutric Histosol) formed under the effect of stagnant water and lithogenic soils (Rendzina Leptosols) formed on limestone. In order to determine the preferable conditions for PNF bacteria, the relationships between the soil chemical features and bacterial operational taxonomic units (OTUs) were tested. Additionally, the nitrogen content and fertilisation requirement of the lithogenic (LG), autogenic (AG) and hydrogenic (HG) soils were discussed. The composition of the bacterial communities was analysed with the next-generation sequencing (NGS) by the Ion Torrent™ technology. The sequences were clustered into OTU based on a 99 % similarity threshold. The arable soils tested were distinctly dominated by ß-Proteobacteria representatives of PNF bacteria belonging to the genus Burkholderia. Bacteria from the α-Proteobacteria class and Devosia genus were subdominants. A free-living Cyanobacteria population dominated in A rather than in C soils. We have found that both soil agricultural management and soil formation processes are the most conducive factors for PNF bacteria, as a majority of these microorganisms inhabit the AG group of soils, whilst the LG soils with the lowest abundance of PNF bacteria revealed the need for additional mineral fertilisation. Our studies have also indicated that there are close relationships between soil classification with respect to soil formation processes and PNF bacteria preference for occupation of soil niches.


Assuntos
Cianobactérias/classificação , Cianobactérias/isolamento & purificação , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/metabolismo , Proteobactérias/classificação , Proteobactérias/isolamento & purificação , Microbiologia do Solo , Solo/química , Agricultura , Biodiversidade , Cianobactérias/genética , Metagenoma/genética , Bactérias Fixadoras de Nitrogênio/genética , Polônia , Proteobactérias/genética
19.
Int J Phytoremediation ; 19(2): 142-156, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27409290

RESUMO

Plants on contaminated mining soils often show a reduced growth due to nutrient depletion as well as trace elements (TEs) toxicity. Since those conditions threat plant's survival, plant growth-promoting rhizobacteria (PGPRs), such as rhizobia, might be of crucial importance for plant colonization on TE-contaminated soils. Native rhizobia from mining soils are promising candidates for bioaugmented phytoremediation of those soils as they are adapted to the specific conditions. In this work, rhizobia from Zn- and Cd-contaminated mining soils were in vitro screened for their PGP features [organic acids, indole-3-acetic acid (IAA), and siderophore (SID) production; 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity; and Ca3(PO4)2 solubilization] and Zn and Cd tolerance. In addition, some type and reference rhizobia strains were included in the study as well. The in vitro screening indicated that rhizobia and other native genera have great potential for phytoremediation purposes, by exerting, besides biological N2 fixation, other plant growth-promoting traits. Leucaena leucocephala-Mesorhizobium sp. (UFLA 01-765) showed multielement tolerance and an efficient symbiosis on contaminated soil, decreasing the activities of antioxidative enzymes in shoots. This symbiosis is a promising combination for phytostabilization.


Assuntos
Fabaceae/metabolismo , Fabaceae/microbiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Simbiose , Zinco/metabolismo , Biodegradação Ambiental , DNA Bacteriano/genética , Mesorhizobium/classificação , Mesorhizobium/genética , Mesorhizobium/metabolismo , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , RNA Ribossômico 16S/genética
20.
Microb Ecol ; 71(4): 938-53, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26790863

RESUMO

Carnivorous plants of the genus Nepenthes have been studied for over a century, but surprisingly little is known about associations with microorganisms. The two species Nepenthes rafflesiana and Nepenthes hemsleyana differ in their pitcher-mediated nutrient sources, sequestering nitrogen from arthropod prey and arthropods as well as bat faeces, respectively. We expected bacterial communities living in the pitchers to resemble this diet difference. Samples were taken from different parts of the pitchers (leaf, peristome, inside, outside, digestive fluid) of both species. Bacterial communities were determined using culture-independent high-throughput amplicon sequencing. Bacterial richness and community structure were similar in leaves, peristomes, inside and outside walls of both plant species. Regarding digestive fluids, bacterial richness was higher in N. hemsleyana than in N. rafflesiana. Additionally, digestive fluid communities were highly variable in structure, with strain-specific differences in community composition between replicates. Acidophilic taxa were mostly of low abundance, except the genus Acidocella, which strikingly reached extremely high levels in two N. rafflesiana fluids. In N. hemsleyana fluid, some taxa classified as vertebrate gut symbionts as well as saprophytes were enriched compared to N. rafflesiana, with saprophytes constituting potential competitors for nutrients. The high variation in community structure might be caused by a number of biotic and abiotic factors. Nitrogen-fixing bacteria were present in both study species, which might provide essential nutrients to the plant at times of low prey capture and/or rare encounters with bats.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Nitrogênio/metabolismo , Acetobacteraceae/isolamento & purificação , Animais , Artrópodes/microbiologia , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Brunei , Magnoliopsida/microbiologia , Bactérias Fixadoras de Nitrogênio/classificação , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/isolamento & purificação , Bactérias Fixadoras de Nitrogênio/metabolismo , Folhas de Planta/microbiologia , Rhizobiaceae/isolamento & purificação , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA