Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 471
Filtrar
1.
Nature ; 597(7878): 698-702, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34526714

RESUMO

The development of new antibiotics to treat infections caused by drug-resistant Gram-negative pathogens is of paramount importance as antibiotic resistance continues to increase worldwide1. Here we describe a strategy for the rational design of diazabicyclooctane inhibitors of penicillin-binding proteins from Gram-negative bacteria to overcome multiple mechanisms of resistance, including ß-lactamase enzymes, stringent response and outer membrane permeation. Diazabicyclooctane inhibitors retain activity in the presence of ß-lactamases, the primary resistance mechanism associated with ß-lactam therapy in Gram-negative bacteria2,3. Although the target spectrum of an initial lead was successfully re-engineered to gain in vivo efficacy, its ability to permeate across bacterial outer membranes was insufficient for further development. Notably, the features that enhanced target potency were found to preclude compound uptake. An improved optimization strategy leveraged porin permeation properties concomitant with biochemical potency in the lead-optimization stage. This resulted in ETX0462, which has potent in vitro and in vivo activity against Pseudomonas aeruginosa plus all other Gram-negative ESKAPE pathogens, Stenotrophomonas maltophilia and biothreat pathogens. These attributes, along with a favourable preclinical safety profile, hold promise for the successful clinical development of the first novel Gram-negative chemotype to treat life-threatening antibiotic-resistant infections in more than 25 years.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/efeitos dos fármacos , Animais , Antibacterianos/química , Compostos Aza/química , Compostos Aza/farmacologia , Ciclo-Octanos/química , Ciclo-Octanos/farmacologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , beta-Lactamases
2.
J Asian Nat Prod Res ; 26(5): 604-615, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38634612

RESUMO

We established myocardial injury models in vivo and in vitro to investigate the cardioprotective effect of gomisin D obtained from Schisandra chinensis. Gomisin D significantly inhibited isoproterenol-induced apoptosis and hypertrophy in H9C2 cells. Gomisin D decreased serum BNP, ANP, CK-MB, cTn-T levels and histopathological alterations, and inhibited myocardial hypertrophy in mice. In mechanisms research, gomisin D reversed ISO-induced accumulation of intracellular ROS and Ca2+. Gomisin D further improved mitochondrial energy metabolism disorders by regulating the TCA cycle. These results demonstrated that gomisin D had a significant effect on isoproterenol-induced myocardial injury by inhibiting oxidative stress, calcium overload and improving mitochondrial energy metabolism.


Assuntos
Apoptose , Isoproterenol , Estresse Oxidativo , Compostos Policíclicos , Schisandra , Animais , Isoproterenol/farmacologia , Camundongos , Estrutura Molecular , Schisandra/química , Estresse Oxidativo/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Masculino , Espécies Reativas de Oxigênio/metabolismo , Lignanas/farmacologia , Lignanas/química , Cardiotônicos/farmacologia , Linhagem Celular , Miócitos Cardíacos/efeitos dos fármacos , Ciclo-Octanos/farmacologia , Ciclo-Octanos/química
3.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542438

RESUMO

Schisandra chinensis (Schisandraceae) is a medicinal plant widely used in traditional Chinese medicine. Under the name Wu Wei Zi, it is used to treat many diseases, especially as a stimulant, adaptogen, and hepatoprotective. Dibenzocyclooctadiene lignans are the main compounds responsible for the effect of S. chinensis. As a part of ongoing studies to identify and evaluate anti-inflammatory natural compounds, we isolated a series of dibenzocyclooctadiene lignans and evaluated their biological activity. Furthermore, we isolated new sesquiterpene 7,7-dimethyl-11-methylidenespiro[5.5]undec-2-ene-3-carboxylic acid. Selected dibenzocyclooctadiene lignans were tested to assess their anti-inflammatory potential in LPS-stimulated monocytes by monitoring their anti-NF-κB activity, antioxidant activity in CAA assay, and their effect on gap junction intercellular communication in WB-ras cells. Some S. chinensis lignans showed antioxidant activity in CAA mode and affected the gap junction intercellular communication. The anti-inflammatory activity was proven for (-)-gomisin N, (+)-γ-schisandrin, rubrisandrin A, and (-)-gomisin J.


Assuntos
Lignanas , Compostos Policíclicos , Schisandra , Lignanas/farmacologia , Ciclo-Octanos/farmacologia , Anti-Inflamatórios/farmacologia
4.
Chem Biodivers ; 20(12): e202301298, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37990607

RESUMO

Since ancient times, China has used natural medicine as the primary way to combat diseases and has a rich arsenal of natural medicines. With the progress of the times, the extraction of bioactive molecules from natural drugs has become the new development direction for natural medicines. Among the numerous natural drugs, Schisandrin C (Sch C), derived from Schisandra Chinensis (Turcz.) Baill. It has excellent potential for development and has been shown to possess various pharmacological properties, including hepatoprotective, antitumor and anti-inflammatory activities. Based on the biological properties of hepatoprotection, scholars have explored Sch C and its synthetic products in depth; some studies have shown that pentosidine has the effect of improving the symptoms of liver fibrosis and reducing the concentration of alanine transaminase (ALT) and aspartate aminotransferase (AST) in the serum of rats, which is an essential inspiration for the development of anti-liver fibrosis drugs. But more in vivo and ex vivo studies still need to be included. This paper focuses on Sch C's extraction and synthesis, biological activities and drug development progress. The future application prospects of Sch C are discussed to perfect its development work further.


Assuntos
Lignanas , Compostos Policíclicos , Schisandra , Ratos , Animais , Lignanas/farmacologia , Compostos Policíclicos/farmacologia , Ciclo-Octanos/farmacologia , Relação Estrutura-Atividade
5.
Chem Biodivers ; 20(6): e202300372, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37145919

RESUMO

From the fruits of Schisandra cauliflora, five new dimethylbutyrylated dibenzocyclooctadiene lignans, named schisandracaurins A-E, were isolated using separation and chromatographic techniques. Their structures were determined by extensive analyses of HR-ESI-MS, NMR, and ECD spectra. The schisandracaurins A-E potentially inhibited NO production in LPS-activated RAW264.7 cells with their IC50 values from 21.4 to 30.3 µM.


Assuntos
Lignanas , Schisandra , Schisandra/química , Lipopolissacarídeos/farmacologia , Estrutura Molecular , Frutas/química , Lignanas/química , Ciclo-Octanos/farmacologia , Ciclo-Octanos/análise , Ciclo-Octanos/química
6.
J Asian Nat Prod Res ; 25(1): 11-17, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35350929

RESUMO

Two new dibenzocyclooctane lignans, schisanwilsonins H (1) and I (2), together with eight known compounds gomisin J (3), wulignan A1 (4), gomisin S (5), tigloylgomisin P (6), gomisin O (7), (-)-gomisin K1 (8), rubschisantherin (9) and wuweizisu C (10) were isolated from the 95% ethanol extract of the fruits of Schisandra wilsoniana. 7 exhibited anti-HBV activity with potency against HBsAg and HBeAg secretion by 37.1% and 32.6%, respectively, at 50 µg/ml. 10 exhibited anti-HIV activity with EC50 and therapeutic index (TI) values of 2.10 µg/ml and 11.98, respectively.


Assuntos
Lignanas , Schisandra , Ciclo-Octanos/farmacologia , Frutas , Lignanas/farmacologia
7.
J Antimicrob Chemother ; 77(7): 1916-1922, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35368056

RESUMO

OBJECTIVES: Combinations of PBP3-active ß-lactams with developmental diazabicyclooctanes (DBOs), e.g. zidebactam, remain active against many MBL producers via an enhancer effect. We explored how this activity is affected by inoculum. MATERIALS AND METHODS: MICs of zidebactam and its cefepime and ertapenem combinations (WCK 5222 and WCK 6777, respectively) were determined by BSAC agar dilution at inocula from 3-6 × 103 to 3-6 × 105 cfu/spot. Isolates, principally Klebsiella spp., were chosen as having previously tested resistant to zidebactam or its cefepime combination, and by ß-lactamase type. RESULTS: MICs of zidebactam, tested alone, were strongly inoculum dependent regardless of ß-lactamase type; MICs of its cefepime and ertapenem combinations likewise were strongly inoculum dependent-rising ≥32-fold across the inoculum range tested-but only for MBL producers. Combination MICs for isolates with non-MBLs, including those with OXA-48 (where the enhancer effect remains critical for ertapenem/zidebactam) were much less inoculum dependent, particularly for cefepime/zidebactam. MBL producers frequently moved between putative 'susceptible' (MIC ≤ 8 + 8 mg/L) and 'resistant' (MIC > 8 + 8 mg/L) categories according to whether the inoculum was at the high or low end of BSAC's acceptable (1-4 × 104 cfu/spot) range. CONCLUSIONS: The activity of zidebactam combinations against MBL producers, which strongly depends on the enhancer effect, is inoculum dependent. Animal data suggest consistent in vivo activity even in high-inoculum pneumonia models. Contingent on this being supported by clinical experience, the combination behaviour may be best represented by the MICs obtained at the lower end of BSAC's inoculum range.


Assuntos
Antibacterianos , beta-Lactamases , Ágar , Animais , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Cefepima/farmacologia , Cefalosporinas , Ciclo-Octanos/farmacologia , Ertapenem/farmacologia , Testes de Sensibilidade Microbiana , Piperidinas
8.
Phytother Res ; 36(6): 2375-2393, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35384105

RESUMO

Schisandrin A (SA) is a bioactive lignan isolated from the traditional Chinese medicine Fructus schisandrae chinensis. In recent years, it has attracted extensive attention because of its multiple pharmacological activities. This review is the first to provide an overview of SA-related pharmacological effects and pharmacokinetic characteristics. The results showed that SA had many pharmacological effects, such as antiinflammation, anticancer, hepatoprotection, antioxidation, neuroprotection, antidiabetes mellitus, and musculoskeletal protection. Among them, NF-κB, Nrf2, MAPK, NLRP3, PI3K/AKT, Wnt, miRNA, P-gp, CYP450, PXR, and other signal transduction pathways are involved. Pharmacokinetic studies showed that SA had good pharmacokinetic characteristics, but these were affected by other factors, such as drugs or hepatic fibrosis. Thus, SA has a variety of pharmacological effects and good pharmacokinetic characteristics, which is worthy of further research and development in the future.


Assuntos
Medicamentos de Ervas Chinesas , Lignanas , Schisandra , Ciclo-Octanos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Lignanas/farmacologia , Fosfatidilinositol 3-Quinases , Compostos Policíclicos
9.
Toxicol Mech Methods ; 32(8): 580-587, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35321622

RESUMO

The gastrointestinal side effects of mycophenolic acid affect its efficacy in kidney transplant patients, which may be due to its toxicity to the intestinal epithelial mechanical barrier, including intestinal epithelial cell apoptosis and destruction of tight junctions. The toxicity mechanism of mycophenolic acid is related to oxidative stress-mediated, the activation of mitogen-activated protein kinases (MAPK). Schisandrin A (Sch A), one of the main active components of the Schisandra chinensis, can protect intestinal epithelial cells from deoxynivalenol-induced cytotoxicity and oxidative damage by antioxidant effects. The aim of this study was to investigate the protective effect and potential mechanism of Sch A on mycophenolic acid-induced damage in intestinal epithelial cell. The results showed that Sch A significantly reversed the mycophenolic acid-induced cell viability reduction, restored the expression of tight junction protein ZO-1, occludin, and reduced cell apoptosis. In addition, Sch A inhibited mycophenolic acid-mediated MAPK activation and reactive oxygen species (ROS) increase. Collectively, our study showed that Sch A protected intestinal epithelial cells from mycophenolic acid intestinal toxicity, at least in part, by reducing oxidative stress and inhibiting MAPK signaling pathway.


Assuntos
Ciclo-Octanos , Ácido Micofenólico , Apoptose , Ciclo-Octanos/metabolismo , Ciclo-Octanos/farmacologia , Humanos , Mucosa Intestinal , Lignanas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ácido Micofenólico/metabolismo , Ácido Micofenólico/toxicidade , Estresse Oxidativo , Compostos Policíclicos , Junções Íntimas/metabolismo
10.
J Am Chem Soc ; 143(22): 8391-8401, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34029474

RESUMO

Precise and lasting immune checkpoint blockade (ICB) therapy with high objective response rate remains a significant challenge in clinical trials. We thus report the development of an aptamer-based logic computing reaction to covalently conjugate immune checkpoint antagonizing aptamers (e.g., aPDL1 aptamer) on the surface of cancer cells, achieving effective and sustained ICB therapy without the need for antibodies. Specifically, azides were metabolically labeled on the cell-surface glycoproteins as "chemical receptors", enabling cyclooctyne-coupling aPDL1 aptamers to achieve aptamer-based logic computing-mediated azides/cyclooctynes-based bioorthogonal reaction. In stepwise fashion, PDL1 plus azide-bearing glycoproteins are expressed on cells and become multiple inputs in accordance with Boolean logic. Then, if the "AND" conditions of the algorithm are met, cyclooctyne-coupling aptamers are conjugated on the living cell surface, significantly prolonging overall mouse survival by triggering a precise and sustained T cell-mediated antitumor immunotherapy, otherwise not. Our findings indicate that DNA logic computing-mediated cyclooctyne/azide-based bioorthogonal reaction can improve the precision and robustness of ICB therapy, thereby potentially improving the objective response rate.


Assuntos
Aptâmeros de Nucleotídeos/antagonistas & inibidores , Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/farmacologia , Algoritmos , Animais , Aptâmeros de Nucleotídeos/imunologia , Azidas/química , Azidas/farmacologia , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Ciclo-Octanos/química , Ciclo-Octanos/farmacologia , Humanos , Inibidores de Checkpoint Imunológico/química , Imunoterapia , Camundongos
11.
Pharmacol Res ; 166: 105459, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545313

RESUMO

Schisandrin B (Sch B) is the major active constituent of the traditional Chinese medicine Schisandra chinensis and has anti-inflammatory activity, but the target of Sch B remains unclear. T helper 17 (TH17) cells have been involved in the pathogenesis of many autoimmune and inflammatory diseases. Here, we showed that Sch B could decrease IL-17A production of CD4+ T cells by targeting STAT3 in vitro. Importantly, Sch B has therapeutic effects on DSS-induced acute and chronic colitis, CD4+CD45RBhigh T cell-induced colitis. Furthermore, we identified TH17 cells as the direct target of Sch B for mediating its anti-inflammatory activity. Sch B could serve as a lead for developing new therapeutics against TH17 cells or IL-17A cytokine-driven diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Lignanas/uso terapêutico , Compostos Policíclicos/uso terapêutico , Células Th17/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Ciclo-Octanos/farmacologia , Ciclo-Octanos/uso terapêutico , Feminino , Humanos , Doenças Inflamatórias Intestinais/patologia , Lignanas/farmacologia , Camundongos Endogâmicos C57BL , Compostos Policíclicos/farmacologia , Células Th17/patologia
12.
Bioorg Med Chem ; 46: 116391, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34488020

RESUMO

Amyloid aggregates of proteins are known to be involved in various diseases such as Alzheimer's disease (AD). It is therefore speculated that the inhibition of amyloid formation can play an important role in the prevention of various diseases involving amyloids. Recently, we have found that acrolein reacts with polyamines, such as spermine, and produces 1,5-diazacyclooctane, such as cyclic spermine (cSPM). cSPM could suppress the aggregation of amyloid ß 1-40 (Aß40), one of the causative proteins of AD. This result suggests the potential inhibitory effect of cSPM against Aß 1-42 (Aß42) and other amyloid protein aggregation which are the main pathological features of AD and other diseases. However, the effect on the aggregation of such proteins remains unclear. In this study, the effect of cSPM on the amyloid formation of Aß42, amylin, and insulin was investigated. These three amyloidogenic proteins forming amyloids under physiological conditions (pH 7.4 and 37℃) served as model and are thought to be the causative proteins of AD, type 2 diabetes, and insulin-derived amyloidosis, respectively. Our results indicate that cSPM can suppress the amyloid aggregation of these proteins and reduce cytotoxicity. This study contributes to a better understanding of means to potentially counteract diseases by the means of polyamine and acrolein.


Assuntos
Acroleína/farmacologia , Compostos Aza/farmacologia , Ciclo-Octanos/farmacologia , Espermina/farmacologia , Acroleína/química , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Compostos Aza/síntese química , Compostos Aza/química , Ciclo-Octanos/síntese química , Ciclo-Octanos/química , Relação Dose-Resposta a Droga , Humanos , Insulina/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/antagonistas & inibidores , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Estrutura Molecular , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Espermina/química , Relação Estrutura-Atividade
13.
Cell Mol Biol (Noisy-le-grand) ; 67(2): 25-32, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34817341

RESUMO

There has been an exponential growth in the field of molecular oncology and cutting-edge research has enabled us to develop a better understanding of therapeutically challenging nature of cancer. Based on the mechanistic insights garnered from decades of research, puzzling mysteries of multifaceted nature of cancer have been solved to a greater extent. Our rapidly evolving knowledge about deregulated oncogenic cell signaling pathways has allowed us to dissect different oncogenic transduction cascades which play critical role in cancer onset, progression and metastasis. Pharmacological targeting of deregulated pathways has attracted greater than ever attention in the recent years. Henceforth, discovery and identification of high-quality biologically active chemicals and products is gaining considerable momentum. There has been an explosion in the dimension of natural product research because of tremendous potential of chemopreventive and pharmaceutical significance of natural products. Schisandrin is mainly obtained from Schisandra chinensis. Schisandrin has been shown to be effective against different cancers because of its ability to inhibit/prevent cancer via modulation of different cell signaling pathways. Importantly, regulation of non-coding RNAs by schisandrin is an exciting area of research that still needs detailed and comprehensive research.   However, we still have unresolved questions about pharmacological properties of schisandrin mainly in context of its regulatory role in TGF/SMAD, SHH/GLI, NOTCH and Hippo pathways.


Assuntos
Ciclo-Octanos/uso terapêutico , Lignanas/uso terapêutico , Neoplasias/prevenção & controle , Compostos Policíclicos/uso terapêutico , Schisandra/química , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Ensaios Clínicos como Assunto , Ciclo-Octanos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lignanas/farmacologia , Neoplasias/genética , Neoplasias/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Compostos Policíclicos/farmacologia , Mapas de Interação de Proteínas/efeitos dos fármacos , Mapas de Interação de Proteínas/genética , Resultado do Tratamento
14.
Bioorg Chem ; 115: 105277, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34426147

RESUMO

Phytochemical investigation on the roots of Kadsura coccinea led to the isolation five previously unknown dibenzocyclooctadiene lignans, named heilaohusuins A-E (1-5). Their structures determined by NMR spectroscopy, HR-ESI-MS, and ECD spectra. Hepatoprotection effects of a series of dibenzocyclooctadiene derivatives (1-68) were investigated against acetaminophen (APAP) induced HepG2 cells. Compounds 2, 10, 13, 21, 32, 41, 46, and 49 showed remarkable protective effects, increasing the viabilities to > 52.2% (bicyclol, 52.1 ± 1.3%) at 10 µM. The structure-activity relationships (SAR) for hepatoprotective activity were summarized, according to the activity results of dibenzocyclooctadiene derivatives. Furthermore, we found that one new dibenzocyclooctadiene lignan heilaohusuin B attenuates hepatotoxicity, the mechanism might be closely correlated with oxidative stress inhibition via activating the Nrf2 pathway.


Assuntos
Acetaminofen/antagonistas & inibidores , Ciclo-Octanos/farmacologia , Kadsura/química , Lignanas/farmacologia , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Substâncias Protetoras/farmacologia , Acetaminofen/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Octanos/síntese química , Ciclo-Octanos/química , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Lignanas/síntese química , Lignanas/química , Estrutura Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/síntese química , Substâncias Protetoras/química , Relação Estrutura-Atividade
15.
Biotechnol Appl Biochem ; 68(1): 52-59, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31985079

RESUMO

The purpose of the present study was to evaluate the antidepressant effect of deoxyschizandrin (DEO) in chronic unpredictable mild stress (CUMS)-induced mice. The mice were subjected to CUMS paradigm for 8 weeks. From the sixth week, the mice were intragastrically treated with DEO once daily for continuous 3 weeks. The behavior tests including sucrose preference test (SPT), forced swimming test (FST), tail suspension test (TST), and open field test were conducted. Additionally, the expressions of TLR4, MyD88, TRAF6, p-NF-κBp65, NLRP3, cleaved caspase-1, cleaved IL-1ß, GluR, and PSD95 in hippocampus were detected by western blot. The concentrations of IL-6 and TNF-α in hippocampus were determined by enzyme linked immune sorbent assay (ELISA). The dendritic spine density was observed by Golgi-Cox staining. As a result, the treatment with DEO relieved anhedonia in SPT, and reduced immobile duration in FST and TST. DEO treatment effectively attenuated the CUMS-caused alterations of TLR4, MyD88, TRAF6, p-NF-κBp65, NLRP3, cleaved caspase-1, cleaved IL-1ß, GluR, and PSD95. Furthermore, DEO could reduce the hippocampal inflammatory cytokine content and increase the density of dendritic spine. In conclusion, the present work indicated that DEO exhibited antidepressant effect on CUMS-induced depressive mice, which was possible due to the TLR4/NF-κB/NLRP3 pathway and the amelioration of dendritic spine density through GluR/PSD95 cascade.


Assuntos
Antidepressivos/farmacologia , Ciclo-Octanos/farmacologia , Depressão , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo , Lignanas/farmacologia , Compostos Policíclicos/farmacologia , Estresse Psicológico , Animais , Doença Crônica , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Camundongos , Estresse Psicológico/complicações , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
16.
Biosci Biotechnol Biochem ; 85(4): 834-841, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33580697

RESUMO

Schisandrin B (Sch B), a lignan compound in Schisandra, possesses antioxidant, anti-inflammatory, and antiobesity activities. The effect of Sch B on melanogenesis and molecular mechanisms are still unknown. Therefore, we aimed to investigate the antimelanogenic effects of Sch B on α-melanocyte-stimulating hormone-induced B16F10 cells and elucidate the underlying molecular mechanisms. We found that Sch B significantly suppressed melanin content and mushroom tyrosinase (TYR) activity. Sch B treatment decreased the expression of TYR, melanocyte-inducing transcription factor (MITF), tyrosinase-related protein (TRP) 1, and TRP2. Moreover, Sch B modulated the phosphorylation of p38, extracellular-regulated protein kinase, c-Jun N-terminal kinase, and cAMP-response element binding protein (CREB), implying that these pathways may be involved in suppressing melanogenesis. Furthermore, we found that Sch B decreased melanogenesis by downregulating MITF and melanogenic enzymes via MAPK and CREB pathways. Overall, these findings indicate that Sch B has the potential use in whitening.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Lignanas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Melaninas/biossíntese , Melanoma Experimental/patologia , Compostos Policíclicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , alfa-MSH/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Ciclo-Octanos/farmacologia , Camundongos
17.
Pharmacology ; 106(3-4): 177-188, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33486482

RESUMO

INTRODUCTION: Although oxidative stress has been demonstrated to mediate acute ethanol-induced changes in autophagy in the heart, the precise mechanism behind redox regulation in acute ethanol heart disease remains largely unknown. METHODS: Wild-type C57BL/6 mice were intraperitoneally injected with ethanol (3 g/kg/day) for 3 consecutive days. The effects of ethanol on cultured primary cardiomyocytes and H9c2 myoblasts were also studied in vitro. Levels of autophagic flux, cardiac apoptosis and function, reactive oxygen species (ROS) accumulation, NOX4, and NOX2 were examined. The NOX4 gene was knocked down with NOX4 siRNA. RESULTS: In this study, we demonstrated that schisandrin B inhibited acute ethanol-induced autophagy and sequent apoptosis. In addition, schisandrin B treatment improved cardiac function in ethanol-treated mice. Furthermore, NOX4 protein expression was increased during acute ethanol exposure, and the upregulation of NOX4 was significantly inhibited by schisandrin B treatment. The knockdown of NOX4 prevented ROS accumulation, cell autophagy, and apoptosis. CONCLUSION: These results highlight that NOX4 is a critical mediator of ROS and elaborate the role of the NOX4/ROS axis in the effect of schisandrin B on autophagy and autophagy-mediated apoptosis in acute ethanol exposure, which suggests a therapeutic strategy for acute alcoholic cardiomyopathy.


Assuntos
Autofagia/efeitos dos fármacos , Cardiomiopatia Alcoólica/prevenção & controle , Traumatismos Cardíacos/prevenção & controle , Lignanas/farmacologia , NADPH Oxidase 4/metabolismo , Compostos Policíclicos/farmacologia , Substâncias Protetoras/farmacologia , Animais , Apoptose/efeitos dos fármacos , Autofagia/genética , Ciclo-Octanos/farmacologia , Ciclo-Octanos/uso terapêutico , Regulação para Baixo , Etanol/toxicidade , Técnicas de Silenciamento de Genes , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/metabolismo , Lignanas/uso terapêutico , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , NADPH Oxidase 4/antagonistas & inibidores , NADPH Oxidase 4/genética , Compostos Policíclicos/uso terapêutico , Cultura Primária de Células , Substâncias Protetoras/uso terapêutico , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Pharmacology ; 106(5-6): 254-264, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33691319

RESUMO

INTRODUCTION: Schisandrin which is derived from Schisandra chinensis has shown multiple pharmacological effects on various diseases including Alzheimer's disease (AD). It is demonstrated that mitochondrial dysfunction plays an essential role in the pathogenesis of neurodegenerative disorders. OBJECTIVE: Our study aims to investigate the effects of schisandrin on mitochondrial functions and metabolisms in primary hippocampal neurons. METHODS: In our study, rat primary hippocampal neurons were isolated and treated with indicated dose of amyloid ß1-42 (Aß1-42) oligomer to establish a cell model of AD in vitro. Schisandrin (2 µg/mL) was further subjected to test its effects on mitochondrial function, energy metabolism, mitochondrial biogenesis, and dynamics in the Aß1-42 oligomer-treated neurons. RESULTS AND CONCLUSIONS: Our findings indicated that schisandrin significantly alleviated the Aß1-42 oligomer-induced loss of mitochondrial membrane potential and impaired cytochrome c oxidase activity. Additionally, the opening of mitochondrial permeability transition pore and release of cytochrome c were highly restricted with schisandrin treatment. Alterations in cell viability, ATP production, citrate synthase activity, and the expressions of glycolysis-related enzymes demonstrated the relief of defective energy metabolism in Aß-treated neurons after the treatment of schisandrin. For mitochondrial biogenesis, elevated expression of peroxisome proliferator-activated receptor γ coactivator along with promoted mitochondrial mass was found in schisandrin-treated cells. The imbalance in the cycle of fusion and fission was also remarkably restored by schisandrin. In summary, this study provides novel mechanisms for the protective effect of schisandrin on mitochondria-related functions.


Assuntos
Ciclo-Octanos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Lignanas/farmacologia , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Compostos Policíclicos/farmacologia , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/toxicidade , Animais , Animais Recém-Nascidos , Citocromos c/antagonistas & inibidores , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Modelos Biológicos , Biogênese de Organelas , Fragmentos de Peptídeos/toxicidade , Cultura Primária de Células , Ratos Sprague-Dawley
19.
Immunopharmacol Immunotoxicol ; 43(2): 212-222, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33588680

RESUMO

Aim: The present study was aimed to evaluate the anxiolytic and antidepressant-like effects of schizandrin (from Schisandra chinensis (Turcz.) Baill. which is a functional food) against chronic liver injury in mice.Methods: Chronic liver injury was induced by the treatment of d-galactose (d-GaIN, 200 mg/kg, s.c.) for 8 weeks.Results: Administration of schizandrin (30 mg/kg, i.g.) significantly ameliorated d-GaIN-induced anxiety and depression-like behavior as evident from the results of open field test (OFT), sucrose preference test (SPT), tail suspension test (TST), forced swimming test (FST), novelty-suppressed feeding test (NSFT), and elevated plus maze (EPM) test. In addition, schizandrin remarkably reduced the oxidative stress due to its potential to enhance the levels of decreased CAT, GSH/GSSG, SOD, and increased MDA in peripheral and brain, the antioxidant activities might be related with the Nrf2/HO-1 pathway. Furthermore, schizandrin could dramatically inhibit the neuroinflammation in mice by reducing pro-inflammatory cytokines (TNF-α, IL-1ß, and IL-6) through regulating NF-κB/NLRP3/Iba-1 signaling. Besides, the elevated levels of ammonia, AST, and ALT were significantly reduced by schizandrin.Conclusion: The present data revealed that hyperammonemia produced due to liver injury-induced oxidative stress and neuroinflammation in the hippocampus and prefrontal cortex resulting in anxiety and depression were improved by schizandrin.


Assuntos
Ansiedade/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Ciclo-Octanos/uso terapêutico , Depressão/tratamento farmacológico , Mediadores da Inflamação/antagonistas & inibidores , Lignanas/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Compostos Policíclicos/uso terapêutico , Animais , Ansiedade/induzido quimicamente , Ansiedade/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Ciclo-Octanos/farmacologia , Depressão/induzido quimicamente , Depressão/metabolismo , Galactose/toxicidade , Mediadores da Inflamação/metabolismo , Lignanas/farmacologia , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/fisiologia , Compostos Policíclicos/farmacologia , Schisandra
20.
Drug Dev Ind Pharm ; 47(1): 100-112, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33295825

RESUMO

Gastric cancer is one of the leading causes of cancer-related death worldwide with a poor prognosis. Gastric cancer is usually treated with surgery and chemotherapy, accompanied by a high rate of metastasis and recurrence. In this paper, R8 (RRRRRRRR) modified vinorelbine plus schisandrin B liposomes had been successfully constructed for treating gastric cancer. In the liposomes, R8 was used to enhance the intracellular uptake, schisandrin B was incorporated into liposomes for inhibiting tumor cells metastasis, and vinorelbine was encapsulated into liposomes as antitumor drugs. Studies were performed on BGC-823 cells in vitro and were verified in the BGC-823 cell xenografts nude mice in vivo. Results in vitro demonstrated that the targeting liposomes could induce BGC-823 cells apoptosis, inhibit the metastasis of tumor cells, and increase targeting effects to tumor cells. Meanwhile, action mechanism studies showed that the targeting liposomes could down-regulate VEGF, VE-Cad, HIF-1a, PI3K, MMP-2, and FAK to inhibit tumor metastasis. In vivo results exhibited that the targeting liposomes displayed an obvious antitumor efficacy by accumulating selectively in tumor site and induce tumor cell apoptosis. Hence, R8 modified vinorelbine plus schisandrin B liposomes might provide a safe and efficient therapy strategy for gastric cancer.


Assuntos
Lipossomos , Neoplasias Gástricas , Vinorelbina/química , Animais , Apoptose , Linhagem Celular Tumoral , Ciclo-Octanos/química , Ciclo-Octanos/farmacologia , Lignanas/química , Lignanas/farmacologia , Camundongos , Camundongos Nus , Compostos Policíclicos/química , Compostos Policíclicos/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Vinorelbina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA