Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
J Biol Chem ; 300(5): 107294, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636665

RESUMO

Exenatide, a promising cardioprotective agent, protects against cardiac structural remodeling and diastolic dysfunction. Combined blockade of sodium and potassium channels is valuable for managing atrial fibrillation (AF). Here, we explored whether exenatide displayed anti-AF effects by inhibiting human Kv1.5 and Nav1.5 channels. We used the whole-cell patch-clamp technique to investigate the effects of exenatide on hKv1.5 and hNav1.5 channels expressed in human embryonic kidney 293 cells and studied the effects of exenatide on action potential (AP) and other cardiac ionic currents in rat atrial myocytes. Additionally, an electrical mapping system was used to explore the effects of exenatide on electrical properties and AF activity in isolated rat hearts. Finally, a rat AF model, established using acetylcholine and calcium chloride, was employed to evaluate the anti-AF potential of exenatide in rats. Exenatide reversibly suppressed IKv1.5 with IC50 of 3.08 µM, preferentially blocked the hKv1.5 channel in its closed state, and positively shifted the voltage-dependent activation curve. Exenatide also reversibly inhibited INav1.5 with IC50 of 3.30 µM, negatively shifted the voltage-dependent inactivation curve, and slowed its recovery from inactivation with significant use-dependency at 5 and 10 Hz. Furthermore, exenatide prolonged AP duration and suppressed the sustained K+ current (Iss) and transient outward K+ current (Ito), but without inhibition of L-type Ca2+ current (ICa,L) in rat atrial myocytes. Exenatide prevented AF incidence and duration in rat hearts and rats. These findings demonstrate that exenatide inhibits IKv1.5 and INav1.5in vitro and reduces AF susceptibility in isolated rat hearts and rats.


Assuntos
Potenciais de Ação , Fibrilação Atrial , Exenatida , Canal de Potássio Kv1.5 , Miócitos Cardíacos , Canal de Sódio Disparado por Voltagem NAV1.5 , Bloqueadores do Canal de Sódio Disparado por Voltagem , Animais , Humanos , Masculino , Ratos , Potenciais de Ação/efeitos dos fármacos , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/metabolismo , Exenatida/farmacologia , Exenatida/uso terapêutico , Células HEK293 , Canal de Potássio Kv1.5/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Ratos Sprague-Dawley , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico
2.
J Enzyme Inhib Med Chem ; 37(1): 462-471, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35012386

RESUMO

Kv1.5 potassium channel, encoded by KCNA5, is a promising target for the treatment of atrial fibrillation, one of the common arrhythmia. A new series of arylmethylpiperidines derivatives based on DDO-02001 were synthesised and evaluated for their ability to inhibit Kv1.5 channel. Among them, compound DDO-02005 showed good inhibitory activity (IC50 = 0.72 µM), preferable anti-arrhythmic effects and favoured safety. These results indicate that DDO-02005 can be a promising Kv1.5 inhibitor for further studies.


Assuntos
Desenho de Fármacos , Canal de Potássio Kv1.5/antagonistas & inibidores , Piperidinas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Relação Dose-Resposta a Droga , Humanos , Canal de Potássio Kv1.5/metabolismo , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Bloqueadores dos Canais de Potássio/síntese química , Bloqueadores dos Canais de Potássio/química , Relação Estrutura-Atividade
3.
Mar Drugs ; 19(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34822501

RESUMO

Potassium channel Kv1.5 has been considered a key target for new treatments of atrial tachyarrhythmias, with few side effects. Four new debromoaplysiatoxin analogues with a 6/6/12 fused ring system were isolated from marine cyanobacterium Lyngbya sp. Their planar structures were elucidated by HRESIMS, 1D and 2D NMR. The absolute configuration of oscillatoxin J (1) was determined by single-crystal X-ray diffraction, and the absolute configurations of oscillatoxin K (2), oscillatoxin L (3) and oscillatoxin M (4) were confirmed on the basis of GIAO NMR shift calculation followed by DP4 analysis. The current study confirmed the absolute configuration of the pivotal chiral positions (7S, 9S, 10S, 11R, 12S, 15S, 29R and 30R) at traditional ATXs with 6/12/6 tricyclic ring system. Compound 1, 2 and 4 exhibited blocking activities against Kv1.5 with IC50 values of 2.61 ± 0.91 µM, 3.86 ± 1.03 µM and 3.79 ± 1.01 µM, respectively. However, compound 3 exhibited a minimum effect on Kv1.5 at 10 µM. Furthermore, all of these new debromoaplysiatoxin analogs displayed no apparent activity in a brine shrimp toxicity assay.


Assuntos
Canal de Potássio Kv1.5/efeitos dos fármacos , Toxinas de Lyngbya/farmacologia , Lyngbya , Animais , Organismos Aquáticos , Artemia , Humanos , Concentração Inibidora 50 , Canal de Potássio Kv1.5/antagonistas & inibidores , Toxinas de Lyngbya/química , Camundongos , Relação Estrutura-Atividade
4.
Biochem Biophys Res Commun ; 524(4): 791-797, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32019676

RESUMO

Increased granulosa cell (GC) proliferation may contribute to abnormal folliculogenesis in patients with polycystic ovary syndrome (PCOS), which affects approximately 10% reproductive aged women. However, the mechanisms underlying increased GC proliferation in PCOS remain incompletely understood. In this study, we identified miR-3940-5p as a hub miRNA in GC from PCOS using weighted gene co-expression network analysis (WGCNA), and real-time polymerase chain reaction (RT-PCR) analysis confirmed that miR-3940-5p was significantly increased in GC from PCOS. Enrichment analysis of predicted target genes of miR-3940-5p indicated potential roles of miR-3940-5p in follicular development and cell proliferation regulation. Consistently, functional study confirmed that miR-3940-5p overexpression promoted granulosa cell proliferation. Integrated analysis of mRNA expression profiling data and predicted target genes of miR-3940-5p identified potassium voltage-gated channel subfamily A member 5 (KCNA5) as a potential target of miR-3940-5p, and was validated by luciferase reporter assay. Finally, functional analysis suggested that miR-3940-5p promoted GC proliferation in a KCNA5 dependent manner. In conclusion, miR-3940-5p was a hub miRNA upregulated in GC from PCOS, and promoted GC proliferation by targeting KCNA5.


Assuntos
Regulação Neoplásica da Expressão Gênica , Células da Granulosa/metabolismo , Canal de Potássio Kv1.5/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , Síndrome do Ovário Policístico/genética , Adulto , Antagomirs/genética , Antagomirs/metabolismo , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Genes Reporter , Células da Granulosa/patologia , Humanos , Canal de Potássio Kv1.5/antagonistas & inibidores , Canal de Potássio Kv1.5/metabolismo , Luciferases/genética , Luciferases/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/metabolismo , Anotação de Sequência Molecular , Proteínas de Neoplasias/metabolismo , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
5.
Mar Drugs ; 18(8)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823677

RESUMO

Recently, Conorfamide-Sr3 (CNF-Sr3) was isolated from the venom of Conus spurius and was demonstrated to have an inhibitory concentration-dependent effect on the Shaker K+ channel. The voltage-gated potassium channels play critical functions on cellular signaling, from the regeneration of action potentials in neurons to the regulation of insulin secretion in pancreatic cells, among others. In mammals, there are at least 40 genes encoding voltage-gated K+ channels and the process of expression of some of them may include alternative splicing. Given the enormous variety of these channels and the proven use of conotoxins as tools to distinguish different ligand- and voltage-gated ion channels, in this work, we explored the possible effect of CNF-Sr3 on four human voltage-gated K+ channel subtypes homologous to the Shaker channel. CNF-Sr3 showed a 10 times higher affinity for the Kv1.6 subtype with respect to Kv1.3 (IC50 = 2.7 and 24 µM, respectively) and no significant effect on Kv1.4 and Kv1.5 at 10 µM. Thus, CNF-Sr3 might become a novel molecular probe to study diverse aspects of human Kv1.3 and Kv1.6 channels.


Assuntos
Venenos de Moluscos/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Superfamília Shaker de Canais de Potássio/antagonistas & inibidores , Animais , Caramujo Conus , Ativação do Canal Iônico , Canal de Potássio Kv1.3/antagonistas & inibidores , Canal de Potássio Kv1.3/genética , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.4/antagonistas & inibidores , Canal de Potássio Kv1.4/genética , Canal de Potássio Kv1.4/metabolismo , Canal de Potássio Kv1.5/antagonistas & inibidores , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Canal de Potássio Kv1.6/antagonistas & inibidores , Canal de Potássio Kv1.6/genética , Canal de Potássio Kv1.6/metabolismo , Potenciais da Membrana , Oócitos , Superfamília Shaker de Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/metabolismo , Xenopus laevis
6.
Cell Physiol Biochem ; 52(2): 302-314, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30816676

RESUMO

BACKGROUND/AIMS: The phenylalkylamine class of L-type Ca2+ channel antagonist verapamil prolongs the effective refractory period (ERP) of human atrium, which appears to contribute to the efficacy of verapamil in preventing reentrant-based atrial arrhythmias including atrial fibrillation. This study was designed to investigate the molecular and electrophysiological mechanism underlying the action of verapamil on human Kv1.5 (hKv1.5) channel that determines action potential duration and ERP in human atrium. METHODS: Site-directed mutagenesis created 10 single-point mutations within pore region of hKv1.5 channel. Wholecell patch-clamp method investigated the effect of verapamil on wild-type and mutant hKv1.5 channels heterologously expressed in Chinese hamster ovary cells. Docking simulation was conducted using open-state homology model of hKv1.5 channel pore. RESULTS: Verapamil preferentially blocked hKv1.5 channel in its open state with IC50 of 2.4±0.6 µM (n = 6). The blocking effect of verapamil was significantly attenuated in T479A, T480A, I502A, V505A, I508A, L510A, V512A and V516A mutants, compared with wild-type hKv1.5 channel. Computer docking simulation predicted that verapamil is positioned within central cavity of channel pore and has contact with Thr479, Thr480, Val505, Ile508, Ala509, Val512, Pro513 and Val516. CONCLUSION: Verapamil acts as an open-channel blocker of hKv1.5 channel, presumably due to direct binding to specific amino acids within pore region of hKv1.5 channel, such as Thr479, Thr480, Val505, Ile508, Val512 and Val516. This blocking effect of verapamil on hKv1.5 channel appears to contribute at least partly to prolongation of atrial ERP and resultant antiarrhythmic action on atrial fibrillation in humans.


Assuntos
Canal de Potássio Kv1.5/antagonistas & inibidores , Canal de Potássio Kv1.5/química , Simulação de Acoplamento Molecular , Mutação Puntual , Bloqueadores dos Canais de Potássio/química , Verapamil/química , Substituição de Aminoácidos , Animais , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Sítios de Ligação , Células CHO , Cricetulus , Humanos , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Verapamil/farmacologia
7.
Circ Res ; 120(4): 658-669, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-27872049

RESUMO

RATIONALE: Hydrogen peroxide (H2O2) regulates vascular tone in the human microcirculation under physiological and pathophysiological conditions. It dilates arterioles by activating large-conductance Ca2+-activated K+ channels in subjects with coronary artery disease (CAD), but its mechanisms of action in subjects without CAD (non-CAD) when compared with those with CAD remain unknown. OBJECTIVE: We hypothesize that H2O2-elicited dilation involves different K+ channels in non-CAD versus CAD, resulting in an altered capacity for vasodilation during disease. METHODS AND RESULTS: H2O2 induced endothelium-independent vasodilation in non-CAD adipose arterioles, which was reduced by paxilline, a large-conductance Ca2+-activated K+ channel blocker, and by 4-aminopyridine, a voltage-gated K+ (KV) channel blocker. Assays of mRNA transcripts, protein expression, and subcellular localization revealed that KV1.5 is the major KV1 channel expressed in vascular smooth muscle cells and is abundantly localized on the plasma membrane. The selective KV1.5 blocker diphenylphosphine oxide-1 and the KV1.3/1.5 blocker 5-(4-phenylbutoxy)psoralen reduced H2O2-elicited dilation to a similar extent as 4-aminopyridine, but the selective KV1.3 blocker phenoxyalkoxypsoralen-1 was without effect. In arterioles from CAD subjects, H2O2-induced dilation was significantly reduced, and this dilation was inhibited by paxilline but not by 4-aminopyridine, diphenylphosphine oxide-1, or 5-(4-phenylbutoxy)psoralen. KV1.5 cell membrane localization and diphenylphosphine oxide-1-sensitive K+ currents were markedly reduced in isolated vascular smooth muscle cells from CAD arterioles, although mRNA or total cellular protein expression was largely unchanged. CONCLUSIONS: In human arterioles, H2O2-induced dilation is impaired in CAD, which is associated with a transition from a combined large-conductance Ca2+-activated K+- and KV (KV1.5)-mediated vasodilation toward a large-conductance Ca2+-activated K+-predominant mechanism of dilation. Loss of KV1.5 vasomotor function may play an important role in microvascular dysfunction in CAD or other vascular diseases.


Assuntos
Arteríolas/fisiologia , Doença da Artéria Coronariana/fisiopatologia , Peróxido de Hidrogênio/farmacologia , Canal de Potássio Kv1.5/fisiologia , Vasodilatação/fisiologia , Adulto , Idoso , Arteríolas/efeitos dos fármacos , Arteríolas/patologia , Células Cultivadas , Doença da Artéria Coronariana/patologia , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/patologia , Vasos Coronários/fisiologia , Feminino , Células HEK293 , Humanos , Canal de Potássio Kv1.5/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Vasodilatação/efeitos dos fármacos
8.
J Org Chem ; 84(8): 4704-4714, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-30395712

RESUMO

BMS-919373 is a highly functionalized quinazoline under investigation as a selective, potent IKur current blocker. By utilizing the aminomethylpyridine side chain at C-4, a selective C-H functionalization at C-5 was invented, enabling the efficient synthesis of this molecule. The strategy of leveraging this inherent directing group allowed the synthesis of this complex heterocycle in only six steps from commodity chemicals. The scope of the C-H activation was further investigated, and the generality of the transformation across a series of bicyclic aromatic heterocycles was explored.


Assuntos
Canal de Potássio Kv1.5/antagonistas & inibidores , Quinazolinas/farmacologia , Canal de Potássio Kv1.5/metabolismo , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química
9.
Mar Drugs ; 17(12)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766406

RESUMO

A pair of stereoisomers possessing novel structures with 6/6/5 fused-ring systems, neo-debromoaplysiatoxin E (1) and neo-debromoaplysiatoxin F (2), were isolated from the marine cyanobacterium Lyngbya sp. Their structures were elucidated using various spectroscopic techniques including high resolution electrospray ionization mass spectroscopy (HRESIMS) and nuclear magnetic resonance (NMR). The absolute stereochemistry was determined by calculated electronic circular dichroism (ECD) and gauge-independent atomic orbital (GIAO) NMR shift calculation followed by DP4+ analysis. Significantly, this is the first report on aplysiatoxin derivatives with different absolute configurations at C9-C12 (1: 9S, 10R, 11S, 12S; 2: 9R, 10S, 11R, 12R). Compounds 1 and 2 exhibited potent blocking activities against Kv1.5 with IC50 values of 1.22 ± 0.22 µM and 2.85 ± 0.29 µM, respectively.


Assuntos
Organismos Aquáticos/química , Cianobactérias/química , Canal de Potássio Kv1.5/antagonistas & inibidores , Toxinas de Lyngbya/farmacologia , Animais , Células CHO , Dicroísmo Circular , Cricetulus , Canal de Potássio Kv1.5/metabolismo , Toxinas de Lyngbya/química , Toxinas de Lyngbya/isolamento & purificação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Estereoisomerismo
10.
Biochemistry ; 57(18): 2704-2710, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29652491

RESUMO

Molecular dynamics simulations are employed to determine the inhibitory mechanisms of three drugs, 5-(4-phenoxybutoxy)psoralen (PAP-1), vernakalant, and flecainide, on the voltage-gated K+ channel Kv1.5, a target for the treatment of cardiac arrhythmia. At neutral pH, PAP-1 is neutral, whereas the other two molecules carry one positive charge. We show that PAP-1 forms stable dimers in water, primarily through hydrophobic interactions between aromatic rings. All three molecules bind to the cavity between the Ile508 and Val512 residues from the four subunits of the channel. Once bound, the drug molecules are flexible, with the average root-mean-square fluctuation being between 2 and 3 Å, which is larger than the radius of gyration of a bulky amino acid. The presence of a monomeric PAP-1 causes the permeating K+ ion to dehydrate, thereby creating a significant energy barrier. In contrast, vernakalant blocks the ion permeation primarily via an electrostatic mechanism and, therefore, must be in the protonated and charged form to be effective.


Assuntos
Antiarrítmicos/química , Arritmias Cardíacas/tratamento farmacológico , Canal de Potássio Kv1.5/química , Sequência de Aminoácidos/genética , Anisóis/química , Anisóis/farmacologia , Antiarrítmicos/uso terapêutico , Arritmias Cardíacas/genética , Sítios de Ligação , Cristalografia por Raios X , Ficusina/química , Ficusina/uso terapêutico , Flecainida/química , Flecainida/uso terapêutico , Humanos , Canal de Potássio Kv1.5/antagonistas & inibidores , Canal de Potássio Kv1.5/genética , Simulação de Dinâmica Molecular , Conformação Proteica/efeitos dos fármacos , Pirrolidinas/química , Pirrolidinas/farmacologia , Homologia de Sequência de Aminoácidos
11.
J Cardiovasc Pharmacol ; 71(1): 10-18, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29283926

RESUMO

Propofol blocks the voltage-gated human Kv1.5 (hKv1.5) channel by preferentially affecting in its open state. A previous mutational study suggested that several amino acids within the pore region of the hKv1.5 channel are involved in mediating the blocking action of propofol. The present investigation was undertaken to elucidate the predicted binding modes of propofol within the pore cavity of the open-state hKv1.5 channel, using computational docking and mutagenesis approaches. The docking simulation using a homology model of the hKv1.5 channel, constructed based on the crystal structure of the Kv1.2 channel, predicted that propofol was positioned at the base of the pore cavity of hKv1.5 channel, adjacent to 4 amino acids Thr479, Thr480, Val505, and Ile508, and formed arene-H interactions with Val505. The patch-clamp experiments on wild-type and mutant hKv1.5 channels constructed by site-directed mutagenesis revealed that the blocking potency of propofol was significantly reduced in T480A, V505A, and I508A but not in T479A mutants compared with wild-type hKv1.5 channel. These computational docking and experimental mutational analyses suggest that propofol is positioned at the base of the pore cavity and forms functional contact with Thr480, Val505, and Ile508 to directly block the hKv1.5 channel.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Canal de Potássio Kv1.5/antagonistas & inibidores , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Bloqueadores dos Canais de Potássio/farmacologia , Propofol/farmacologia , Animais , Sítios de Ligação , Células CHO , Cricetulus , Humanos , Canal de Potássio Kv1.5/química , Canal de Potássio Kv1.5/genética , Canal de Potássio Kv1.5/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Mutação , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/metabolismo , Propofol/química , Propofol/metabolismo , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
12.
Toxicol Appl Pharmacol ; 322: 89-96, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28284858

RESUMO

Excessive consumption of alcohol is a well-established risk factor of atrial fibrillation (AF). However, the effects of moderate alcohol drinking remain to be elucidated. This study was designed to determine the effects of moderate ethanol ingestion on atrial fibrillation and the electrophysiological mechanisms. In acetylcholine-induced canine and mouse AF models, the moderate ethanol prevented the generation and persistence of AF through prolonging the latent period of AF and shortening the duration of AF. The action potential duration (APD) was remarkably prolonged under the concentration range of 12.5-50.0mM ethanol in guinea pig atrial myocytes. Ultra-rapid delayed rectified potassium currents (IKv1.5) were markedly inhibited by 12.5-50.0mM ethanol in a concentration-dependent manner. Ethanol with 50.0mM could inhibit rapid delayed rectifier potassium currents (IhERG). Ethanol under 6.25-50.0mM did not affect on inward rectifier potassium currents (IKir2.1). Collectively, the present study provided an evidence that moderate ethanol intake can prolong the APD of atrial myocytes by inhibition of IKv1.5 and IhERG, which contributed to preventing the development and duration of AF.


Assuntos
Antiarrítmicos/administração & dosagem , Fibrilação Atrial/tratamento farmacológico , Etanol/administração & dosagem , Canal de Potássio Kv1.5/antagonistas & inibidores , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/administração & dosagem , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Fibrilação Atrial/fisiopatologia , Cães , Relação Dose-Resposta a Droga , Cobaias , Células HEK293 , Humanos , Canal de Potássio Kv1.5/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Miócitos Cardíacos/fisiologia
13.
Bioorg Med Chem Lett ; 27(4): 1062-1069, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28131713

RESUMO

Selective inhibition of Kv1.5, which underlies the ultra-rapid delayed rectifier current, IKur, has been pursued as a treatment for atrial fibrillation. Here we describe the discovery of MK-1832, a Kv1.5 inhibitor with improved selectivity versus the off-target current IKs, whose inhibition has been associated with ventricular proarrhythmia. MK-1832 exhibits improved selectivity for IKur over IKs (>3000-fold versus 70-fold for MK-0448), consistent with an observed larger window between atrial and ventricular effects in vivo (>1800-fold versus 210-fold for MK-0448). MK-1832 also exhibits an improved preclinical pharmacokinetic profile consistent with projected once daily dosing in humans.


Assuntos
Canal de Potássio Kv1.5/antagonistas & inibidores , Piridinas/farmacologia , Descoberta de Drogas , Humanos , Piridinas/farmacocinética , Relação Estrutura-Atividade
14.
Bioorg Med Chem Lett ; 26(8): 2023-9, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26965854

RESUMO

A series of isoindolinone compounds have been developed showing good in vitro potency on the Kv1.5 ion channel. By modification of two side chains on the isoindolinone scaffold, metabolically stable compounds with good in vivo PK profile could be obtained leaving the core structure unsubstituted. In this way, low microsomal intrinsic clearance (CLint) could be achieved despite a relatively high logD. The compounds were synthesized using the Ugi reaction, in some cases followed by Suzuki and Diels-Alder reactions, giving a diverse set of compounds in a small number of reaction steps.


Assuntos
Isoindóis/farmacologia , Canal de Potássio Kv1.5/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Animais , Relação Dose-Resposta a Droga , Humanos , Isoindóis/síntese química , Isoindóis/química , Camundongos , Modelos Animais , Estrutura Molecular , Bloqueadores dos Canais de Potássio/síntese química , Bloqueadores dos Canais de Potássio/química , Relação Estrutura-Atividade
15.
Pflugers Arch ; 467(5): 1081-90, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25511502

RESUMO

Atrial fibrillation and obstructive sleep apnea are responsible for significant morbidity and mortality in the industrialized world. There is a high medical need for novel drugs against both diseases, and here, Kv1.5 channels have emerged as promising drug targets. In humans, TASK-1 has an atrium-specific expression and TASK-1 is also abundantly expressed in the hypoglossal motor nucleus. We asked whether known Kv1.5 channel blockers, effective against atrial fibrillation and/or obstructive sleep apnea, modulate TASK-1 channels. Therefore, we tested Kv1.5 blockers with different chemical structures for their TASK-1 affinity, utilizing two-electrode voltage clamp (TEVC) recordings in Xenopus oocytes. Despite the low structural conservation of Kv1.5 and TASK-1 channels, we found all Kv1.5 blockers analyzed to be even more effective on TASK-1 than on Kv1.5. For instance, the half-maximal inhibitory concentration (IC50) values of AVE0118 and AVE1231 (A293) were 10- and 43-fold lower on TASK-1. Also for MSD-D, ICAGEN-4, S20951 (A1899), and S9947, the IC50 values were 1.4- to 70-fold lower than for Kv1.5. To describe this phenomenon on a molecular level, we used in silico models and identified unexpected structural similarities between the two drug binding sites. Kv1.5 blockers, like AVE0118 and AVE1231, which are promising drugs against atrial fibrillation or obstructive sleep apnea, are in fact potent TASK-1 blockers. Accordingly, block of TASK-1 channels by these compounds might contribute to the clinical effectiveness of these drugs. The higher affinity of these blockers for TASK-1 channels suggests that TASK-1 might be an unrecognized molecular target of Kv1.5 blockers effective in atrial fibrillation or obstructive sleep apnea.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/metabolismo , Canal de Potássio Kv1.5/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Apneia Obstrutiva do Sono/tratamento farmacológico , Animais , Fibrilação Atrial/tratamento farmacológico , Compostos de Bifenilo/farmacologia , Canal de Potássio Kv1.5/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Apneia Obstrutiva do Sono/metabolismo , Xenopus laevis/metabolismo
16.
Nat Chem Biol ; 9(8): 507-13, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23728494

RESUMO

Most known small-molecule inhibitors of voltage-gated ion channels have poor subtype specificity because they interact with a highly conserved binding site in the central cavity. Using alanine-scanning mutagenesis, electrophysiological recordings and molecular modeling, we have identified a new drug-binding site in Kv1.x channels. We report that Psora-4 can discriminate between related Kv channel subtypes because, in addition to binding the central pore cavity, it binds a second, less conserved site located in side pockets formed by the backsides of S5 and S6, the S4-S5 linker, part of the voltage sensor and the pore helix. Simultaneous drug occupation of both binding sites results in an extremely stable nonconducting state that confers high affinity, cooperativity, use-dependence and selectivity to Psora-4 inhibition of Kv1.x channels. This new mechanism of inhibition represents a molecular basis for the development of a new class of allosteric and selective voltage-gated channel inhibitors.


Assuntos
Canal de Potássio Kv1.5/antagonistas & inibidores , Canal de Potássio Kv1.5/química , Ficusina/química , Ficusina/farmacologia , Canal de Potássio Kv1.5/metabolismo , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Especificidade por Substrato
17.
Nat Chem Biol ; 9(8): 473-4, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23868316

RESUMO

Drug design for voltage-gated ion channels has long been hampered by the absence of crystal structures and the challenge of achieving subtype selectivity. A combination of mutagenesis, electrophysiology and molecular modeling has led to the identification of a new side pocket binding site for the small molecule Psora-4 between the pore and the voltage-sensor domain of Kv1.5, offering opportunities to design allosteric ion channel modulators.


Assuntos
Canal de Potássio Kv1.5/antagonistas & inibidores , Canal de Potássio Kv1.5/química
18.
Bioorg Med Chem Lett ; 25(21): 4983-4986, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25801931

RESUMO

Phenethyl aminoheterocycles like compound 1 were known to be potent I(Kur) blockers although they lacked potency in vivo. Modification of the heterocycle led to the design and synthesis of pseudosaccharin amines. Compounds such as 14, 17d and 21c were found to be potent K(V)1.5 blockers and selective over other cardiac ion channels. These compounds had potent pharmacodynamic activity, however, they also showed off-target activities such as hemodynamic effects.


Assuntos
Aminas/farmacologia , Canal de Potássio Kv1.5/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Aminas/síntese química , Aminas/química , Animais , Pressão Sanguínea/efeitos dos fármacos , Cicloexanos/química , Cicloexanos/farmacologia , Relação Dose-Resposta a Droga , Humanos , Canal de Potássio Kv1.5/metabolismo , Camundongos , Estrutura Molecular , Bloqueadores dos Canais de Potássio/síntese química , Bloqueadores dos Canais de Potássio/química , Coelhos , Ratos , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Relação Estrutura-Atividade
19.
J Vasc Res ; 51(6): 447-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25661478

RESUMO

Previous studies have shown that exercise training influences potassium channel protein expression in arteries. The purpose of this study was to investigate the effect of exercise training on alterations in voltage-gated potassium channels (Kv) and large-conductance, calcium-activated potassium channels (BKCa) in thoracic aorta smooth muscle cells from spontaneously hypertensive rats (SHRs). Male SHRs were randomly assigned to a sedentary group (SHR-SED) and exercise training group (SHR-EX). Age-matched Wistar-Kyoto rats (WKYs) were used as controls. After 8 weeks of aerobic exercise training, blood pressure was significantly lower in the SHR-EX group than in the SHR-SED group. Exercise training increased the contribution of the Kv1.2 and Kv1.5 channels and decreased the contribution of BKCa channel to resting tone in the SHR-EX group compared to the SHR-SED group as indicated by vessel contractility experiments. Immunohistochemistry and Western blotting showed that Kv1.2 and Kv1.5 channel expression was significantly lower in the SHR-SED group than in the WKY group and exercise training attenuated this reduction. BKCa α-subunit expression was statistically unchanged between the groups; however, ß1-subunit expression was reduced significantly by exercise training in the SHR-EX group compared to the SHR-SED group. These data suggest that exercise training reverses the pathological expression of the Kv1.2, Kv1.5, and BKCa channels in aortic myocytes from SHRs. This is one of the favorable effects of exercise training on large conduit arteries.


Assuntos
Terapia por Exercício , Hipertensão/terapia , Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.5/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Aorta Torácica/metabolismo , Aorta Torácica/fisiopatologia , Pressão Sanguínea , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Canal de Potássio Kv1.2/antagonistas & inibidores , Canal de Potássio Kv1.5/antagonistas & inibidores , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/antagonistas & inibidores , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Esforço Físico , Bloqueadores dos Canais de Potássio/farmacologia , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fatores de Tempo , Vasoconstrição , Vasoconstritores/farmacologia
20.
Bioorg Med Chem Lett ; 24(5): 1269-73, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24513046

RESUMO

A series of lactam sulfonamides has been discovered and optimized as inhibitors of the Kv1.5 potassium ion channel for treatment of atrial fibrillation. In vitro structure-activity relationships from lead structure C to optimized structure 3y are described. Compound 3y was evaluated in a rabbit PD-model and was found to selectively prolong the atrial effective refractory period at submicromolar concentrations.


Assuntos
Canal de Potássio Kv1.5/antagonistas & inibidores , Lactamas/química , Bloqueadores dos Canais de Potássio/química , Pirrolidinonas/química , Sulfonamidas/química , Animais , Cães , Meia-Vida , Humanos , Canal de Potássio Kv1.5/metabolismo , Bloqueadores dos Canais de Potássio/síntese química , Bloqueadores dos Canais de Potássio/farmacocinética , Pirrolidinonas/síntese química , Pirrolidinonas/farmacocinética , Coelhos , Ratos , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA