Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
New Phytol ; 243(2): 662-673, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38769735

RESUMO

It is well established that solar irradiance greatly influences tree metabolism and growth through photosynthesis, but its effects acting through individual climate metrics have not yet been well quantified. Understanding these effects is crucial for assessing the impacts of climate change on forest ecosystems. To describe the effects of solar irradiance on tree growth, we installed 110 automatic dendrometers in two old-growth mountain forest reserves in Central Europe, performed detailed terrestrial and aerial laser scanning to obtain precise tree profiles, and used these to simulate the sum of solar irradiance received by each tree on a daily basis. Generalized linear mixed-effect models were applied to simulate the probability of growth and the growth intensity over seven growing seasons. Our results demonstrated various contrasting effects of solar irradiance on the growth of canopy trees. On the one hand, the highest daily growth rates corresponded with the highest solar irradiance potentials (i.e. the longest photoperiod). Intense solar irradiance significantly decreased tree growth, through an increase in the vapor pressure deficit. These effects were consistent for all species but had different magnitude. Tree growth is the most effective on long rainy/cloudy days with low solar irradiance.


Assuntos
Florestas , Caules de Planta , Estações do Ano , Luz Solar , Árvores , Árvores/crescimento & desenvolvimento , Árvores/efeitos da radiação , Árvores/fisiologia , Europa (Continente) , Caules de Planta/efeitos da radiação , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Fotossíntese/efeitos da radiação
2.
New Phytol ; 243(1): 72-81, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703003

RESUMO

Woody plants display some photosynthetic activity in stems, but the biological role of stem photosynthesis and the specific contributions of bark and wood to carbon uptake and oxygen evolution remain poorly understood. We aimed to elucidate the functional characteristics of chloroplasts in stems of different ages in Fraxinus ornus. Our investigation employed diverse experimental approaches, including microsensor technology to assess oxygen production rates in whole stem, bark, and wood separately. Additionally, we utilized fluorescence lifetime imaging microscopy (FLIM) to characterize the relative abundance of photosystems I and II (PSI : PSII chlorophyll ratio) in bark and wood. Our findings revealed light-induced increases in O2 production in whole stem, bark, and wood. We present the radial profile of O2 production in F. ornus stems, demonstrating the capability of stem chloroplasts to perform light-dependent electron transport. Younger stems exhibited higher light-induced O2 production and dark respiration rates than older ones. While bark emerged as the primary contributor to net O2 production under light conditions, our data underscored that wood chloroplasts are also photosynthetically active. The FLIM analysis unveiled a lower PSI abundance in wood than in bark, suggesting stem chloroplasts are not only active but also acclimate to the spectral composition of light reaching inner compartments.


Assuntos
Luz , Oxigênio , Caules de Planta , Madeira , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação , Oxigênio/metabolismo , Madeira/metabolismo , Escuridão , Fraxinus/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Casca de Planta/metabolismo , Fotossíntese/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo
3.
New Phytol ; 243(2): 567-579, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38812270

RESUMO

Aerosols could significantly influence ecosystem carbon and water fluxes, potentially altering their interconnected dynamics, typically characterized by water-use efficiency (WUE). However, our understanding of the underlying ecophysiological mechanisms remains limited due to insufficient field observations. We conducted 4-yr measurements of leaf photosynthesis and transpiration, as well as 3-yr measurements of stem growth (SG) and sap flow of poplar trees exposed to natural aerosol fluctuation, to elucidate aerosol's impact on plant WUE. We found that aerosol improved sun leaf WUE mainly because a sharp decline in photosynthetically active radiation (PAR) inhibited its transpiration, while photosynthesis was less affected, as the negative effect induced by declined PAR was offset by the positive effect induced by low leaf vapor pressure deficit (VPDleaf). Conversely, diffuse radiation fertilization (DRF) effect stimulated shade leaf photosynthesis with minimal impact on transpiration, leading to an improved WUE. The responses were further verified by a strong DRF on SG and a decrease in sap flow due to the suppresses in total radiation and VPD. Our field observations indicate that, contrary to the commonly assumed coupling response, carbon uptake and water use exhibited dissimilar reactions to aerosol pollution, ultimately enhancing WUE at the leaf and canopy level.


Assuntos
Aerossóis , Carbono , Fotossíntese , Folhas de Planta , Transpiração Vegetal , Populus , Água , Água/metabolismo , Fotossíntese/efeitos da radiação , Fotossíntese/efeitos dos fármacos , Carbono/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Transpiração Vegetal/fisiologia , Transpiração Vegetal/efeitos da radiação , Populus/fisiologia , Populus/efeitos da radiação , Populus/efeitos dos fármacos , Caules de Planta/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia
4.
Plant J ; 105(2): 392-420, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32986276

RESUMO

Organs such as hypocotyls and petioles rapidly elongate in response to shade and temperature cues, contributing to adaptive responses that improve plant fitness. Growth plasticity in these organs is achieved through a complex network of molecular signals. Besides conveying information from the environment, this signaling network also transduces internal signals, such as those associated with the circadian clock. A number of studies performed in Arabidopsis hypocotyls, and to a lesser degree in petioles, have been informative for understanding the signaling networks that regulate elongation of aerial plant organs. In particular, substantial progress has been made towards understanding the molecular mechanisms that regulate responses to light, the circadian clock, and temperature. Signals derived from these three stimuli converge on the BAP module, a set of three different types of transcription factors that interdependently promote gene transcription and growth. Additional key positive regulators of growth that are also affected by environmental cues include the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) and SUPPRESSOR OF PHYA-105 (SPA) E3 ubiquitin ligase proteins. In this review we summarize the key signaling pathways that regulate the growth of hypocotyls and petioles, focusing specifically on molecular mechanisms important for transducing signals derived from light, the circadian clock, and temperature. While it is clear that similarities abound between the signaling networks at play in these two organs, there are also important differences between the mechanisms regulating growth in hypocotyls and petioles.


Assuntos
Relógios Circadianos/fisiologia , Componentes Aéreos da Planta/crescimento & desenvolvimento , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Hipocótilo/efeitos da radiação , Luz , Redes e Vias Metabólicas , Componentes Aéreos da Planta/metabolismo , Componentes Aéreos da Planta/efeitos da radiação , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação , Transdução de Sinais , Temperatura
5.
Plant Cell ; 31(9): 2070-2088, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289115

RESUMO

In the course of evolution, plants have developed mechanisms that orient their organs toward the incoming light. At the seedling stage, positive phototropism is mainly regulated by phototropin photoreceptors in blue and UV wavelengths. Contrasting with this, we report that UV RESISTANCE LOCUS8 (UVR8) serves as the predominant photoreceptor of UV-B-induced phototropic responses in Arabidopsis (Arabidopsis thaliana) inflorescence stems. We examined the molecular mechanisms underlying this response and our findings support the Blaauw theory (Blaauw, 1919), suggesting rapid differential growth through unilateral photomorphogenic growth inhibition. UVR8-dependent UV-B light perception occurs mainly in the epidermis and cortex, but deeper tissues such as endodermis can also contribute. Within stems, a spatial difference of UVR8 signal causes a transcript and protein increase of transcription factors ELONGATED HYPOCOTYL5 (HY5) and its homolog HY5 HOMOLOG at the UV-B-exposed side. The irradiated side shows (1) strong activation of flavonoid synthesis genes and flavonoid accumulation; (2) increased gibberellin (GA)2-oxidase expression, diminished GA1 levels, and accumulation of the DELLA protein REPRESSOR OF GA1; and (3) increased expression of the auxin transport regulator PINOID, contributing to diminished auxin signaling. Together, the data suggest a mechanism of phototropin-independent inflorescence phototropism through multiple, locally UVR8-regulated hormone pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Inflorescência/metabolismo , Inflorescência/efeitos da radiação , Fototropismo/fisiologia , Fototropismo/efeitos da radiação , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação , Raios Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Cromossômicas não Histona/genética , Flavonoides/genética , Flavonoides/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ácidos Indolacéticos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
6.
J Sci Food Agric ; 101(7): 2809-2817, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33140406

RESUMO

BACKGROUND: Having short drying time and attractive product quality are important in fruit and vegetable dehydration processing. In this work, tri-frequency (20, 40 and 60 kHz) ultrasound-ethanol pretreatment, ultrasound-water pretreatment and ethanol pretreatment were employed before infrared convection drying (ICD) of scallion stalks, which was aimed at improving the drying process and quality of the end products. The mass transfer, drying characteristics (moisture ratio and drying rate and quality properties of scallion (rehydration, color, flavor, optical microscope image, moisture distribution and microbiological quality) were analyzed. RESULTS: All pretreatments have decreased the drying time by 33.34-83.34% compared to the control, while ultrasound-ethanol pretreatment provided the highest time reduction (83.34%). The reason is that the volatility of ethanol have replaced air in the tissue, which produced a better osmotic dehydration effect and the cavitation effect of ultrasound changed the cell function of the material, so that the food tissue was rapidly compressed and expanded, resulting in damage to the cell structure. Ultrasonic-ethanol pretreatment has greatly reduced the water loss and dry matter of fresh scallion, improved the rehydration effect of dried scallion, better retained the color and flavor of scallion and effectively reduced the microbiological quality of the scallion. CONCLUSION: The tri-frequency ultrasound-ethanol pretreatment has effectively improved the drying process and quality characteristics of the dried scallion. Therefore, this research has a great contribution to the drying technology, as evident in the remarkable reduction in drying time and the improvement in the quality of the end product. © 2020 Society of Chemical Industry.


Assuntos
Conservação de Alimentos/métodos , Cebolas/química , Cebolas/efeitos da radiação , Dessecação/instrumentação , Etanol/química , Conservação de Alimentos/instrumentação , Caules de Planta/química , Caules de Planta/efeitos da radiação , Ondas Ultrassônicas
7.
Plant Physiol ; 176(1): 704-716, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142024

RESUMO

Process-based crop growth models are popular tools with which to analyze and understand the impact of crop management, genotype-by-environment interactions, or climate change. The ability to predict leaf area development is critical to predict crop growth, particularly under conditions of limited resources. Here, we aimed at deciphering growth coordination rules between wheat (Triticum aestivum) plant organs (i.e. between leaves within a stem, between laminae and sheaths, and between the mainstem and axillary tillers) to model the dynamics of canopy development. We found a unique relationship between laminae area and leaf rank for the mainstem and its tillers, which was robust across a range of sowing dates and plant densities. Robust relationships between laminae and sheath areas also were found, highlighting the tight control of organ growth within and between phytomers. These relationships identified at the phytomer scale were used to develop a simulation model of leaf area dynamics at the canopy level that was integrated in the wheat model SiriusQuality. The model was then evaluated using several independent experiments. The model accurately predicts leaf area dynamics under different scenarios of nitrogen and water limitations. It accounted for 85%, 64%, and 73% of the variability of the surface area of leaf cohorts, total leaf area index, and total green area index, respectively. The process-based model of the dynamics of leaf area described here is a key element to quantify the value of candidate traits for use in plant breeding and to project the impact of climate change on wheat growth.


Assuntos
Modelos Biológicos , Folhas de Planta/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Simulação por Computador , Luz , Nitrogênio/farmacologia , Tamanho do Órgão , Especificidade de Órgãos , Folhas de Planta/anatomia & histologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Estações do Ano , Triticum/anatomia & histologia , Triticum/efeitos dos fármacos , Triticum/efeitos da radiação , Água
8.
Genes Dev ; 25(13): 1439-50, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21724835

RESUMO

Leaves originate from stem cells located at the shoot apical meristem. The meristem is shielded from the environment by older leaves, and leaf initiation is considered to be an autonomous process that does not depend on environmental cues. Here we show that light acts as a morphogenic signal that controls leaf initiation and stabilizes leaf positioning. Leaf initiation in tomato shoot apices ceases in the dark but resumes in the light, an effect that is mediated through the plant hormone cytokinin. Dark treatment also affects the subcellular localization of the auxin transporter PIN1 and the concomitant formation of auxin maxima. We propose that cytokinin is required for meristem propagation, and that auxin redirects cytokinin-inducible meristem growth toward organ formation. In contrast to common wisdom over the last 150 years, the light environment controls the initiation of lateral organs by regulating two key hormones: auxin and cytokinin.


Assuntos
Luz , Organogênese/efeitos da radiação , Caules de Planta/citologia , Caules de Planta/efeitos da radiação , Solanum lycopersicum/citologia , Solanum lycopersicum/efeitos da radiação , Citocininas/metabolismo , Citocininas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/metabolismo , Organogênese/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/citologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Brotos de Planta/citologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Transporte Proteico/efeitos da radiação , Transdução de Sinais/efeitos da radiação
9.
New Phytol ; 219(2): 551-564, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29767842

RESUMO

Reassimilation of internal CO2 via corticular photosynthesis (PScort ) has an important effect on the carbon economy of trees. However, little is known about its role as a source of O2 supply to the stem parenchyma and its implications in consumption and movement of O2 within trees. PScort of young Populus nigra (black poplar) trees was investigated by combining optical micro-optode measurements with monitoring of stem chlorophyll fluorescence. During times of zero sap flow in spring, stem oxygen concentrations (cO2 ) exhibited large temporal changes. In the sapwood, over 80% of diurnal changes in cO2 could be explained by respiration rates (Rd(mod) ). In the cortex, photosynthetic oxygen release during the day altered this relationship. With daytime illumination, oxygen levels in the cortex steadily increased from subambient and even exhibited a diel period of superoxia of up to 110% (% air sat.). By contrast, in the sapwood, cO2 never reached ambient levels; the diurnal oxygen deficit was up to 25% of air saturation. Our results confirm that PScort is not only a CO2 -recycling mechanism, it is also a mechanism to actively raise the cortical O2 concentration and counteract temporal/spatial hypoxia inside plant stems.


Assuntos
Dióxido de Carbono/metabolismo , Oxigênio/farmacologia , Fotossíntese , Populus/fisiologia , Absorção de Radiação , Respiração Celular/efeitos dos fármacos , Respiração Celular/efeitos da radiação , Clorofila/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/efeitos da radiação , Luz , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Populus/efeitos dos fármacos , Populus/efeitos da radiação , Prótons , Temperatura
10.
Ann Bot ; 122(1): 165-180, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29800276

RESUMO

Background and Aims: The greater diversity of plant clades in the Neotropics compared to their relatives in Africa is a pervasive pattern in biogeography. To better understand the causes of this imbalance, we studied the diversification dynamics of the monocot family Velloziaceae. In addition to being conspicuously richer in the Neotropics compared to the Palaeotropics, many species of Velloziaceae exhibit extreme desiccation tolerance (i.e. 'resurrection' behaviour), and other ecological specializations to life on rocky outcrops, poor sandy soils, open vegetation and seasonally dry climates. Velloziaceae is also ecologically dominant in the campos rupestres, a habitat having exceptionally high plant diversity and endemism in Brazil. Methods: We reconstructed a densely sampled time-calibrated molecular phylogeny and used state-dependent and state-independent models to estimate rates of lineage diversification in relation to continent-scale geographical occurrence and functional traits associated with desiccation tolerance and water storage capacity. Key Results: Independent shifts to faster diversification occurred within two Neotropical lineages, Vellozia and Barbacenia. The Vellozia radiation was associated with the presence of conspicuous aerial stems, and was followed by decreasing diversification rates during the Oligocene, a time of rising global temperatures and expanding open areas around the world. The Barbacenia radiation was faster and more recent, occurring during the cooling conditions of the Miocene, and associated with the acquisition of aquiferous parenchyma on the leaves. Conclusions: High species richness of Velloziaceae in South America has been driven by faster diversification in lineages predominantly occurring in the campos rupestres, putatively by the evolution of adaptive strategies in response to independent climatic events. The radiation of Vellozia in particular might have played a key role in the assembly of the campos rupestres vegetation.


Assuntos
Biodiversidade , Magnoliopsida/genética , Adaptação Fisiológica , Evolução Biológica , Brasil , Dessecação , Ecossistema , Magnoliopsida/fisiologia , Magnoliopsida/efeitos da radiação , Fenótipo , Filogenia , Caules de Planta/genética , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação
11.
Int J Mol Sci ; 19(4)2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652861

RESUMO

The negative effects of enhanced ultraviolet-B (UV-B) on plant growth and development have been reported with many species. Considering the ability of jasmonic acid (JA) to improve plant stress tolerance, the hypothesis that JA pretreatment could alleviate the adverse effects of UV-B on S. baicalensis was tested in this study with photosynthesis and growth characteristics. The results showed that UV-B or JA alone both induced photosynthesis inhibition and decreased biomass in stems and leaves. However, the photosynthetic reduction caused by increased UV-B was mainly related to the effect of nonstomatal-limitation, while that of JA was a stomatal-limitation effect. JA pretreatment prior to UV-B could remit the photosynthetic inhibition via the recovery of chlorophyll content, stomatal conductance; and intercellular CO2 concentration (especially the maximum electron transport rate increase). Furthermore, the coaction of JA and enhanced UV-B alleviated some disadvantageous effects on the leaf and did not aggravate the growth damage induced by their separate actions.


Assuntos
Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Fotossíntese/efeitos da radiação , Scutellaria baicalensis/crescimento & desenvolvimento , Biomassa , Dióxido de Carbono/química , Cloroplastos/química , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/efeitos da radiação , Scutellaria baicalensis/química , Scutellaria baicalensis/efeitos dos fármacos , Scutellaria baicalensis/efeitos da radiação , Raios Ultravioleta/efeitos adversos
12.
J Exp Bot ; 68(18): 5221-5232, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29036658

RESUMO

Carbon starvation as a mechanism of tree mortality is poorly understood. We exposed seedlings of aspen (Populus tremuloides) to complete darkness at 20 or 28 °C to identify minimum non-structural carbohydrate (NSC) concentrations at which trees die and to see if these levels vary between organs or with environmental conditions. We also first grew seedlings under different shade levels to determine if size affects survival time under darkness due to changes in initial NSC concentration and pool size and/or respiration rates. Darkness treatments caused a gradual dieback of tissues. Even after half the stem had died, substantial starch reserves were still present in the roots (1.3-3% dry weight), indicating limitations to carbohydrate remobilization and/or transport during starvation in the absence of water stress. Survival time decreased with increased temperature and with increasing initial shade level, which was associated with smaller biomass, higher respiration rates, and initially smaller NSC pool size. Dead tissues generally contained no starch, but sugar concentrations were substantially above zero and differed between organs (~2% in stems up to ~7.5% in leaves) and, at times, between temperature treatments and initial, pre-darkness shade treatments. Minimum root NSC concentrations were difficult to determine because dead roots quickly began to decompose, but we identify 5-6% sugar as a potential threshold for living roots. This variability may complicate efforts to identify critical NSC thresholds below which trees starve.


Assuntos
Metabolismo dos Carboidratos/efeitos da radiação , Carbono/deficiência , Populus/fisiologia , Biomassa , Carbono/efeitos da radiação , Escuridão , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Populus/efeitos da radiação , Plântula/fisiologia , Plântula/efeitos da radiação , Amido/metabolismo , Árvores
13.
J Exp Bot ; 68(5): 943-952, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28062593

RESUMO

Arabidopsis thaliana shoot branching is inhibited by a low red light to far red light ratio (R:FR, an indicator of competition), and by loss of phytochrome B function. Prior studies have shown that phytochrome B deficiency suppresses bud growth by elevating systemic auxin signalling, and that increasing the R:FR promotes the growth of buds suppressed by low R:FR by inhibiting bud abscisic acid (ABA) accumulation and signalling. Here, systemic auxin signalling and bud ABA signalling were examined in the context of rapid bud responses to an increased R:FR. Increasing the R:FR promoted the growth of buds inhibited by a low R:FR within 6 h. Relative to a low R:FR, bud ABA accumulation and signalling in plants given a high R:FR showed a sustained decline within 3 h, prior to increased growth. Main stem auxin levels and signalling showed a weak, transient response. Systemic effects and those localised to the bud were further examined by decapitating plants maintained either under a low R:FR or provided with a high R:FR. Increasing the R:FR promoted bud growth before decapitation, but decapitated plants eventually formed longer branches. The data suggest that rapid responses to an increased R:FR may be mediated by changes in bud ABA physiology, although systemic auxin signalling is necessary for sustained bud repression under a low R:FR.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Luz , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Fitocromo B/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos da radiação , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação
14.
Physiol Plant ; 159(3): 313-328, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27717171

RESUMO

Studies have been mounting in support of the finding that plants release aerobic methane (CH4 ), and that these emissions are increased by both short-term and long-term environmental stress. It remains unknown whether or not they are affected by variation in light quantity and quality, whether emissions change over time, and whether they are influenced by physiological parameters. Light is the primary energy source of plants, and therefore an important regulator of plant growth and development. Both shade-intolerant sunflower and shade-tolerant chrysanthemum were investigated for the release of aerobic CH4 emissions, using either low or high light intensity, and varying light quality, including control, low or normal red:far-red ratio (R:FR), and low or high levels of blue, to discern the relationship between light and CH4 emissions. It was found that low levels of light act as an environmental stress, facilitating CH4 release from both species. R:FR and blue lights increased emissions under low light, but the results varied with species, providing evidence that both light quantity and quality regulate CH4 emissions. Emission rates of 6.79-41.13 ng g-1 DW h-1 and 18.53-180.25 ng g-1 DW h-1 were observed for sunflower and chrysanthemum, respectively. Moreover, emissions decreased with age as plants acclimated to environmental conditions. Since effects were similar in both species, there may be a common trend among a number of shade-tolerant and shade-intolerant species. Light quantity and quality are influenced by factors including cloud covering, so it is important to know how plants will be affected in the context of aerobic CH4 emissions.


Assuntos
Chrysanthemum/efeitos da radiação , Helianthus/efeitos da radiação , Metano/metabolismo , Clorofila/metabolismo , Chrysanthemum/metabolismo , Helianthus/crescimento & desenvolvimento , Helianthus/metabolismo , Luz , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Caules de Planta/efeitos da radiação
15.
J Sci Food Agric ; 97(7): 2159-2165, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27604502

RESUMO

BACKGROUND: Brachypodium distachyon (L.) Beauv. is a monocotyledonous model plant that has been studied to understand a range of biological phenomena for lignocellulosic bioethanol feedstocks and other cereal crops. The lignin makes its cell walls recalcitrant to saccharification, constituting the main barrier to lignocellulosic bioethanol production. In this study, lignin-deficient mutants of B. distachyon induced by chronic radiation were selected and the effects of the mutants on fermentable glucose production were identified. RESULTS: Brachypodium distachyon M2 mutants induced by chronically irradiated gamma radiation were screened by the Wiesner test. Lignin-deficient M2 mutants were further confirmed in subsequent M3 and M4 generations by determining acetyl bromide-soluble lignin. The lignin content was significantly reduced in mutant plants 135-2 (by 7.99%), 142-3 (by 13.8%) and 406-1 (by 8.13%) compared with the wild type. Moreover, fermentable glucose was significantly higher in 135-2 (by 23.91%) and 142-3 (by 36.72%) than in the wild type after 72 h of enzymatic hydrolysis. CONCLUSION: Three lignin-deficient B. distachyon mutants induced by chronically irradiated gamma radiation were obtained. This study will provide fundamental understanding of the B. distachyon cell wall and could contribute to increases in bioethanol production using bioenergy crops. © 2016 Society of Chemical Industry.


Assuntos
Brachypodium/genética , Brachypodium/efeitos da radiação , Lignina/análise , Biocombustíveis , Brachypodium/química , Brachypodium/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Parede Celular/efeitos da radiação , Raios gama , Lignina/metabolismo , Mutação , Caules de Planta/efeitos da radiação
16.
New Phytol ; 209(1): 265-79, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26256266

RESUMO

In higher plants, gravitropism proceeds through three sequential steps in the responding organs: perception of gravity signals, signal transduction and asymmetric cell elongation. Light and temperature also influence the gravitropic orientation of plant organs. A series of Arabidopsis shoot gravitropism (sgr) mutants has been shown to exhibit disturbed shoot gravitropism. SGR5 is functionally distinct from other SGR members in that it mediates the early events of gravitropic responses in inflorescence stems. Here, we demonstrated that SGR5 alternative splicing produces two protein variants (SGR5α and SGR5ß) in modulating the gravitropic response of inflorescence stems at high temperatures. SGR5ß inhibits SGR5α function by forming non-DNA-binding heterodimers. Transgenic plants overexpressing SGR5ß (35S:SGR5ß) exhibit reduced gravitropic growth of inflorescence stems, as observed in the SGR5-deficient sgr5-5 mutant. Interestingly, SGR5 alternative splicing is accelerated at high temperatures, resulting in the high-level accumulation of SGR5ß transcripts. When plants were exposed to high temperatures, whereas gravitropic curvature was reduced in Col-0 inflorescence stems, it was uninfluenced in the inflorescence stems of 35S:SGR5ß transgenic plants and sgr5-5 mutant. We propose that the thermoresponsive alternative splicing of SGR5 provides an adaptation strategy by which plants protect the shoots from hot air under high temperature stress in natural habitats.


Assuntos
Processamento Alternativo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Transporte/genética , Gravitropismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Temperatura Alta , Inflorescência/genética , Inflorescência/fisiologia , Luz , Mutação , Fenótipo , Brotos de Planta/genética , Brotos de Planta/fisiologia , Brotos de Planta/efeitos da radiação , Caules de Planta/genética , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Plantas Geneticamente Modificadas , Transdução de Sinais
17.
Plant Physiol ; 169(3): 2006-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26395840

RESUMO

Plant species differ in response to high available manganese (Mn), but the mechanisms of sensitivity and tolerance are poorly understood. In solution culture, greater than or equal to 30 µm Mn decreased the growth of soybean (Glycine max), but white lupin (Lupinus albus), narrow-leafed lupin (Lupin angustifolius), and sunflower (Helianthus annuus) grew well at 100 µm Mn. Differences in species' tolerance to high Mn could not be explained simply by differences in root, stem, or leaf Mn status, being 8.6, 17.1, 6.8, and 9.5 mmol kg(-1) leaf fresh mass at 100 µm Mn. Furthermore, x-ray absorption near edge structure analyses identified the predominance of Mn(II), bound mostly to malate or citrate, in roots and stems of all four species. Rather, differences in tolerance were due to variations in Mn distribution and speciation within leaves. In Mn-sensitive soybean, in situ analysis of fresh leaves using x-ray fluorescence microscopy combined with x-ray absorption near edge structure showed high Mn in the veins, and manganite [Mn(III)] accumulated in necrotic lesions apparently through low Mn sequestration in vacuoles or other vesicles. In the two lupin species, most Mn accumulated in vacuoles as either soluble Mn(II) malate or citrate. In sunflower, Mn was sequestered as manganite at the base of nonglandular trichomes. Hence, tolerance to high Mn was ascribed to effective sinks for Mn in leaves, as Mn(II) within vacuoles or through oxidation of Mn(II) to Mn(III) in trichomes. These two mechanisms prevented Mn accumulation in the cytoplasm and apoplast, thereby ensuring tolerance to high Mn in the root environment.


Assuntos
Glycine max/fisiologia , Helianthus/fisiologia , Lupinus/fisiologia , Manganês/metabolismo , Meio Ambiente , Helianthus/efeitos da radiação , Luz , Lupinus/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Raízes de Plantas/fisiologia , Raízes de Plantas/efeitos da radiação , Caules de Planta/fisiologia , Caules de Planta/efeitos da radiação , Glycine max/efeitos da radiação , Síncrotrons , Espectroscopia por Absorção de Raios X
18.
Plant Physiol ; 168(2): 735-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25911529

RESUMO

Plants alter their development in response to changes in their environment. This responsiveness has proven to be a successful evolutionary trait. Here, we tested the hypothesis that two key environmental factors, light and nutrition, are integrated within the axillary bud to promote or suppress the growth of the bud into a branch. Using petunia (Petunia hybrida) as a model for vegetative branching, we manipulated both light quality (as crowding and the red-to-far-red light ratio) and phosphate availability, such that the axillary bud at node 7 varied from deeply dormant to rapidly growing. In conjunction with the phenotypic characterization, we also monitored the state of the strigolactone (SL) pathway by quantifying SL-related gene transcripts. Mutants in the SL pathway inhibit but do not abolish the branching response to these environmental signals, and neither signal is dominant over the other, suggesting that the regulation of branching in response to the environment is complex. We have isolated three new putatively SL-related TCP (for Teosinte branched1, Cycloidia, and Proliferating cell factor) genes from petunia, and have identified that these TCP-type transcription factors may have roles in the SL signaling pathway both before and after the reception of the SL signal at the bud. We show that the abundance of the receptor transcript is regulated by light quality, such that axillary buds growing in added far-red light have greatly increased receptor transcript abundance. This suggests a mechanism whereby the impact of any SL signal reaching an axillary bud is modulated by the responsiveness of these cells to the signal.


Assuntos
Meio Ambiente , Morfogênese , Petunia/crescimento & desenvolvimento , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Vias Biossintéticas/efeitos da radiação , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Luz , Dados de Sequência Molecular , Morfogênese/efeitos dos fármacos , Morfogênese/efeitos da radiação , Petunia/efeitos dos fármacos , Petunia/genética , Petunia/efeitos da radiação , Fósforo/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/efeitos da radiação , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética , Caules de Planta/efeitos da radiação , Análise de Componente Principal , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Fatores de Transcrição/metabolismo
19.
J Exp Bot ; 67(3): 961-77, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26663471

RESUMO

Identifying key performance traits is essential for elucidating crop growth processes and breeding. In Salix spp., genotypic diversity is being exploited to tailor new varieties to overcome environmental yield constraints. Process-based models can assist these efforts by identifying key parameters of yield formation for different genotype×environment (G×E) combinations. Here, four commercial willow varieties grown in contrasting environments (west and south-east UK) were intensively sampled for growth traits over two 2-year rotations. A sink-source interaction model was developed to parameterize the balance of source (carbon capture/mobilization) and sink formation (morphogenesis, carbon allocation) during growth. Global sensitivity analysis consistently identified day length for the onset of stem elongation as most important factor for yield formation, followed by various 'sink>source' controlling parameters. In coastal climates, the chilling control of budburst ranked higher compared with the more eastern climate. Sensitivity to drought, including canopy size and rooting depth, was potentially growth limiting in the south-east and west of the UK. Potential yields increased from the first to the second rotation, but less so for broad- than for narrow-leaved varieties (20 and 47%, respectively), which had established less well initially (-19%). The establishment was confounded by drought during the first rotation, affecting broad- more than narrow-leaved canopy phenotypes (-29%). The analysis emphasized quantum efficiency at low light intensity as key to assimilation; however, on average, sink parameters were more important than source parameters. The G×E pairings described with this new process model will help to identify parameters of sink-source control for future willow breeding.


Assuntos
Agricultura , Simulação por Computador , Meio Ambiente , Modelos Biológicos , Salix/crescimento & desenvolvimento , Biomassa , Calibragem , Genótipo , Luz , Conceitos Meteorológicos , Caules de Planta/anatomia & histologia , Caules de Planta/efeitos da radiação , Reprodutibilidade dos Testes , Salix/efeitos da radiação
20.
Ann Bot ; 117(1): 51-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26424785

RESUMO

BACKGROUND AND AIMS: Tiller production and survival determine final spike number, and play key roles in grain yield formation in wheat (Triticum aestivum). This study aimed to understand the genetic and physiological basis of the tillering process, and its trade-offs with other yield components, by introducing genetic variation in tillering patterns via a mapping population of wheat × spelt (Triticum spelta). METHODS: The dynamics of tillering and red/far-red ratio (R:FR) at the base of a canopy arising from neighbouring plants in a bread wheat (Triticum aestivum 'Forno') × spelt (Triticum spelta 'Oberkulmer') mapping population were measured in the field in two growing seasons. Additional thinning and shading experiments were conducted in the field and glasshouse, respectively. Yield components were analysed for all experiments, followed by identification of quantitative trait loci (QTL) associated with each trait. KEY RESULTS: Large genetic variation in tillering was observed, and more fertile shoots per plant were associated with more total shoots initiated, faster tillering rate, delayed tillering onset and cessation, and higher shoot survival. A total of 34 QTL for tillering traits were identified, and analysis of allelic effects confirmed the above associations. Low R:FR was associated with early tillering cessation, few total shoots, high infertile shoot number and shoot abortion, and these results concurred with the thinning and shading experiments. These effects probably resulted from an assimilate shortage for tiller buds or developing tillers, due to early stem elongation and enhanced stem growth induced by low R:FR. More fertile tillers normally contributed to plant yield and grain number without reducing yield and grain set of individual shoots. However, there was a decrease in grain weight, partly because of smaller carpels and fewer stem water-soluble carbohydrates at anthesis caused by pleiotropy or tight gene linkages. CONCLUSIONS: Tillering is under the control of both genetic factors and R:FR. Genetic variation in tillering and tolerance to low R:FR can be used to optimize tillering patterns for yield improvement in wheat.


Assuntos
Pão , Mapeamento Cromossômico , Cruzamentos Genéticos , Caules de Planta/anatomia & histologia , Sementes/anatomia & histologia , Triticum/anatomia & histologia , Triticum/fisiologia , Endogamia , Luz , Fenótipo , Folhas de Planta/fisiologia , Caules de Planta/efeitos da radiação , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Recombinação Genética/genética , Sementes/crescimento & desenvolvimento , Sementes/efeitos da radiação , Triticum/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA