Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Biochemistry ; 60(37): 2824-2835, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34472839

RESUMO

Studying the interactions between a protease and its protein substrates at a molecular level is crucial for identifying the factors facilitating selection of particular proteolytic substrates and not others. These selection criteria include both the sequence and the local context of the substrate cleavage site where the active site of the protease initially binds and then performs proteolytic cleavage. Caspase-9, an initiator of the intrinsic apoptotic pathway, mediates activation of executioner procaspase-3 by cleavage of the intersubunit linker (ISL) at site 172IETD↓S. Although procaspase-6, another executioner, possesses two ISL cleavage sites (site 1, 176DVVD↓N; site 2, 190TEVD↓A), neither is directly cut by caspase-9. Thus, caspase-9 directly activates procaspase-3 but not procaspase-6. To elucidate this selectivity of caspase-9, we engineered constructs of procaspase-3 (e.g., swapping the ISL site, 172IETD↓S, with DVVDN and TEVDA) and procaspase-6 (e.g., swapping site 1, 176DVVD↓N, and site 2, 190TEVD↓A, with IETDS). Using the substrate digestion data of these constructs, we show here that the P4-P1' sequence of procaspase-6 ISL site 1 (DVVDN) can be accessed but not cleaved by caspase-9. We also found that caspase-9 can recognize the P4-P1' sequence of procaspase-6 ISL site 2 (TEVDA); however, the local context of this cleavage site is the critical factor that prevents proteolytic cleavage. Overall, our data have demonstrated that both the sequence and the local context of the ISL cleavage sites play a vital role in preventing the activation of procaspase-6 directly by caspase-9.


Assuntos
Caspase 3/química , Caspase 6/química , Caspase 9/metabolismo , Sequência de Aminoácidos/genética , Apoptose/fisiologia , Caspase 3/metabolismo , Caspase 6/metabolismo , Caspase 8/metabolismo , Caspase 9/fisiologia , Caspases/metabolismo , Ativação Enzimática , Humanos , Transdução de Sinais/genética
2.
Biosci Biotechnol Biochem ; 83(6): 1117-1123, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30843771

RESUMO

It has been reported that lncRNA POU3F3 was upregulated in esophageal squamous-cell carcinomas, indicating its role as an oncogene in this disease. However, the mechanism of its function and its involvement in other malignancies is unknown. In the present study we found that expression levels of lncRNA POU3F3 were higher in tumor tissues than in adjacent healthy tissues of triple negative breast cancer (TNBC) patients and were significantly and inversely correlated with levels of cleaved caspase 9 only in tumor tissues. In addition, plasma levels of lncRNA POU3F3 were higher in TNBC patients than in healthy controls and were significantly and inversely correlated with levels of cleaved caspase 9 only in TNBC patients. In addition, treatment of exogenous Cleaved Caspase-9 significantly attenuated the effects of lncRNA POU3F3 overexpression on cancer cell proliferation and apoptosis. lncRNA POU3F3 may promote proliferation and inhibit apoptosis of cancer cells in triple-negative breast cancer.


Assuntos
Apoptose/genética , Caspase 9/fisiologia , Proliferação de Células/genética , Fatores do Domínio POU/genética , RNA Longo não Codificante/fisiologia , Neoplasias de Mama Triplo Negativas/patologia , Estudos de Casos e Controles , Caspase 9/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Prognóstico , Proteólise , RNA Longo não Codificante/sangue , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/enzimologia , Regulação para Cima
3.
Blood ; 124(26): 3887-95, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25349173

RESUMO

Apoptosis and the DNA damage responses have been implicated in hematopoietic development and differentiation, as well as in the pathogenesis of myelodysplastic syndromes (MDS) and leukemia. However, the importance of late-stage mediators of apoptosis in hematopoiesis and leukemogenesis has not been elucidated. Here, we examine the role of caspase-9 (Casp9), the initiator caspase of the intrinsic apoptotic cascade, in murine fetal and adult hematopoiesis. Casp9 deficiency resulted in decreased erythroid and B-cell progenitor abundance and impaired function of hematopoietic stem cells after transplantation. Mouse bone marrow chimeras lacking Casp9 or its cofactor Apaf1 developed low white blood cell counts, decreased B-cell numbers, anemia, and reduced survival. Defects in apoptosis have also been previously implicated in susceptibility to therapy-related leukemia, a disease caused by exposure to DNA-damaging chemotherapy. We found that the burden of DNA damage was increased in Casp9-deficient cells after exposure to the alkylator, N-ethyl-nitrosourea (ENU). Furthermore, exome sequencing revealed that oligoclonal hematopoiesis emerged in Casp9-deficient bone marrow chimeras after alkylator exposure. Taken together, these findings suggest that defects in apoptosis could be a key step in the pathogenesis of alkylator-associated secondary malignancies.


Assuntos
Caspase 9/fisiologia , Dano ao DNA , Células-Tronco Hematopoéticas/citologia , Alquilantes/química , Animais , Apoptose , Medula Óssea/patologia , Células da Medula Óssea/citologia , Cruzamentos Genéticos , Etilnitrosoureia/química , Citometria de Fluxo , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Síndromes Mielodisplásicas/metabolismo , Fenótipo
4.
J Biol Chem ; 289(38): 26277-26289, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25107908

RESUMO

The protease caspase-9 is activated on the apoptosome, a multiprotein signal transduction platform that assembles in response to mitochondria-dependent apoptosis initiation. Despite extensive molecular research, the assembly of the holo-apoptosome and the process of caspase-9 activation remain incompletely understood. Here, we therefore integrated quantitative data on the molecular interactions and proteolytic processes during apoptosome formation and apoptosis execution and conducted mathematical simulations to investigate the resulting biochemical signaling, quantitatively and kinetically. Interestingly, when implementing the homodimerization of procaspase-9 as a prerequisite for activation, the calculated kinetics of apoptosis execution and the efficacy of caspase-3 activation failed to replicate experimental data. In contrast, assuming a scenario in which procaspase-9 is activated allosterically upon binding to the apoptosome backbone, the mathematical simulations quantitatively and kinetically reproduced all experimental data. These data included a XIAP threshold concentration at which apoptosis execution is suppressed in HeLa cervical cancer cells, half-times of procaspase-9 processing, as well as the molecular timer function of the apoptosome. Our study therefore provides novel mechanistic insight into apoptosome-dependent apoptosis execution and suggests that caspase-9 is activated allosterically by binding to the apoptosome backbone. Our findings challenge the currently prevailing dogma that all initiator procaspases require homodimerization for activation.


Assuntos
Apoptose , Apoptossomas/fisiologia , Caspase 9/fisiologia , Precursores de Proteínas/fisiologia , Regulação Alostérica , Apoptossomas/química , Fator Apoptótico 1 Ativador de Proteases/química , Fator Apoptótico 1 Ativador de Proteases/fisiologia , Caspase 9/química , Domínio Catalítico , Simulação por Computador , Ativação Enzimática , Células HeLa , Humanos , Cinética , Modelos Moleculares , Ligação Proteica , Multimerização Proteica , Precursores de Proteínas/química , Biologia de Sistemas
5.
Biochem Biophys Res Commun ; 451(3): 367-73, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25086361

RESUMO

Cells respond to endoplasmic reticulum (ER) stress through the unfolded protein response (UPR), autophagy and cell death. In this study we utilized casp9(+/+) and casp9(-/-) MEFs to determine the effect of inhibition of mitochondrial apoptosis pathway on ER stress-induced-cell death, UPR and autophagy. We observed prolonged activation of UPR and autophagy in casp9(-/-) cells as compared with casp9(+/+) MEFs, which displayed transient activation of both pathways. Furthermore we showed that while casp9(-/-) MEFs were resistant to ER stress, prolonged exposure led to the activation of a non-canonical, caspase-mediated mode of cell death.


Assuntos
Autofagia/fisiologia , Caspase 9/fisiologia , Morte Celular/fisiologia , Estresse do Retículo Endoplasmático , Mitocôndrias/metabolismo , Animais , Apoptossomas/deficiência , Caspase 9/deficiência , Fibroblastos/metabolismo , Camundongos/embriologia , Resposta a Proteínas não Dobradas/fisiologia
6.
Blood ; 119(18): 4283-90, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22294729

RESUMO

Apoptotic caspases, including caspase-9, are thought to facilitate platelet shedding by megakaryocytes. They are known to be activated during platelet apoptosis, and have also been implicated in platelet hemostatic responses. However, the precise requirement for, and the regulation of, apoptotic caspases have never been defined in either megakaryocytes or platelets. To establish the role of caspases in platelet production and function, we generated mice lacking caspase-9 in their hematopoietic system. We demonstrate that both megakaryocytes and platelets possess a functional apoptotic caspase cascade downstream of Bcl-2 family-mediated mitochondrial damage. Caspase-9 is the initiator caspase, and its loss blocks effector caspase activation. Surprisingly, steady-state thrombopoiesis is unperturbed in the absence of caspase-9, indicating that the apoptotic caspase cascade is not required for platelet production. In platelets, loss of caspase-9 confers resistance to the BH3 mimetic ABT-737, blocking phosphatidylserine (PS) exposure and delaying ABT-737-induced thrombocytopenia in vivo. Despite this, steady-state platelet lifespan is normal. Casp9(-/-) platelets are fully capable of physiologic hemostatic responses and functional regulation of adhesive integrins in response to agonist. These studies demonstrate that the apoptotic caspase cascade is required for the efficient death of megakaryocytes and platelets, but is dispensable for their generation and function.


Assuntos
Apoptose/fisiologia , Plaquetas/citologia , Caspase 9/fisiologia , Megacariócitos/citologia , Trombopoese/fisiologia , Animais , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/toxicidade , Plaquetas/enzimologia , Caspase 9/deficiência , Caspase 9/genética , Linhagem da Célula , Hemostasia/efeitos dos fármacos , Hemostasia/fisiologia , Hirudinas/farmacologia , Fígado/embriologia , Transplante de Fígado , Megacariócitos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitrofenóis/farmacologia , Nitrofenóis/toxicidade , Piperazinas/farmacologia , Piperazinas/toxicidade , Ativação Plaquetária/efeitos dos fármacos , Ativação Plaquetária/fisiologia , Quimera por Radiação , Sulfonamidas/farmacologia , Sulfonamidas/toxicidade , Trombocitopenia/induzido quimicamente , Proteína X Associada a bcl-2/deficiência
7.
Tumour Biol ; 35(6): 5409-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24563336

RESUMO

With the objective of identifying promising antitumor agents for human leukemia, we carried out to determine the anticancer ability of oxymatrine on the human leukemia HL-60 cell line. In vitro experiments demonstrated that oxymatrine reduced the proliferation of HL-60 cells in a dose- and time-dependent manner via the induction of apoptosis and cell cycle arrest at G2/M and S phases. The proteins involved in oxymatrine-induced apoptosis in HL-60 cells were also examined using Western blot. The increase in apoptosis upon treatment with oxymatrine was correlated with downregulation of anti-apoptotic Bcl-2 expression and upregulation of pro-apoptotic Bax expression. Furthermore, oxymatrine induced the activation of caspase-3 and caspase-9 and the cleavage of poly(ADP-ribose) polymerase (PARP) in HL-60 cells. In addition, pretreatment with a specific caspase-3 (Z-DEVD-FMK) or caspase-9 (Z-LEHD-FMK) inhibitor significantly neutralized the pro-apoptotic activity of oxymatrine in HL-60 cells, demonstrating the important role of caspase-3 and caspase-9 in this process. Taken together, these results indicated that oxymatrine-induced apoptosis may occur through the activation of the caspase-9/caspase-3-mediated intrinsic pathway. Therefore, oxymatrine may be a potential candidate for the treatment of human leukemia.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/fisiologia , Caspase 9/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Quinolizinas/farmacologia , Caspase 8/fisiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células HL-60 , Humanos , Poli(ADP-Ribose) Polimerases/fisiologia , Transdução de Sinais
8.
Neurol Sci ; 35(8): 1189-96, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24531918

RESUMO

This study aimed to (1) to identify candidate single-nucleotide polymorphisms (SNPs) and mechanisms of attention-deficit/hyperactivity disorder (ADHD) and (2) to generate SNP-to-gene-to-pathway hypotheses. An ADHD genome-wide association study (GWAS) dataset that included 428,074 SNPs in 924 trios (2,758 individuals) of European descent was used in this study. The Identify candidate Causal SNPs and Pathways (ICSNPathway) analysis was applied to the GWAS dataset. ICSNPathway analysis identified 11 candidate SNPs, 6 genes, and 6 pathways, which provided 6 hypothetical biological mechanisms. The strongest hypothetical biological mechanism was that rs2532502 alters the role of CD27 in the context of the pathways of positive regulation of nucleocytoplasmic transport [nominal p < 0.001; false discovery rate (FDR) = 0.028]. The second strongest mechanism was the rs1820204, rs1052571, rs1052576 → CASP9 → mitochondrial pathway (nominal p < 0.001; FDR = 0.032). The third mechanism was the rs1801516 → ATM → CD25 pathway (nominal p < 0.001; FDR = 0.034). By applying the ICSNPathway analysis to the ADHD GWAS data, 11 candidate SNPs, 6 genes that included CD27, CASP9, ATM, CD12orf65, OXER1, and ACRY, and 6 pathways were identified that may contribute to ADHD susceptibility.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/fisiologia , Adolescente , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Caspase 9/genética , Caspase 9/fisiologia , Causalidade , Criança , Feminino , Predisposição Genética para Doença , Humanos , Desequilíbrio de Ligação , Masculino , Redes e Vias Metabólicas/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Modelos Genéticos , Fatores de Terminação de Peptídeos/genética , Fatores de Terminação de Peptídeos/fisiologia , Receptores Eicosanoides/genética , Receptores Eicosanoides/fisiologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/fisiologia
9.
Int Orthop ; 38(3): 627-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24305787

RESUMO

PURPOSE: This study was designed to investigate the potential effect of bergapten on lipopolysaccharide (LPS)-mediated osteoclast formation, bone resorption and osteoclast survival in vitro. METHODS: After osteoclast precursor RAW264.7 cells were treated with bergapten (5, 20, 40 µmol/L) for 72 hours in the presence of LPS (100 ng/ml), osteoclastogenesis was identified by tartrate-resistant acid phosphatase (TRAP) staining, and the number of TRAP-positive multinucleated cells [TRAP(+)MNCs] per well were counted. To investigate the effect of bergapten on osteoclastic bone resorption, RAW264.7 cells were treated with bergapten for six days in the presence of LPS, and the area of bone resorption was analyzed with Image Pro-Plus. Next, we examined apoptosis of RAW264.7 cells after bergapten incubation for 48 hours by flow cytometer using annexin V/propidium iodide (PI) double labeling. Finally, osteoclast survival was observed by Hoechst 33342 labeling and Western blotting after bergapten treatment for 24 hours. RESULTS: Data showed that bergapten (5-40 µmol/L) dose-dependently inhibited LPS-induced osteoclast formation and bone resorption. Treatment with bergapten triggered apoptotic death of osteoclast precursor RAW264.7 cells in a dose-dependent manner. Furthermore, bergapten significantly reduced the survival of mature osteoclast, as demonstrated by emergence of apoptotic nuclei and activation of apoptotic protein caspase 3/9. CONCLUSIONS: These findings suggest that bergapten effectively prevents LPS-induced osteoclastogenesis, bone resorption and survival via apoptotic response of osteoclasts and their precursors. The study identifies bergapten as an inhibitor of osteoclast formation and bone resorption and provides evidence that bergapten might be beneficial as an alternative for prevention and treatment of inflammatory bone loss.


Assuntos
Reabsorção Óssea/fisiopatologia , Diferenciação Celular/efeitos dos fármacos , Lipopolissacarídeos/fisiologia , Metoxaleno/análogos & derivados , Osteoclastos/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , 5-Metoxipsoraleno , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Caspase 3/fisiologia , Caspase 9/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Técnicas In Vitro , Metoxaleno/farmacologia , Camundongos , Modelos Animais , Osteoclastos/citologia , Osteoclastos/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia
10.
J Neurosci ; 32(46): 16213-22, 2012 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-23152605

RESUMO

Neural progenitor cells, neurons, and glia of the normal vertebrate brain are diversely aneuploid, forming mosaics of intermixed aneuploid and euploid cells. The functional significance of neural mosaic aneuploidy is not known; however, the generation of aneuploidy during embryonic neurogenesis, coincident with caspase-dependent programmed cell death (PCD), suggests that a cell's karyotype could influence its survival within the CNS. To address this hypothesis, PCD in the mouse embryonic cerebral cortex was attenuated by global pharmacological inhibition of caspases or genetic removal of caspase-3 or caspase-9. The chromosomal repertoire of individual brain cells was then assessed by chromosome counting, spectral karyotyping, fluorescence in situ hybridization, and DNA content flow cytometry. Reducing PCD resulted in markedly enhanced mosaicism that was comprised of increased numbers of cells with the following: (1) numerical aneuploidy (chromosome losses or gains); (2) extreme forms of numerical aneuploidy (>5 chromosomes lost or gained); and (3) rare karyotypes, including those with coincident chromosome loss and gain, or absence of both members of a chromosome pair (nullisomy). Interestingly, mildly aneuploid (<5 chromosomes lost or gained) populations remained comparatively unchanged. These data demonstrate functional non-equivalence of distinguishable aneuploidies on neural cell survival, providing evidence that somatically generated, cell-autonomous genomic alterations have consequences for neural development and possibly other brain functions.


Assuntos
Aneuploidia , Caspases/fisiologia , Morte Celular/fisiologia , Córtex Cerebral/embriologia , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose/fisiologia , Caspase 3/genética , Caspase 3/fisiologia , Caspase 9/genética , Caspase 9/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , DNA/biossíntese , DNA/genética , Feminino , Citometria de Fluxo , Genótipo , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Metáfase/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose/fisiologia , Gravidez , Processos de Determinação Sexual/fisiologia
11.
J Cell Physiol ; 228(2): 485-93, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22806078

RESUMO

Fas ligation via the ligand FasL activates the caspase-8/caspase-3-dependent extrinsic death pathway. In so-called type II cells, an additional mechanism involving tBid-mediated caspase-9 activation is required to efficiently trigger cell death. Other pathways linking FasL-Fas interaction to activation of the intrinsic cell death pathway remain unknown. However, ATP release and subsequent activation of purinergic P2X(7) receptors (P2X(7)Rs) favors cell death in some cells. Here, we evaluated the possibility that ATP release downstream of caspase-8 via pannexin1 hemichannels (Panx1 HCs) and subsequent activation of P2X(7)Rs participate in FasL-stimulated cell death. Indeed, upon FasL stimulation, ATP was released from Jurkat cells in a time- and caspase-8-dependent manner. Fas and Panx1 HCs colocalized and inhibition of the latter, but not connexin hemichannels, reduced FasL-induced ATP release. Extracellular apyrase, which hydrolyzes ATP, reduced FasL-induced death. Also, oxidized-ATP or Brilliant Blue G, two P2X(7)R blockers, reduced FasL-induced caspase-9 activation and cell death. These results represent the first evidence indicating that the two death receptors, Fas and P2X(7)R connect functionally via caspase-8 and Panx1 HC-mediated ATP release to promote caspase-9/caspase-3-dependent cell death in lymphoid cells. Thus, a hitherto unsuspected route was uncovered connecting the extrinsic to the intrinsic pathway to amplify death signals emanating from the Fas receptor in type II cells.


Assuntos
Trifosfato de Adenosina/fisiologia , Apoptose , Caspase 8/fisiologia , Proteína Ligante Fas/fisiologia , Receptores Purinérgicos P2X7/fisiologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Apirase/fisiologia , Caspase 3/fisiologia , Caspase 9/fisiologia , Conexinas/fisiologia , Humanos , Células Jurkat , Proteínas do Tecido Nervoso/fisiologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Corantes de Rosanilina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Receptor fas/fisiologia
12.
BMC Cell Biol ; 14: 32, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23834359

RESUMO

BACKGROUND: Apoptosis is a form of programmed cell death that is regulated by the Bcl-2 family and caspase family of proteins. The caspase cascade responsible for executing cell death following cytochrome c release is well described; however the distinct roles of caspases-9, -3 and -7 during this process are not completely defined. RESULTS: Here we demonstrate several unique functions for each of these caspases during cell death. Specific inhibition of caspase-9 allows for efficient release of cytochrome c, but blocks changes in mitochondrial morphology and ROS production. We show that caspase-9 can cleave Bid into tBid at amino acid 59 and that this cleavage of Bid is required for ROS production following serum withdrawal. We also demonstrate that caspase-3-deficient MEFs are less sensitive to intrinsic cell death stimulation, yet have higher ROS production. In contrast, caspase-7-deficient MEFs are not resistance to intrinsic cell death, but remain attached to the ECM. CONCLUSIONS: Taken together, these data suggest that caspase-9 is required for mitochondrial morphological changes and ROS production by cleaving and activating Bid into tBid. After activation by caspase-9, caspase-3 inhibits ROS production and is required for efficient execution of apoptosis, while effector caspase-7 is required for apoptotic cell detachment.


Assuntos
Apoptose/fisiologia , Linfócitos B/patologia , Caspase 3/fisiologia , Caspase 7/fisiologia , Caspase 9/fisiologia , Fibroblastos/patologia , Animais , Linfócitos B/fisiologia , Linhagem Celular , Células Cultivadas , Citocromos c/fisiologia , Matriz Extracelular/fisiologia , Fibroblastos/fisiologia , Camundongos , Mitocôndrias/fisiologia , Modelos Animais , Espécies Reativas de Oxigênio/metabolismo
13.
Toxicol Appl Pharmacol ; 269(3): 233-9, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23566959

RESUMO

Hypoxia mimic nickel(II) is a human respiratory carcinogen with a suspected epigenetic mode of action. We examined whether Ni(II) elicits a toxicologically significant activation of the tumor suppressor p53, which is typically associated with genotoxic responses. We found that treatments of H460 human lung epithelial cells with NiCl2 caused activating phosphorylation at p53-Ser15, accumulation of p53 protein and depletion of its inhibitor MDM4 (HDMX). Confirming the activation of p53, its knockdown suppressed the ability of Ni(II) to upregulate MDM2 and p21 (CDKN1A). Unlike DNA damage, induction of GADD45A by Ni(II) was p53-independent. Ni(II) also increased p53-Ser15 phosphorylation and p21 expression in normal human lung fibroblasts. Although Ni(II)-induced stabilization of HIF-1α occurred earlier, it had no effect on p53 accumulation and Ser15 phosphorylation. Ni(II)-treated H460 cells showed no evidence of necrosis and their apoptosis and clonogenic death were suppressed by p53 knockdown. The apoptotic role of p53 involved a transcription-dependent program triggering the initiator caspase 9 and its downstream executioner caspase 3. Two most prominently upregulated proapoptotic genes by Ni(II) were PUMA and NOXA but only PUMA induction required p53. Knockdown of p53 also led to derepression of antiapoptotic MCL1 in Ni(II)-treated cells. Overall, our results indicate that p53 plays a major role in apoptotic death of human lung cells by Ni(II). Chronic exposure to Ni(II) may promote selection of resistant cells with inactivated p53, providing an explanation for the origin of p53 mutations by this epigenetic carcinogen.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/efeitos dos fármacos , Caspase 9/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Pulmão/efeitos dos fármacos , Níquel/toxicidade , Proteína Supressora de Tumor p53/efeitos dos fármacos , Western Blotting , Caspase 3/fisiologia , Caspase 9/fisiologia , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Pulmão/citologia
14.
Anticancer Drugs ; 24(7): 690-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23652278

RESUMO

OSU-03012 is a celecoxib derivative devoid of cyclooxygenase-2 inhibitory activity. It was previously reported to inhibit the growth of some tumor cells through the AKT-signaling pathway. In the current study, we assessed the ability of OSU-03012 to induce apoptosis in human esophageal carcinoma cells and the mechanism by which this occurs. A cell proliferation assay indicated that OSU-03012 inhibited the growth of human esophageal carcinoma cell lines with an IC50 below 2 µmol/l and had the most effective cytotoxicity against Eca-109 cells. Terminal deoxynucleotidyl transferase-mediated nick-end labeling assay and flow cytometry analysis showed that OSU-03012 could induce the apoptosis in Eca-109 cells. After treatment of Eca-109 cells with 2 µmol/l OSU-03012 for 24 h, the apoptosis index increased from 14.07 to 53.72%. OSU-03012 treatment resulted in a 30-40% decrease in the mitochondrial membrane potential and caused cytochrome c release into the cytosol. Further studies with caspase-9-specific and caspase-8-specific inhibitors (z-LEHDfmk and z-IETDfmk, respectively) pointed toward the involvement of the caspase-9 pathway, but not the caspase-8 pathway, in the execution of OSU-03012-induced apoptosis. Immunoblot analysis demonstrated that OSU-03012-induced cellular apoptosis was associated with upregulation of Bax, cleaved caspase-3, and cleaved caspase-9. Ser-15 of p53 was phosphorylated after 24 h of treatment of the cancer cells with OSU-03012. This increase in p53 was associated with the decrease in Bcl-2 and increase in Bax. An inhibitor of p53, pifithrin-α, attenuated the anticancer effects of OSU-03012 and downregulated the expression of Bax and cleaved caspase-9. Altogether, our results show that OSU-03012 could induce apoptosis in human esophageal carcinoma cells through a p53/Bax/cytochrome c/caspase-9-dependent pathway.


Assuntos
Caspase 9/fisiologia , Citocromos c/antagonistas & inibidores , Neoplasias Esofágicas/tratamento farmacológico , Pirazóis/farmacologia , Transdução de Sinais/fisiologia , Sulfonamidas/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína X Associada a bcl-2/antagonistas & inibidores , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Celecoxib , Linhagem Celular Tumoral , Citocromos c/metabolismo , Neoplasias Esofágicas/metabolismo , Humanos , Pirazóis/química , Pirazóis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/química , Sulfonamidas/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismo
15.
J Pineal Res ; 55(2): 195-206, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23725013

RESUMO

Melatonin is a naturally occurring indoleamine synthesized in the pineal gland that exhibits an extensive repertoire of biological activities. An increasing number of studies indicate that melatonin protects normal cells, while it reducing cancer cell proliferation. In this study, we investigated the effect of melatonin on the growth of the human leukemia cells and found that it efficiently reduced the number of cells in a concentration- and time-dependent manner. Thus, incubation with the indoleamine increased the percentage of cells with a hypodiploid DNA content, augmented the number of annexin V-positive cells, and also provoked ultrastructural changes that are features of apoptotic cell death. Evaluation of caspases revealed that caspase-3, caspase-6, caspase-7, and caspase-9, but not caspase-8 and caspase-2, were quickly activated (3-6 hr). The increase in the activity of these proteases was associated with up-regulation of the pro-apoptotic factor Bax and also with the release of cytochrome c from mitochondria. Pretreatment of the cells with the general caspase inhibitor z-VAD-fmk, reduced melatonin-induced apoptosis, but it did not block cell death suggesting that melatonin activates an alternative cell death modality in the absence of caspase activity. Thus, the activation of caspases was preceded by a fast (<30 min) increase in reactive oxygen species (ROS). Rotenone and antimycin A reduced the levels of ROS stimulated by melatonin, indicating that the complex I and the complex III of the mitochondrial electron transport chain are important sources of these chemical species. However, the role of ROS in melatonin-induced cell death remains elusive because anti-oxidants that were shown to decrease ROS levels (glutathione, N-acetyl-l-cysteine and Trolox) were unable to abrogate melatonin-induced cell death.


Assuntos
Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Caspase 9/fisiologia , Leucemia/tratamento farmacológico , Melatonina/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Citocromos c/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Melatonina/farmacologia , Proteína X Associada a bcl-2/metabolismo
16.
Exp Cell Res ; 318(11): 1213-20, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22406265

RESUMO

Key structural and catalytic features are conserved across the entire family of cysteine-dependent aspartate-specific proteases (caspases). Of the caspases involved in apoptosis signal transduction, the initiator caspases-2, -8 and -9 are activated at multi-protein activation platforms, and activation is thought to involve homo-dimerisation of the monomeric zymogens. Caspase-9, the essential initiator caspase required for apoptosis signalling through the mitochondrial pathway, is activated on the apoptosome complex, and failure to activate caspase-9 has profound pathophysiological consequences. Here, we review the pertinent literature on which the currently prevalent understanding of caspase-9 activation is based, extend this view by insight obtained from recent structural and kinetic studies on caspase-9 signalling, and describe an emerging model for the regulation of caspase-9 activation and activity that arise from the complexity of multi-protein interactions at the apoptosome. This integrated view allows us to postulate and to discuss functional consequences for caspase-9 activation and apoptosis execution that may take centre stage in future experimental cell research on apoptosis signalling.


Assuntos
Apoptose , Apoptossomas , Caspase 9/fisiologia , Transdução de Sinais , Animais , Caspases Iniciadoras , Humanos
17.
Biochim Biophys Acta ; 1813(10): 1827-35, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21784110

RESUMO

Pro-inflammatory cytokine-mediated beta cell apoptosis is activated through multiple signaling pathways involving mitochondria and endoplasmic reticulum. Activation of organelle-specific caspases has been implicated in the progression and execution of cell death. This study was therefore performed to elucidate the effects of pro-inflammatory cytokines on a possible cross-talk between the compartment-specific caspases 9 and 12 and their differential contribution to beta cell apoptosis. Moreover, the occurrence of ROS-mediated mitochondrial damage in response to beta cell toxic cytokines has been quantified. ER-specific caspase-12 was strongly activated in response to pro-inflammatory cytokines; however, its inhibition did not abolish cytokine-induced mitochondrial caspase-9 activation and loss of cell viability. In addition, there was a significant induction of oxidative mitochondrial DNA damage and elevated cardiolipin peroxidation in insulin-producing RINm5F cells and rat islet cells. Overexpression of the H(2)O(2) detoxifying enzyme catalase effectively reduced the observed cytokine-induced oxidative damage of mitochondrial structures. Taken together, the results strongly indicate that mitochondrial caspase-9 is not a downstream substrate of ER-specific caspase-12 and that pro-inflammatory cytokines cause apoptotic beta cell death through activation of caspase-9 primarily by hydroxyl radical-mediated mitochondrial damage.


Assuntos
Apoptose/fisiologia , Caspase 12/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Caspase 12/genética , Caspase 9/metabolismo , Caspase 9/fisiologia , Catalase/metabolismo , Células Cultivadas , Citocinas/metabolismo , Citocinas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Ativação Enzimática/fisiologia , Mediadores da Inflamação/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Ratos , Ratos Endogâmicos Lew
18.
Gastroenterology ; 141(2): 663-73, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21683075

RESUMO

BACKGROUND & AIMS: Oxaliplatin sensitizes drug-resistant colon cancer cell lines to tumor necrosis factor-related apoptosis inducing ligand (TRAIL), a death receptor ligand that is selective for cancer cells. We investigated the molecular mechanisms by which oxaliplatin sensitizes cancer cells to TRAIL-induced apoptosis. METHODS: We incubated the colon cancer cell lines HT29 and V9P, which are resistant to TRAIL, with TRAIL or with oxaliplatin for 2 hours, followed by TRAIL. Annexin V staining was used to measure apoptosis; RNA silencing and immunoblot experiments were used to study the roles of apoptosis-related proteins. Site-directed mutagenesis experiments were used to determine requirements for phosphorylation of Bcl-xL; co-immunoprecipitation experiments were used to analyze the interactions among Bcl-xL, Bax, and Bak, and activation of Bax. RESULTS: Oxaliplatin-induced sensitivity to TRAIL required activation of the mitochondrial apoptotic pathway; reduced expression of Bax, Bak, and caspase-9, and stable overexpression of Bcl-xL, reduced TRAIL-induced death of cells incubated with oxaliplatin. Mitochondrial priming was induced in cells that were sensitized by oxaliplatin and required signaling via c-Jun N-terminal kinase and phosphorylation of Bcl-xL. Mimicking constitutive phosphorylation of Bcl-xL by site-directed mutagenesis at serine 62 restored sensitivity of cells to TRAIL. Co-immunoprecipitation experiments showed that oxaliplatin-induced phosphorylation of Bcl-xL disrupted its ability to sequestrate Bax, allowing Bax to interact with Bak to induce TRAIL-mediated apoptosis. CONCLUSIONS: Oxaliplatin facilitates TRAIL-induced apoptosis in colon cancer cells by activating c-Jun N-terminal kinase signaling and phosphorylation of Bcl-xL. Oxaliplatin-induced sensitivity to TRAIL might be developed as an approach to cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/uso terapêutico , Antineoplásicos/uso terapêutico , Apoptose , Caspase 3/metabolismo , Caspase 3/fisiologia , Caspase 8/metabolismo , Caspase 8/fisiologia , Caspase 9/metabolismo , Caspase 9/fisiologia , Células HT29 , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Mitocôndrias/metabolismo , Compostos Organoplatínicos/uso terapêutico , Oxaliplatina , Fosforilação/efeitos dos fármacos , Transdução de Sinais , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/fisiologia , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/fisiologia , Proteína bcl-X/metabolismo , Proteína bcl-X/fisiologia
19.
Zhongguo Dang Dai Er Ke Za Zhi ; 14(10): 792-5, 2012 Oct.
Artigo em Zh | MEDLINE | ID: mdl-23092575

RESUMO

OBJECTIVE: To study the effect of ginsenoside on apoptosis of human leukemia-60 (HL-60) cells and its mechanism. METHODS: MTT cytotoxicity assay was used to determine the growth inhibition activity of ginsenoside (100, 50, 25, 12.5, 6.25, 3.125 and 1.5625 µmol/L) on HL-60 cells. The apoptosis of HL-60 cells after treatment with ginsenoside (0,5,10 and 20 µmol/L) was determined by Annexin V-FITC/PI staining and flow cytometry. The cleavage of total proteins by caspase-8, caspase-9 and caspase-3 was evaluated by Western blot. The cleavage of caspase-3 protein was detected by Western blot after treatment with 10 µmol/L ginsenoside and caspase-8 and 9 inhibitors. RESULTS: Ginsenoside had potent cytotoxicity on HL-60 cells, with an IC50 value of 7.3±1.2 µmol/L. After treatment with ginsenoside (0, 5, 10 and 20 µmol/L) for 48 hours, the apoptotic rate displayed a dose dependency, as shown by flow cytometry, with significant differences between the groups (F=12.67, P<0.01). Western blot showed that there were caspase-9 and caspase-3 cleavage bands, but without caspase-8 cleavage band. The specific inhibitor of caspase-9 Z-LEHD-FMK could block the caspase-3 cleavage induced by 10 µmol/L ginsenoside, but the specific inhibitor of caspase-8 Z-IETD-FMK did not have this effect. CONCLUSIONS: Ginsenoside can induce apoptosis of HL-60 cells, which may be related to a mitochondria-dependent pathway.


Assuntos
Apoptose/efeitos dos fármacos , Ginsenosídeos/farmacologia , Caspase 9/fisiologia , Inibidores de Caspase/farmacologia , Células HL-60 , Humanos
20.
Chem Res Toxicol ; 24(1): 20-9, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21126053

RESUMO

Anthraquinones have been shown to induce apoptosis in different types of tumor cells, but the mechanisms of danthron-induced cytotoxicity and apoptosis in human gastric cancer cells have not been adequately explored. This study investigated the roles of caspase cascades, ROS, DNA damage, mitochondrial disruption, and Bax and Bcl-2 proteins in danthron-induced apoptosis of SNU-1 human gastric cancer cells, a commonly used cell culture system for in vitro studies. Cells were incubated with different concentrations of danthron in a time- and/or dose-dependent manner. Cell morphological changes (shrinkage and rounding) were examined by a phase-contrast microscope, whereas cell viability and apoptotic populations were determined by flow cytometric analysis using propidium iodide (PI) and annexin V-FITC staining. The fluorescent DAPI nucleic acid stain and Comet assay were applied to detect danthron-induced chromatin condensation (an apoptotic characteristic) and DNA damage. Increasing the levels of caspase-3, -8, and -9 activities was involved in danthron-induced apoptosis, and they could be attenuated by inhibitors of specific caspases, indicating that danthron triggered the caspase-dependent apoptotic pathway. Further studies with flow cytometric analyses indicated that cellular levels of ROS, cytosolic Ca(2+), and mitochondrial permeability transition (MPT) pore opening were increased, but the level of mitochondrial membrane potential (ΔΨ(m)) was decreased. Also, the ratio of Bax/Bcl-2 levels and other proapoptotic proteins associated with modulating the ΔΨ(m) were up-regulated. Apoptotic signaling was also stimulated after exposure to danthron and determined by Western blotting and real-time PCR analyses. In summary, it is suggested that danthron-induced apoptotic cell death was involved in mitochondrial depolarization, which led to release of cytochrome c, apoptosis-inducing factor (AIF), and endonuclease G (Endo G) and caused the activation of caspase-9 and -3 in SNU-1 human gastric cancer cells.


Assuntos
Antraquinonas/toxicidade , Antineoplásicos Fitogênicos/toxicidade , Caspases/metabolismo , Dano ao DNA , Mitocôndrias/efeitos dos fármacos , Neoplasias Gástricas/metabolismo , Proteína X Associada a bcl-2/metabolismo , Anexina A5/química , Antraquinonas/química , Antineoplásicos Fitogênicos/química , Apoptose , Caspase 3/metabolismo , Caspase 3/fisiologia , Caspase 8/metabolismo , Caspase 8/fisiologia , Caspase 9/metabolismo , Caspase 9/fisiologia , Caspases/fisiologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Fluoresceína-5-Isotiocianato , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Propídio/química , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas , Proteína X Associada a bcl-2/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA