Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67.158
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 40: 169-193, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35044794

RESUMO

The tumor microenvironment (TME) is a heterogeneous, complex organization composed of tumor, stroma, and endothelial cells that is characterized by cross talk between tumor and innate and adaptive immune cells. Over the last decade, it has become increasingly clear that the immune cells in the TME play a critical role in controlling or promoting tumor growth. The function of T lymphocytes in this process has been well characterized. On the other hand, the function of B lymphocytes is less clear, although recent data from our group and others have strongly indicated a critical role for B cells in antitumor immunity. There are, however, a multitude of populations of B cells found within the TME, ranging from naive B cells all the way to terminally differentiated plasma cells and memory B cells. Here, we characterize the role of B cells in the TME in both animal models and patients, with an emphasis on dissecting how B cell heterogeneity contributes to the immune response to cancer.


Assuntos
Neoplasias , Microambiente Tumoral , Animais , Linfócitos B , Células Endoteliais , Humanos , Linfócitos T
2.
Annu Rev Immunol ; 35: 31-52, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-27860528

RESUMO

The lymphatic vasculature is not considered a formal part of the immune system, but it is critical to immunity. One of its major roles is in the coordination of the trafficking of antigen and immune cells. However, other roles in immunity are emerging. Lymphatic endothelial cells, for example, directly present antigen or express factors that greatly influence the local environment. We cover these topics herein and discuss how other properties of the lymphatic vasculature, such as mechanisms of lymphatic contraction (which immunologists traditionally do not take into account), are nonetheless integral in the immune system. Much is yet unknown, and this nascent subject is ripe for exploration. We argue that to consider the impact of lymphatic biology in any given immunological interaction is a key step toward integrating immunology with organ physiology and ultimately many complex pathologies.


Assuntos
Células Endoteliais/imunologia , Sistema Imunitário , Imunidade , Sistema Linfático/imunologia , Vasos Linfáticos/fisiologia , Animais , Apresentação de Antígeno , Humanos , Metabolismo dos Lipídeos
3.
Cell ; 187(4): 846-860.e17, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262409

RESUMO

RNAs localizing to the outer cell surface have been recently identified in mammalian cells, including RNAs with glycan modifications known as glycoRNAs. However, the functional significance of cell surface RNAs and their production are poorly known. We report that cell surface RNAs are critical for neutrophil recruitment and that the mammalian homologs of the sid-1 RNA transporter are required for glycoRNA expression. Cell surface RNAs can be readily detected in murine neutrophils, the elimination of which substantially impairs neutrophil recruitment to inflammatory sites in vivo and reduces neutrophils' adhesion to and migration through endothelial cells. Neutrophil glycoRNAs are predominantly on cell surface, important for neutrophil-endothelial interactions, and can be recognized by P-selectin (Selp). Knockdown of the murine Sidt genes abolishes neutrophil glycoRNAs and functionally mimics the loss of cell surface RNAs. Our data demonstrate the biological importance of cell surface glycoRNAs and highlight a noncanonical dimension of RNA-mediated cellular functions.


Assuntos
Células Endoteliais , Infiltração de Neutrófilos , Neutrófilos , RNA , Animais , Camundongos , Células Endoteliais/metabolismo , Neutrófilos/metabolismo , RNA/química , RNA/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo
4.
Cell ; 187(11): 2690-2702.e17, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38723627

RESUMO

The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Linfócitos do Interstício Tumoral , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Relógios Circadianos , Ritmo Circadiano , Células Endoteliais/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Melanoma/terapia , Melanoma/patologia , Microambiente Tumoral/imunologia
5.
Cell ; 186(11): 2345-2360.e16, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37167971

RESUMO

A functional network of blood vessels is essential for organ growth and homeostasis, yet how the vasculature matures and maintains homeostasis remains elusive in live mice. By longitudinally tracking the same neonatal endothelial cells (ECs) over days to weeks, we found that capillary plexus expansion is driven by vessel regression to optimize network perfusion. Neonatal ECs rearrange positions to evenly distribute throughout the developing plexus and become positionally stable in adulthood. Upon local ablation, adult ECs survive through a plasmalemmal self-repair response, while neonatal ECs are predisposed to die. Furthermore, adult ECs reactivate migration to assist vessel repair. Global ablation reveals coordinated maintenance of the adult vascular architecture that allows for eventual network recovery. Lastly, neonatal remodeling and adult maintenance of the skin vascular plexus are orchestrated by temporally restricted, neonatal VEGFR2 signaling. Our work sheds light on fundamental mechanisms that underlie both vascular maturation and adult homeostasis in vivo.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Animais , Camundongos , Células Endoteliais/fisiologia , Neovascularização Fisiológica/fisiologia , Pele , Membrana Celular
6.
Cell ; 186(2): 382-397.e24, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36669473

RESUMO

Blood and lymphatic vessels form a versatile transport network and provide inductive signals to regulate tissue-specific functions. Blood vessels in bone regulate osteogenesis and hematopoiesis, but current dogma suggests that bone lacks lymphatic vessels. Here, by combining high-resolution light-sheet imaging and cell-specific mouse genetics, we demonstrate presence of lymphatic vessels in mouse and human bones. We find that lymphatic vessels in bone expand during genotoxic stress. VEGF-C/VEGFR-3 signaling and genotoxic stress-induced IL6 drive lymphangiogenesis in bones. During lymphangiogenesis, secretion of CXCL12 from proliferating lymphatic endothelial cells is critical for hematopoietic and bone regeneration. Moreover, lymphangiocrine CXCL12 triggers expansion of mature Myh11+ CXCR4+ pericytes, which differentiate into bone cells and contribute to bone and hematopoietic regeneration. In aged animals, such expansion of lymphatic vessels and Myh11-positive cells in response to genotoxic stress is impaired. These data suggest lymphangiogenesis as a therapeutic avenue to stimulate hematopoietic and bone regeneration.


Assuntos
Regeneração Óssea , Vasos Linfáticos , Idoso , Animais , Humanos , Camundongos , Células Endoteliais , Linfangiogênese
7.
Cell ; 186(18): 3793-3809.e26, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37562401

RESUMO

Hepatocytes, the major metabolic hub of the body, execute functions that are human-specific, altered in human disease, and currently thought to be regulated through endocrine and cell-autonomous mechanisms. Here, we show that key metabolic functions of human hepatocytes are controlled by non-parenchymal cells (NPCs) in their microenvironment. We developed mice bearing human hepatic tissue composed of human hepatocytes and NPCs, including human immune, endothelial, and stellate cells. Humanized livers reproduce human liver architecture, perform vital human-specific metabolic/homeostatic processes, and model human pathologies, including fibrosis and non-alcoholic fatty liver disease (NAFLD). Leveraging species mismatch and lipidomics, we demonstrate that human NPCs control metabolic functions of human hepatocytes in a paracrine manner. Mechanistically, we uncover a species-specific interaction whereby WNT2 secreted by sinusoidal endothelial cells controls cholesterol uptake and bile acid conjugation in hepatocytes through receptor FZD5. These results reveal the essential microenvironmental regulation of hepatic metabolism and its human-specific aspects.


Assuntos
Células Endoteliais , Fígado , Animais , Humanos , Camundongos , Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Células de Kupffer/metabolismo , Fígado/citologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fibrose/metabolismo
8.
Cell ; 185(14): 2523-2541.e30, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35738284

RESUMO

Stem cell research endeavors to generate specific subtypes of classically defined "cell types." Here, we generate >90% pure human artery or vein endothelial cells from pluripotent stem cells within 3-4 days. We specified artery cells by inhibiting vein-specifying signals and vice versa. These cells modeled viral infection of human vasculature by Nipah and Hendra viruses, which are extraordinarily deadly (∼57%-59% fatality rate) and require biosafety-level-4 containment. Generating pure populations of artery and vein cells highlighted that Nipah and Hendra viruses preferentially infected arteries; arteries expressed higher levels of their viral-entry receptor. Virally infected artery cells fused into syncytia containing up to 23 nuclei, which rapidly died. Despite infecting arteries and occupying ∼6%-17% of their transcriptome, Nipah and Hendra largely eluded innate immune detection, minimally eliciting interferon signaling. We thus efficiently generate artery and vein cells, introduce stem-cell-based toolkits for biosafety-level-4 virology, and explore the arterial tropism and cellular effects of Nipah and Hendra viruses.


Assuntos
Vírus Hendra , Vírus Nipah , Células-Tronco Pluripotentes , Artérias , Células Endoteliais , Vírus Hendra/genética , Humanos , Tropismo
9.
Cell ; 185(20): 3753-3769.e18, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179668

RESUMO

Interactions between angiogenesis and neurogenesis regulate embryonic brain development. However, a comprehensive understanding of the stages of vascular cell maturation is lacking, especially in the prenatal human brain. Using fluorescence-activated cell sorting, single-cell transcriptomics, and histological and ultrastructural analyses, we show that an ensemble of endothelial and mural cell subtypes tile the brain vasculature during the second trimester. These vascular cells follow distinct developmental trajectories and utilize diverse signaling mechanisms, including collagen, laminin, and midkine, to facilitate cell-cell communication and maturation. Interestingly, our results reveal that tip cells, a subtype of endothelial cells, are highly enriched near the ventricular zone, the site of active neurogenesis. Consistent with these observations, prenatal vascular cells transplanted into cortical organoids exhibit restricted lineage potential that favors tip cells, promotes neurogenesis, and reduces cellular stress. Together, our results uncover important mechanisms into vascular maturation during this critical period of human brain development.


Assuntos
Células Endoteliais , Neovascularização Fisiológica , Encéfalo , Colágeno , Humanos , Laminina , Midkina , Neovascularização Patológica/patologia , Neovascularização Fisiológica/fisiologia , Pericitos
10.
Cell ; 185(10): 1676-1693.e23, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35489334

RESUMO

Epidemiological studies reveal that marijuana increases the risk of cardiovascular disease (CVD); however, little is known about the mechanism. Δ9-tetrahydrocannabinol (Δ9-THC), the psychoactive component of marijuana, binds to cannabinoid receptor 1 (CB1/CNR1) in the vasculature and is implicated in CVD. A UK Biobank analysis found that cannabis was an risk factor for CVD. We found that marijuana smoking activated inflammatory cytokines implicated in CVD. In silico virtual screening identified genistein, a soybean isoflavone, as a putative CB1 antagonist. Human-induced pluripotent stem cell-derived endothelial cells were used to model Δ9-THC-induced inflammation and oxidative stress via NF-κB signaling. Knockdown of the CB1 receptor with siRNA, CRISPR interference, and genistein attenuated the effects of Δ9-THC. In mice, genistein blocked Δ9-THC-induced endothelial dysfunction in wire myograph, reduced atherosclerotic plaque, and had minimal penetration of the central nervous system. Genistein is a CB1 antagonist that attenuates Δ9-THC-induced atherosclerosis.


Assuntos
Cannabis , Doenças Cardiovasculares , Alucinógenos , Analgésicos , Animais , Agonistas de Receptores de Canabinoides/farmacologia , Dronabinol/farmacologia , Células Endoteliais , Genisteína/farmacologia , Genisteína/uso terapêutico , Inflamação/tratamento farmacológico , Camundongos , Receptor CB1 de Canabinoide , Receptores de Canabinoides
11.
Cell ; 185(3): 493-512.e25, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35032429

RESUMO

Severe COVID-19 is linked to both dysfunctional immune response and unrestrained immunopathology, and it remains unclear whether T cells contribute to disease pathology. Here, we combined single-cell transcriptomics and single-cell proteomics with mechanistic studies to assess pathogenic T cell functions and inducing signals. We identified highly activated CD16+ T cells with increased cytotoxic functions in severe COVID-19. CD16 expression enabled immune-complex-mediated, T cell receptor-independent degranulation and cytotoxicity not found in other diseases. CD16+ T cells from COVID-19 patients promoted microvascular endothelial cell injury and release of neutrophil and monocyte chemoattractants. CD16+ T cell clones persisted beyond acute disease maintaining their cytotoxic phenotype. Increased generation of C3a in severe COVID-19 induced activated CD16+ cytotoxic T cells. Proportions of activated CD16+ T cells and plasma levels of complement proteins upstream of C3a were associated with fatal outcome of COVID-19, supporting a pathological role of exacerbated cytotoxicity and complement activation in COVID-19.


Assuntos
COVID-19/imunologia , COVID-19/patologia , Ativação do Complemento , Proteoma , SARS-CoV-2/imunologia , Linfócitos T Citotóxicos/imunologia , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/virologia , Fatores Quimiotáticos/metabolismo , Citotoxicidade Imunológica , Células Endoteliais/virologia , Feminino , Humanos , Ativação Linfocitária , Masculino , Microvasos/virologia , Pessoa de Meia-Idade , Monócitos/metabolismo , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Análise de Célula Única , Adulto Jovem
12.
Nat Immunol ; 25(2): 282-293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172257

RESUMO

Preserving cells in a functional, non-senescent state is a major goal for extending human healthspans. Model organisms reveal that longevity and senescence are genetically controlled, but how genes control longevity in different mammalian tissues is unknown. Here, we report a new human genetic disease that causes cell senescence, liver and immune dysfunction, and early mortality that results from deficiency of GIMAP5, an evolutionarily conserved GTPase selectively expressed in lymphocytes and endothelial cells. We show that GIMAP5 restricts the pathological accumulation of long-chain ceramides (CERs), thereby regulating longevity. GIMAP5 controls CER abundance by interacting with protein kinase CK2 (CK2), attenuating its ability to activate CER synthases. Inhibition of CK2 and CER synthase rescues GIMAP5-deficient T cells by preventing CER overaccumulation and cell deterioration. Thus, GIMAP5 controls longevity assurance pathways crucial for immune function and healthspan in mammals.


Assuntos
Ceramidas , Proteínas de Ligação ao GTP , Animais , Humanos , Longevidade/genética , Células Endoteliais/metabolismo , Mamíferos/metabolismo
13.
Nat Immunol ; 25(2): 357-370, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177281

RESUMO

Cerebral ischemia triggers a powerful inflammatory reaction involving peripheral leukocytes and brain resident cells that contribute to both tissue injury and repair. However, their dynamics and diversity remain poorly understood. To address these limitations, we performed a single-cell transcriptomic study of brain and blood cells 2 or 14 days after ischemic stroke in mice. We observed a strong divergence of post-ischemic microglia, monocyte-derived macrophages and neutrophils over time, while endothelial cells and brain-associated macrophages showed altered transcriptomic signatures at 2 days poststroke. Trajectory inference predicted the in situ trans-differentiation of macrophages from blood monocytes into day 2 and day 14 phenotypes, while neutrophils were projected to be continuously de novo recruited from the blood. Brain single-cell transcriptomes from both female and male aged mice were similar to that of young male mice, but aged and young brains differed in their immune cell composition. Although blood leukocyte analysis also revealed altered transcriptomes after stroke, brain-infiltrating leukocytes displayed higher transcriptomic divergence than their circulating counterparts, indicating that phenotypic diversification occurs within the brain in the early and recovery phases of ischemic stroke. A portal ( https://anratherlab.shinyapps.io/strokevis/ ) is provided to allow user-friendly access to our data.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Feminino , Masculino , Camundongos , Animais , Células Endoteliais , Acidente Vascular Cerebral/genética , Encéfalo , Monócitos , Microglia , Perfilação da Expressão Gênica , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
14.
Cell ; 184(3): 810-826.e23, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406409

RESUMO

Development of the human intestine is not well understood. Here, we link single-cell RNA sequencing and spatial transcriptomics to characterize intestinal morphogenesis through time. We identify 101 cell states including epithelial and mesenchymal progenitor populations and programs linked to key morphogenetic milestones. We describe principles of crypt-villus axis formation; neural, vascular, mesenchymal morphogenesis, and immune population of the developing gut. We identify the differentiation hierarchies of developing fibroblast and myofibroblast subtypes and describe diverse functions for these including as vascular niche cells. We pinpoint the origins of Peyer's patches and gut-associated lymphoid tissue (GALT) and describe location-specific immune programs. We use our resource to present an unbiased analysis of morphogen gradients that direct sequential waves of cellular differentiation and define cells and locations linked to rare developmental intestinal disorders. We compile a publicly available online resource, spatio-temporal analysis resource of fetal intestinal development (STAR-FINDer), to facilitate further work.


Assuntos
Intestinos/citologia , Intestinos/crescimento & desenvolvimento , Análise de Célula Única , Células Endoteliais/citologia , Sistema Nervoso Entérico/citologia , Feto/embriologia , Fibroblastos/citologia , Humanos , Imunidade , Enteropatias/congênito , Enteropatias/patologia , Mucosa Intestinal/crescimento & desenvolvimento , Intestinos/irrigação sanguínea , Ligantes , Mesoderma/citologia , Neovascularização Fisiológica , Pericitos/citologia , Células-Tronco/citologia , Fatores de Tempo , Fatores de Transcrição/metabolismo
15.
Cell ; 184(12): 3299-3317.e22, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34019794

RESUMO

Organoids capable of forming tissue-like structures have transformed our ability to model human development and disease. With the notable exception of the human heart, lineage-specific self-organizing organoids have been reported for all major organs. Here, we established self-organizing cardioids from human pluripotent stem cells that intrinsically specify, pattern, and morph into chamber-like structures containing a cavity. Cardioid complexity can be controlled by signaling that instructs the separation of cardiomyocyte and endothelial layers and by directing epicardial spreading, inward migration, and differentiation. We find that cavity morphogenesis is governed by a mesodermal WNT-BMP signaling axis and requires its target HAND1, a transcription factor linked to developmental heart chamber defects. Upon cryoinjury, cardioids initiated a cell-type-dependent accumulation of extracellular matrix, an early hallmark of both regeneration and heart disease. Thus, human cardioids represent a powerful platform to mechanistically dissect self-organization, congenital heart defects and serve as a foundation for future translational research.


Assuntos
Coração/embriologia , Organogênese , Organoides/embriologia , Ativinas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Cálcio/metabolismo , Linhagem Celular , Linhagem da Célula , Galinhas , Células Endoteliais/citologia , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibroblastos/citologia , Proteína Homeobox Nkx-2.5/metabolismo , Humanos , Masculino , Mesoderma/embriologia , Modelos Biológicos , Miocárdio/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Wnt/metabolismo
16.
Cell ; 184(18): 4734-4752.e20, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34450029

RESUMO

Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd individuals. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors. To discover hubs of interacting malignant and immune cells, we identified expression programs in different cell types that co-varied across tumors from affected individuals and used spatial profiling to localize coordinated programs. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage and an MMRd-enriched immune hub within the tumor, with activated T cells together with malignant and myeloid cells expressing T cell-attracting chemokines. By identifying interacting cellular programs, we reveal the logic underlying spatially organized immune-malignant cell networks.


Assuntos
Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Proteínas Morfogenéticas Ósseas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Compartimento Celular , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Estudos de Coortes , Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA/genética , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade , Inflamação/patologia , Monócitos/patologia , Células Mieloides/patologia , Neutrófilos/patologia , Células Estromais/metabolismo , Linfócitos T/metabolismo , Transcrição Gênica
17.
Cell ; 184(19): 5031-5052.e26, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34534465

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient survival. Toward understanding the underlying molecular alterations that drive PDAC oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, and glycoproteomic analyses were used to characterize proteins and their modifications. In addition, whole-genome sequencing, whole-exome sequencing, methylation, RNA sequencing (RNA-seq), and microRNA sequencing (miRNA-seq) were performed on the same tissues to facilitate an integrated proteogenomic analysis and determine the impact of genomic alterations on protein expression, signaling pathways, and post-translational modifications. To ensure robust downstream analyses, tumor neoplastic cellularity was assessed via multiple orthogonal strategies using molecular features and verified via pathological estimation of tumor cellularity based on histological review. This integrated proteogenomic characterization of PDAC will serve as a valuable resource for the community, paving the way for early detection and identification of novel therapeutic targets.


Assuntos
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/genética , Proteogenômica , Adenocarcinoma/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Carcinoma Ductal Pancreático/diagnóstico , Estudos de Coortes , Células Endoteliais/metabolismo , Epigênese Genética , Feminino , Dosagem de Genes , Genoma Humano , Glicólise , Glicoproteínas/biossíntese , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Neoplasias Pancreáticas/diagnóstico , Fenótipo , Fosfoproteínas/metabolismo , Fosforilação , Prognóstico , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Especificidade por Substrato , Transcriptoma/genética
18.
Cell ; 180(4): 764-779.e20, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32059779

RESUMO

The heterogeneity of endothelial cells (ECs) across tissues remains incompletely inventoried. We constructed an atlas of >32,000 single-EC transcriptomes from 11 mouse tissues and identified 78 EC subclusters, including Aqp7+ intestinal capillaries and angiogenic ECs in healthy tissues. ECs from brain/testis, liver/spleen, small intestine/colon, and skeletal muscle/heart pairwise expressed partially overlapping marker genes. Arterial, venous, and lymphatic ECs shared more markers in more tissues than did heterogeneous capillary ECs. ECs from different vascular beds (arteries, capillaries, veins, lymphatics) exhibited transcriptome similarity across tissues, but the tissue (rather than the vessel) type contributed to the EC heterogeneity. Metabolic transcriptome analysis revealed a similar tissue-grouping phenomenon of ECs and heterogeneous metabolic gene signatures in ECs between tissues and between vascular beds within a single tissue in a tissue-type-dependent pattern. The EC atlas taxonomy enabled identification of EC subclusters in public scRNA-seq datasets and provides a powerful discovery tool and resource value.


Assuntos
Células Endoteliais/metabolismo , Análise de Célula Única , Transcriptoma , Animais , Encéfalo/citologia , Sistema Cardiovascular/citologia , Células Endoteliais/classificação , Células Endoteliais/citologia , Trato Gastrointestinal/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculos/citologia , Especificidade de Órgãos , RNA-Seq , Testículo/citologia
19.
Cell ; 183(2): 377-394.e21, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32976798

RESUMO

We employed scRNA sequencing to extensively characterize the cellular landscape of human liver from development to disease. Analysis of ∼212,000 cells representing human fetal, hepatocellular carcinoma (HCC), and mouse liver revealed remarkable fetal-like reprogramming of the tumor microenvironment. Specifically, the HCC ecosystem displayed features reminiscent of fetal development, including re-emergence of fetal-associated endothelial cells (PLVAP/VEGFR2) and fetal-like (FOLR2) tumor-associated macrophages. In a cross-species comparative analysis, we discovered remarkable similarity between mouse embryonic, fetal-liver, and tumor macrophages. Spatial transcriptomics further revealed a shared onco-fetal ecosystem between fetal liver and HCC. Furthermore, gene regulatory analysis, spatial transcriptomics, and in vitro functional assays implicated VEGF and NOTCH signaling in maintaining onco-fetal ecosystem. Taken together, we report a shared immunosuppressive onco-fetal ecosystem in fetal liver and HCC. Our results unravel a previously unexplored onco-fetal reprogramming of the tumor ecosystem, provide novel targets for therapeutic interventions in HCC, and open avenues for identifying similar paradigms in other cancers and disease.


Assuntos
Carcinoma Hepatocelular/patologia , Células Endoteliais/metabolismo , Microambiente Tumoral/genética , Adulto , Animais , Carcinoma Hepatocelular/genética , Linhagem Celular , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Receptor 2 de Folato/metabolismo , Perfilação da Expressão Gênica/métodos , Humanos , Fígado/patologia , Neoplasias Hepáticas/genética , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/genética , Transcriptoma/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Cell ; 178(6): 1478-1492.e20, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474362

RESUMO

Liver fibrosis is a very common condition seen in millions of patients with various liver diseases, and yet no effective treatments are available owing to poorly characterized molecular pathogenesis. Here, we show that leukocyte cell-derived chemotaxin 2 (LECT2) is a functional ligand of Tie1, a poorly characterized endothelial cell (EC)-specific orphan receptor. Upon binding to Tie1, LECT2 interrupts Tie1/Tie2 heterodimerization, facilitates Tie2/Tie2 homodimerization, activates PPAR signaling, and inhibits the migration and tube formations of EC. In vivo studies showed that LECT2 overexpression inhibits portal angiogenesis, promotes sinusoid capillarization, and worsens fibrosis, whereas these changes were reversed in Lect2-KO mice. Adeno-associated viral vector serotype 9 (AAV9)-LECT2 small hairpin RNA (shRNA) treatment significantly attenuates fibrosis. Upregulation of LECT2 is associated with advanced human liver fibrosis staging. We concluded that targeting LECT2/Tie1 signaling may represent a potential therapeutic target for liver fibrosis, and serum LECT2 level may be a potential biomarker for the screening and diagnosis of liver fibrosis.


Assuntos
Células Endoteliais/metabolismo , Hepatócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Cirrose Hepática/metabolismo , Fígado/metabolismo , Receptores de TIE/metabolismo , Animais , Biomarcadores/metabolismo , Capilares/metabolismo , Células Endoteliais/citologia , Células Endoteliais/patologia , Células HEK293 , Hepatócitos/citologia , Hepatócitos/patologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Fígado/irrigação sanguínea , Fígado/patologia , Cirrose Hepática/diagnóstico , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA