Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biophys J ; 123(16): 2594-2603, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38937973

RESUMO

Cytochromes c'-α are nitric oxide (NO)-binding heme proteins derived from bacteria that can thrive in a wide range of temperature environments. Studies of mesophilic Alcaligenes xylosoxidans cytochrome c'-α (AxCP-α) have revealed an unusual NO-binding mechanism involving both heme faces, in which NO first binds to form a distal hexa-coordinate Fe(II)-NO (6cNO) intermediate and then displaces the proximal His to form a proximal penta-coordinate Fe(II)-NO (5cNO) final product. Here, we characterize a thermally stable cytochrome c'-α from thermophilic Hydrogenophilus thermoluteolus (PhCP-α) to understand how protein thermal stability affects NO binding. Electron paramagnetic and resonance Raman spectroscopies reveal the formation of a PhCP-α 5cNO product, with time-resolved (stopped-flow) UV-vis absorbance indicating the involvement of a 6cNO intermediate. Relative to AxCP-α, the rates of 6cNO and 5cNO formation in PhCP-α are ∼11- and ∼13-fold lower, respectively. Notably, x-ray crystal structures of PhCP-α in the presence and absence of NO suggest that the sluggish formation of the proximal 5cNO product results from conformational rigidity: the Arg-132 residue (adjacent to the proximal His ligand) is held in place by a salt bridge between Arg-75 and Glu-135 (an interaction not present in AxCP-α or a psychrophilic counterpart). Overall, our data provide fresh insights into structural factors controlling NO binding in heme proteins, including 5cNO complexes relevant to eukaryotic NO sensors.


Assuntos
Citocromos c' , Óxido Nítrico , Ligação Proteica , Óxido Nítrico/metabolismo , Óxido Nítrico/química , Citocromos c'/química , Citocromos c'/metabolismo , Conformação Proteica , Hydrogenophilaceae/enzimologia , Hydrogenophilaceae/metabolismo , Hydrogenophilaceae/química , Temperatura , Modelos Moleculares , Cinética
2.
J Struct Biol ; 215(4): 108031, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37758155

RESUMO

Two homologous cytochromes c', SBCP and SVCP, from deep-sea Shewanella benthica and Shewanella violacea respectively exhibit only nine surface amino acid substitutions, along with one at the N-terminus. Despite the small sequence difference, SBCP is thermally more stable than SVCP. Here, we examined the thermal stability of SBCP variants, each containing one of the nine substituted residues in SVCP, and found that the SBCP K87V variant was the most destabilized. We then determined the X-ray crystal structure of the SBCP K87V variant at a resolution of 2.1 Å. The variant retains a four-helix bundle structure similar to the wild-type, but notable differences are observed in the hydration structure around the mutation site. Instead of forming of the intrahelical salt bridge between Lys-87 and Asp-91 in the wild-type, a clathrate-like hydration around Val-87 through a hydrogen bond network with the nearby amino acid residues is observed. This network potentially enhances the ordering of surrounding water molecules, leading to an entropic destabilization of the protein. These results suggest that the unfavorable hydrophobic hydration environment around Val-87 and the inability to form the Asp-91-mediated salt bridge contribute to the observed difference in stability between SBCP and SVCP. These findings will be useful in future protein engineering for controlling protein stability through the manipulation of surface intrahelical salt bridges.


Assuntos
Citocromos c' , Citocromos c , Citocromos c/química , Citocromos c/genética , Citocromos c/metabolismo , Citocromos c'/metabolismo , Conformação Proteica , Estabilidade Proteica
3.
Biosci Biotechnol Biochem ; 85(8): 1846-1852, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34124760

RESUMO

Hydrogenophilus thermoluteolus, Thermochromatium tepidum, and Allochromatium vinosum, which grow optimally at 52, 49, and 25 °C, respectively, have homologous cytochromes c' (PHCP, TTCP, and AVCP, respectively) exhibiting at least 50% amino acid sequence identity. Here, the thermal stability of the recombinant TTCP protein was first confirmed to be between those of PHCP and AVCP. Structure comparison of the 3 proteins and a mutagenesis study on TTCP revealed that hydrogen bonds and hydrophobic interactions between the heme and amino acid residues were responsible for their stability differences. In addition, PHCP, TTCP, and AVCP and their variants with altered stability similarly bound nitric oxide and carbon oxide, but not oxygen. Therefore, the thermal stability of TTCP together with PHCP and AVCP can be tuned through specific interactions around the heme without affecting their gas-binding function. These cytochromes c' will be useful as specific gas sensor proteins exhibiting a wide thermal stability range.


Assuntos
Proteínas de Bactérias/metabolismo , Chromatiaceae/enzimologia , Citocromos c'/metabolismo , Gases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Chromatiaceae/crescimento & desenvolvimento , Dicroísmo Circular , Cristalografia por Raios X , Citocromos c'/química , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura
4.
Biosci Biotechnol Biochem ; 85(5): 1121-1127, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33686411

RESUMO

Cytochrome c' is a nitric oxide (NO)-binding heme protein found in Gram negative bacteria. The thermal stability of psychrophilic Shewanella violacea cytochrome c' (SVCP) is lower than those of its homologues from other 2 psychrophilic Shewanella species, indicating that thermal destabilization mechanism for low-temperature adaptation accumulates in SVCP. In order to understand this mechanism at the amino acid level, here the stability and function of SVCP variants, modeled using the 2 homologues, were examined. The variants exhibited increased stability, and they bound NO similar to the wild type. The vulnerability as to the SVCP stability could be attributed to less hydrogen bond at the subunit interface, more flexible loop structure, and less salt bridge on the protein surface, which appear to be its destabilization mechanism. This study provides an example for controlling stability without spoiling function in psychrophilic proteins.


Assuntos
Proteínas de Bactérias/química , Citocromos c'/química , Mutação , Óxido Nítrico/química , Subunidades Proteicas/química , Shewanella/química , Sequência de Aminoácidos , Organismos Aquáticos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Temperatura Baixa , Citocromos c'/genética , Citocromos c'/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Óxido Nítrico/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Shewanella/enzimologia , Shewanella/genética
5.
Photosynth Res ; 124(1): 19-29, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25519852

RESUMO

A soluble cytochrome (Cyt) c' from thermophilic purple sulfur photosynthetic bacterium Thermochromatium (Tch.) tepidum exhibits marked thermal tolerance compared with that from the closely related mesophilic counterpart Allochromatium vinosum. Here, we focused on the difference in the C-terminal region of the two Cyts c' and examined the effects of D131 and R129 mutations on the thermal stability and local heme environment of Cyt c' by differential scanning calorimetry (DSC) and resonance Raman (RR) spectroscopy. In the oxidized forms, D131K and D131G mutants exhibited denaturing temperatures significantly lower than that of the recombinant control Cyt c'. In contrast, R129K and R129A mutants denatured at nearly identical temperatures with the control Cyt c', indicating that the C-terminal D131 is an important residue maintaining the enhanced thermal stability of Tch. tepidum Cyt c'. The control Cyt c' and all of the mutants increased their thermal stability upon the reduction. Interestingly, D131K exhibited narrow DSC curves and unusual thermodynamic parameters in both redox states. The RR spectra of the control Cyt c' exhibited characteristic bands at 1,635 and 1,625 cm(-1), ascribed to intermediate spin (IS) and high spin (HS) states, respectively. The IS/HS distribution was differently affected by the D131 and R129 mutations and pH changes. Furthermore, R129 mutants suggested the lowering of their redox potentials. These results strongly indicate that the D131 and R129 residues play significant roles in maintaining the thermal stability and modulating the local heme environment of Tch. tepidum Cyt c'.


Assuntos
Chromatiaceae/metabolismo , Citocromos c'/química , Citocromos c'/metabolismo , Heme/metabolismo , Temperatura , Varredura Diferencial de Calorimetria , Cristalografia por Raios X , Proteínas Mutantes/metabolismo , Desnaturação Proteica , Estabilidade Proteica , Análise Espectral Raman , Relação Estrutura-Atividade
6.
J Biol Inorg Chem ; 20(4): 675-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25792378

RESUMO

The cytochromes c' (CYTcp) are found in denitrifying, methanotrophic and photosynthetic bacteria. These proteins are able to form stable adducts with CO and NO but not with O2. The binding of NO to CYTcp currently provides the best structural model for the NO activation mechanism of soluble guanylate cyclase. Ligand binding in CYTcps has been shown to be highly dependent on residues in both the proximal and distal heme pockets. Group 1 CYTcps typically have a phenylalanine residue positioned close to the distal face of heme, while for group 2, this residue is typically leucine. We have structurally, spectroscopically and kinetically characterised the CYTcp from Shewanella frigidimarina (SFCP), a protein that has a distal phenylalanine residue and a lysine in the proximal pocket in place of the more common arginine. Each monomer of the SFCP dimer folds as a 4-alpha-helical bundle in a similar manner to CYTcps previously characterised. SFCP exhibits biphasic binding kinetics for both NO and CO as a result of the high level of steric hindrance from the aromatic side chain of residue Phe 16. The binding of distal ligands is thus controlled by the conformation of the phenylalanine ring. Only a proximal 5-coordinate NO adduct, confirmed by structural data, is observed with no detectable hexacoordinate distal NO adduct.


Assuntos
Monóxido de Carbono/química , Citocromos c'/química , Óxido Nítrico/química , Sítios de Ligação , Monóxido de Carbono/metabolismo , Citocromos c'/metabolismo , Conformação Molecular , Óxido Nítrico/metabolismo , Shewanella/enzimologia
7.
Proc Natl Acad Sci U S A ; 108(38): 15780-5, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21900609

RESUMO

Carbon monoxide (CO) is a product of haem metabolism and organisms must evolve strategies to prevent endogenous CO poisoning of haemoproteins. We show that energy costs associated with conformational changes play a key role in preventing irreversible CO binding. AxCYTcp is a member of a family of haem proteins that form stable 5c-NO and 6c-CO complexes but do not form O(2) complexes. Structure of the AxCYTcp-CO complex at 1.25 Å resolution shows that CO binds in two conformations moderated by the extent of displacement of the distal residue Leu16 toward the haem 7-propionate. The presence of two CO conformations is confirmed by cryogenic resonance Raman data. The preferred linear Fe-C-O arrangement (170 ± 8°) is accompanied by a flip of the propionate from the distal to proximal face of the haem. In the second conformation, the Fe-C-O unit is bent (158 ± 8°) with no flip of propionate. The energetic cost of the CO-induced Leu-propionate movements is reflected in a 600 mV (57.9 kJ mol(-1)) decrease in haem potential, a value in good agreement with density functional theory calculations. Substitution of Leu by Ala or Gly (structures determined at 1.03 and 1.04 Å resolutions) resulted in a haem site that binds CO in the linear mode only and where no significant change in redox potential is observed. Remarkably, these variants were isolated as ferrous 6c-CO complexes, attributable to the observed eight orders of magnitude increase in affinity for CO, including an approximately 10,000-fold decrease in the rate of dissociation. These new findings have wide implications for preventing CO poisoning of gas-binding haem proteins.


Assuntos
Proteínas de Bactérias/química , Monóxido de Carbono/química , Citocromos c'/química , Conformação Proteica , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Monóxido de Carbono/metabolismo , Intoxicação por Monóxido de Carbono/metabolismo , Intoxicação por Monóxido de Carbono/prevenção & controle , Cristalização , Cristalografia por Raios X , Citocromos c'/genética , Citocromos c'/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Heme/química , Heme/metabolismo , Humanos , Cinética , Modelos Químicos , Modelos Moleculares , Mutação , Oxirredução , Ligação Proteica , Análise Espectral Raman
8.
Chem Biodivers ; 10(9): 1574-88, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24078591

RESUMO

Random-acceleration molecular-dynamics (RAMD) simulations with models of homodimeric 6-ligated distal-NO and 5-ligated proximal-NO cytochrome c' complexes, in TIP3 H2 O, showed two distinct, non-intercommunicating worlds. In the framework of a long cavity formed by four protein helices with heme at one extremity, NO was observed to follow different pathways with the two complexes to reach the solvent. With the 6-ligated complex, NO was observed to progress by exploiting protein internal channels created by thermal fluctuations, and be temporarily trapped into binding pockets before reaching the preferred gate at the heme end of the cavity. In contrast, with the 5-ligated complex, NO was observed to surface the solvent-exposed helix 7, up to a gate at the other extremity of the protein, only occasionally finding an earlier, direct way out toward the solvent. That only bulk NO gets involved in forming the 5-ligated proximal-NO complex is in agreement with previous experimental observations, while the occurrence of binding pockets suggests that also reservoir NO might play a role with the distal-NO complex.


Assuntos
Citocromos c'/química , Simulação de Dinâmica Molecular , Alcaligenes/metabolismo , Sítios de Ligação , Citocromos c'/metabolismo , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Estrutura Terciária de Proteína
9.
Eur Heart J ; 31(6): 728-36, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19933281

RESUMO

AIMS: We examined the impact of enterovirus (EV) cardiac replication activity on the endomyocardial mitochondrial pathway in patients with acute myocarditis. METHODS AND RESULTS: Levels of apoptotic cardiomyocytes were determined by TUNEL and ligation-mediated polymerase chain reaction (PCR) assays and EV replication activity was assessed by immunostaining of EV VP1 capsid protein in ventricular myocytes of patients with acute myocarditis (n = 25), and healthy heart controls (n = 15). Ratio of cytosolic/mitochondrial cytochrome c concentrations was determined by ELISA assay, levels of active caspase-9 were determined by western blot analysis and Bax/Bcl2 mRNA ratio was assessed by real-time reverse transcription-polymerase chain reaction (RT-PCR) in the same cardiac tissues. Patients with EV-associated acute myocarditis (n = 15) exhibited a significantly higher number of apoptotic cardiomyocytes than those with non-EV-associated acute myocarditis (n = 10) and controls (n = 15) (P < 0.001). Endomyocardial ratio of cytosolic/mitochondrial cytochrome c concentrations and levels of active caspase-9 protein were significantly increased in EV than in non-EV-related myocarditis patients (P < 0.001). Moreover, Bax/Bcl2 mRNA ratio was significantly increased in EV than in non-EV-related myocarditis patients (P < 0.001). CONCLUSION: Our findings evidence an EV-related activation of the cardiomyocyte mitochondrial apoptotic pathway in patients with acute myocarditis. Moreover, our results indicate that this EV-induced pro-apoptotic mechanism could be partly related to an up-regulation of Bax expression, and suggest that inhibition of this cell death process may constitute the basis for novel therapies.


Assuntos
Apoptose/fisiologia , Infecções por Enterovirus , Mitocôndrias Cardíacas/virologia , Miocardite/virologia , Miócitos Cardíacos/virologia , Adolescente , Adulto , Estudos de Casos e Controles , Caspase 9/metabolismo , Transformação Celular Viral , Citocromos c'/metabolismo , DNA Viral/análise , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/análise , Proteínas Virais de Fusão/metabolismo , Adulto Jovem
10.
J Biol Chem ; 284(48): 33447-55, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19758996

RESUMO

Activation of executioner caspases during receptor-mediated apoptosis in type II cells requires the engagement of the mitochondrial apoptotic pathway. Although it is well established that recruitment of mitochondria in this context involves the cleavage of Bid to truncated Bid (tBid), the precise post-mitochondrial signaling responsible for executioner caspase activation is controversial. Here, we used distinct clones of type II Jurkat T-lymphocytes in which the mitochondrial apoptotic pathway had been inhibited to investigate the molecular requirements necessary for Fas-induced apoptosis. Cells overexpressing either Bcl-2 or Bcl-x(L) were protected from apoptosis induced by agonistic anti-Fas antibody. By comparison, Apaf-1-deficient Jurkat cells were sensitive to anti-Fas, exhibiting Bid cleavage, Bak activation, the release of cytochrome c and Smac, and activation of executioner caspase-3. Inhibiting downstream caspase activation with the pharmacological inhibitor Z-DEVD-fmk or by expressing the BIR1/BIR2 domains of X-linked inhibitor of apoptosis protein (XIAP) decreased all anti-Fas-induced apoptotic changes. Additionally, pretreatment of Bcl-x(L)-overexpressing cells with a Smac mimetic sensitized these cells to Fas-induced apoptosis. Combined, our findings strongly suggest that Fas-mediated activation of executioner caspases and induction of apoptosis do not depend on apoptosome-mediated caspase-9 activation in prototypical type II cells.


Assuntos
Apoptose , Apoptossomas/metabolismo , Caspase 9/metabolismo , Receptor fas/metabolismo , Fator Apoptótico 1 Ativador de Proteases/genética , Fator Apoptótico 1 Ativador de Proteases/metabolismo , Western Blotting , Caspase 3/metabolismo , Caspase 7/metabolismo , Citocromos c'/metabolismo , Ativação Enzimática , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Células Jurkat , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Proteína bcl-X/metabolismo
11.
Biochemistry ; 48(38): 8985-93, 2009 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-19685879

RESUMO

Cytochrome c' is a heme protein from a denitrifying variant of Rhodobacter sphaeroides which may serve to store and transport metabolic NO while protecting against NO toxicity. Its heme site bears resemblance through its 5-coordinate NO-binding capability to the regulatory site in soluble guanylate cyclase. A conserved arginine (Arg-127) abuts the 5-coordinate NO-heme binding site, and the alanine mutant R127A provided insight into the role of the Arg-127 in establishing the electronic structure of the heme-NO complex and in modifying the heme-centered redox potential and NO-binding affinity. By comparison to R127A, the wild-type Arg-127 was determined to increase the heme redox potential, diminish the NO-binding affinity, perturb and diminish the 14NO hyperfine coupling determined by ENDOR (electron nuclear double resonance), and increase the maximal electronic g-value. The larger isotropic NO hyperfine and the smaller maximal g-value of the R127A mutant together predicted that the Fe-N-O bond angle in the mutant is larger than that of the Arg-127-containing wild-type protein. Deuterium ENDOR provided evidence for exchangeable H/D consistent with hydrogen bonding of Arg-127, but not Ala-127, to the O of the NO. Proton ENDOR features previously assigned to Phe-14 on the distal side of the heme were unperturbed by the proximal side R127A mutation, implying the localized nature of that mutational perturbation at the proximal, NO-binding side of the heme. From this work two functions of positively charged Arg-127 emerged: the first was to maintain the KD of the cytochrome c' in the 1 microM range, and the second was to provide a redox potential that enhances the stability of the ferrous heme.


Assuntos
Proteínas de Bactérias/química , Citocromos c'/química , Rhodobacter sphaeroides/química , Substituição de Aminoácidos , Arginina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Citocromos c'/genética , Citocromos c'/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Heme/química , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rhodobacter sphaeroides/genética , Espectrofotometria , Eletricidade Estática
12.
J Am Chem Soc ; 131(13): 4846-53, 2009 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19334778

RESUMO

The bacterial heme protein Alcaligenes xylosoxidans cytochrome c' (AXCP) forms a novel five-coordinate heme-nitrosyl (5c-NO) complex in which NO resides at the proximal heme face in place of the endogenous protein ligand. Intriguingly, AXCP shares NO-binding properties with the eukaryotic NO-sensor, soluble guanylate cyclase (sGC), including 5c-NO formation via two NO-dependent reactions. For both proteins, a model has been proposed in which NO binds to the vacant distal face to form a transient six-coordinate heme-nitrosyl (6c-NO) species, which then converts to a proximal 5c-NO complex via a putative dinitrosyl intermediate. To shed light on this novel reaction mechanism, activation parameters have been determined for distal and proximal NO-binding reactions in AXCP from the effect of temperature and hydrostatic pressure on rate constants. The unusually slow 6c-NO formation reaction has a near-zero entropy of activation and a positive volume of activation (DeltaV(double dagger) = +14.1 cm(3) mol(-1)), consistent with a rate-determining step involving movement of the Leu 16 residue to allow NO binding to the crowded distal site. For the 6c-NO --> 5c-NO conversion, the large positive entropy of activation (DeltaS(double dagger) = +103 J K(-1) mol(-1)) and volume of activation (DeltaV(double dagger) = +24.1 cm(3) mol(-1)) suggest that the putative dinitrosyl intermediate forms via a dissociative mechanism in which the endogenous His ligand dissociates prior to the attack of the second NO molecule on the proximal heme face. These results have important implications for distal vs proximal NO binding in AXCP, as well as mechanisms of 5c-NO formation in heme proteins.


Assuntos
Alcaligenes/enzimologia , Proteínas de Bactérias/metabolismo , Citocromos c'/metabolismo , Heme/metabolismo , Óxido Nítrico/metabolismo , Sítios de Ligação , Cinética , Ligantes , Termodinâmica
13.
Methods Enzymol ; 436: 21-33, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18237625

RESUMO

On delivery of nitric oxide (NO) to protein samples (e.g., cytochrome c'), for spectroscopic experiments it is important to avoid exposure to oxygen and to remove contaminants from the NO gas. We describe a number of techniques for steady-state UV/Vis spectrophotometry and pre-steady-state stopped-flow spectrophotometry analysis of cytochrome c'.


Assuntos
Citocromos c'/química , Citocromos c'/metabolismo , Óxido Nítrico/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Heme/química , Neisseria meningitidis/metabolismo , Rhodobacter capsulatus/metabolismo , Espectrofotometria , Espectrofotometria Ultravioleta
14.
FEBS Lett ; 581(5): 911-6, 2007 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-17292891

RESUMO

Cytochromes-P460 of Nitrosomonas europaea and Methylococcus capsulatus (Bath), and the cytochrome c' of M. capsulatus, believed to be involved in binding or transformation of N-oxides, are shown to represent an evolutionarily related new family of monoheme, approximately 17kDa, cytochromes c found in the genomes of diverse Proteobacteria. All members of this family have a predicted secondary structure predominantly of beta-sheets in contrast to the predominantly alpha-helical cytochromes c' found in photoheterotrophic and denitrifying Proteobacteria.


Assuntos
Citocromos c'/química , Citocromos c'/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Citocromos/química , Citocromos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Citocromos/classificação , Citocromos/genética , Citocromos c/classificação , Citocromos c/genética , Citocromos c'/classificação , Citocromos c'/genética , Evolução Molecular , Methylococcus capsulatus/genética , Methylococcus capsulatus/metabolismo , Nitrosomonas europaea/genética , Nitrosomonas europaea/metabolismo , Filogenia , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
15.
Biochem J ; 388(Pt 2): 545-53, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15689189

RESUMO

Neisseria gonorrhoeae is a prolific source of c-type cytochromes. Five of the constitutively expressed cytochromes are predicted, based on in silico analysis of the N. gonorrhoeae genome, to be components of the cytochrome bc1 complex, cytochrome c oxidase cbb3 or periplasmic cytochromes involved in electron transfer reactions typical of a bacterium with a microaerobic physiology. Cytochrome c peroxidase was previously shown to be a lipoprotein expressed only during oxygen-limited growth. The final c-type cytochrome, cytochrome c', similar to cytochrome c peroxidase, includes a lipobox required for targeting to the outer membrane. Maturation of cytochrome c' was partially inhibited by globomycin, an antibiotic that specifically inhibits signal peptidase II, resulting in the accumulation of the prolipoprotein in the cytoplasmic membrane. Disruption of the gonococcal cycP gene resulted in an extended lag phase during microaerobic growth in the presence but not in the absence of nitrite, suggesting that cytochrome c' protects the bacteria from NO generated by nitrite reduction during adaptation to oxygen-limited growth. The cytochrome c' gene was overexpressed in Escherichia coli and recombinant cytochrome c' was shown to be targeted to the outer membrane. Spectroscopic evidence is presented showing that gonococcal cytochrome c' is similar to previously characterized cytochrome c' proteins and that it binds NO in vitro. The demonstration that two of the seven gonococcal c-type cytochromes fulfil specialized functions and are outer membrane lipoproteins suggests that the localization of these lipoproteins close to the bacterial surface provides effective protection against external assaults from reactive oxygen and reactive nitrogen species.


Assuntos
Citocromos c'/metabolismo , Neisseria gonorrhoeae/enzimologia , Oxigênio/fisiologia , Adaptação Fisiológica , Citocromos c'/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Lipoproteínas/química , Mutagênese Sítio-Dirigida , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Fenótipo , Ligação Proteica , Processamento de Proteína Pós-Traducional
16.
Adv Microb Physiol ; 67: 1-84, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26616515

RESUMO

Cytochromes c' are a group of class IIa cytochromes with pentacoordinate haem centres and are found in photosynthetic, denitrifying and methanotrophic bacteria. Their function remains unclear, although roles in nitric oxide (NO) trafficking during denitrification or in cellular defence against nitrosoative stress have been proposed. Cytochromes c' are typically dimeric with each c-type haem-containing monomer folding as a four-α-helix bundle. Their hydrophobic and crowded distal sites impose severe restrictions on the binding of distal ligands, including diatomic gases. By contrast, NO binds to the proximal haem face in a similar manner to that of the eukaryotic NO sensor, soluble guanylate cyclase and bacterial analogues. In this review, we focus on how structural features of cytochromes c' influence haem spectroscopy and reactivity with NO, CO and O2. We also discuss the relevance of cytochrome c' to understanding the mechanisms of gas binding to haem-based sensor proteins.


Assuntos
Bactérias/enzimologia , Monóxido de Carbono/metabolismo , Citocromos c'/química , Citocromos c'/metabolismo , Heme/metabolismo , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Citocromos c'/genética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Análise Espectral
17.
Int J Biochem Cell Biol ; 36(11): 2281-92, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15313473

RESUMO

In our earlier communications, we had studied the acid induced unfolding of stem bromelain, glucose oxidase and fetuin [Eur. J. Biochem. 269 (2002) 47; Biochem. Biophys. Res. Comm. 303 (2003) 685; Biochim. Biophys. Acta 1649 (2003) 164] and effect of salts and alcohols on the acid unfolded state of alpha-chymotrypsinogen and stem bromelain [Biochim. Biophy. Acta 1481 (2000) 229; Arch. Biochem. Biophys. 413 (2) (2003) 199]. Here, we report the presence of molten globule like equilibrium intermediate state under alkaline, native and acid conditions in the presence of SDS and butanol. A systematic investigation of sodium dodecyl sulphate and butanol induced conformational alterations in alkaline (U(1)) and acidic (U(2)) unfolded states of horse heart ferricytochrome c was examined by circular dichroism (CD), tryptophan fluorescence and 1-anilino-8-napthalene sulfonate (ANS) binding. The cytochrome c (cyt c) at pH 9 and 2 shows the loss of approximately 61% and 65% helical secondary structure. Addition of increasing concentrations of butanol (0-7.2 M) and sodium dodecyl sulphate (0-5 mM) led to an increase in ellipticity value at 208 and 222 nm, which is the characteristic of formation of alpha-helical structure. Cyt c is a heme protein in which the tryptophan fluorescence is quenched in the native state by resonance energy transfer to the heme group attached to cystines at positions 14 and 17. At alkaline and acidic pH protein shows enhancement in tryptophan fluorescence and quenched ANS fluorescence. Addition of increasing concentration of butanol and SDS to alkaline or acid unfolded state leads to decrease in tryptophan and increase in ANS fluorescence with a blue shift in lambda(max), respectively. In the presence of 7.2 M butanol and 5 mM SDS two different intermediate states I(1) and I(2) were obtained at alkaline and acidic pH, respectively. States I(1) and I(2) have native like secondary structure with disordered side chains (loss of tertiary structure) as predicted from tryptophan fluorescence and high ANS binding. These results altogether imply that the butanol and SDS induced intermediate states at alkaline and acid pH lies between the unfolded and native state. At pH 6, in the presence of 7.2 M butanol or 5 mM SDS leads to the loss of CD bands at 208 and 222 nm with the appearance of trough at 228 nm also with increase in tryptophan and ANS fluorescence in contrast to native protein. This partially unfolded intermediate state obtained represents the folding pathway from native to unfolded structure. To summarize; the 7.2 M butanol and 5 mM SDS stabilizes the intermediate state (I(1) and I(2)) obtained at low and alkaline pH. While the same destabilizes the native structure of protein at pH 6, suggesting a difference in the mechanism of conformational stability.


Assuntos
Naftalenossulfonato de Anilina/química , Butanóis/química , Citocromos c'/metabolismo , Dobramento de Proteína , Dodecilsulfato de Sódio/química , Animais , Dicroísmo Circular , Cavalos , Concentração de Íons de Hidrogênio , Miocárdio/química , Desnaturação Proteica , Triptofano/química
18.
Antioxid Redox Signal ; 17(9): 1246-63, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22356101

RESUMO

SIGNIFICANCE: Ligand selectivity for dioxygen (O(2)), carbon monoxide (CO), and nitric oxide (NO) is critical for signal transduction and is tailored specifically for each heme-protein sensor. Key NO sensors, such as soluble guanylyl cyclase (sGC), specifically recognized low levels of NO and achieve a total O(2) exclusion. Several mechanisms have been proposed to explain the O(2) insensitivity, including lack of a hydrogen bond donor and negative electrostatic fields to selectively destabilize bound O(2), distal steric hindrance of all bound ligands to the heme iron, and restriction of in-plane movements of the iron atom. RECENT ADVANCES: Crystallographic structures of the gas sensors, Thermoanaerobacter tengcongensis heme-nitric oxide/oxygen-binding domain (Tt H-NOX(1)) or Nostoc puntiforme (Ns) H-NOX, and measurements of O(2) binding to site-specific mutants of Tt H-NOX and the truncated ß subunit of sGC suggest the need for a H-bonding donor to facilitate O(2) binding. CRITICAL ISSUES: However, the O(2) insensitivity of full length sGC with a site-specific replacement of isoleucine by a tyrosine on residue 145 and the very slow autooxidation of Ns H-NOX and cytochrome c' suggest that more complex mechanisms have evolved to exclude O(2) but retain high affinity NO binding. A combined graphical analysis of ligand binding data for libraries of heme sensors, globins, and model heme shows that the NO sensors dramatically inhibit the formation of six-coordinated NO, CO, and O(2) complexes by direct distal steric hindrance (cyt c'), proximal constraints of in-plane iron movement (sGC), or combinations of both following a sliding scale rule. High affinity NO binding in H-NOX proteins is achieved by multiple NO binding steps that produce a high affinity five-coordinate NO complex, a mechanism that also prevents NO dioxygenation. FUTURE DIRECTIONS: Knowledge advanced by further extensive test of this "sliding scale rule" hypothesis should be valuable in guiding novel designs for heme based sensors.


Assuntos
Citocromos c'/metabolismo , Guanilato Ciclase/metabolismo , Heme/metabolismo , Hemeproteínas/metabolismo , Oxigênio/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Citocromos c'/química , Guanilato Ciclase/química , Hemeproteínas/química , Receptores Citoplasmáticos e Nucleares/química , Guanilil Ciclase Solúvel
19.
FEBS J ; 278(13): 2341-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21554540

RESUMO

Hydrogenophilus thermoluteolus cytochrome c' (PHCP) has typical spectral properties previously observed for other cytochromes c', which comprise Ambler's class II cytochromes c. The PHCP protein sequence (135 amino acids) deduced from the cloned gene is the most homologous (55% identity) to that of cytochrome c' from Allochromatium vinosum (AVCP). These findings indicate that PHCP forms a four-helix bundle structure, similar to AVCP. Strikingly, PHCP with a covalently bound heme was heterologously synthesized in the periplasm of Escherichia coli strains deficient in the DsbD protein, a component of the System I cytochrome c biogenesis machinery. The heterologous synthesis of PHCP by aerobically growing E. coli also occurred without a plasmid carrying the genes for Ccm proteins, other components of the System I machinery. Unlike Ambler's class I general cytochromes c, the synthesis of PHCP is not dependent on the System I machinery and exhibits similarity to that of E. coli periplasmic cytochrome b(562), a 106-residue four-helix bundle.


Assuntos
Chromatiaceae/metabolismo , Citocromos c'/metabolismo , Citocromos c/metabolismo , Escherichia coli/metabolismo , Heme/metabolismo , Hydrogenophilaceae/metabolismo , Periplasma/metabolismo , Sequência de Aminoácidos , Chromatiaceae/genética , Citocromos c/genética , Citocromos c/isolamento & purificação , Citocromos c'/genética , Citocromos c'/isolamento & purificação , Escherichia coli/genética , Hydrogenophilaceae/genética , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos
20.
ISME J ; 2(12): 1213-20, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18650926

RESUMO

Methylococcus capsulatus strain Bath, a methane-oxidizing bacterium, and ammonia-oxidizing bacteria (AOB) carry out the first step of nitrification, the oxidation of ammonia to nitrite, through the intermediate hydroxylamine. AOB use hydroxylamine oxidoreductase (HAO) to produce nitrite. M. capsulatus Bath was thought to oxidize hydroxylamine with cytochrome P460 (cytL), until the recent discovery of an hao gene in its genome. We used quantitative PCR analyses of cDNA from M. capsulatus Bath incubated with CH(4) or CH(4) plus 5 mM (NH(4))(2)SO(4) to determine whether cytL and hao transcript levels change in response to ammonia. While mRNA levels for cytL were not affected by ammonia, hao mRNA levels increased by 14.5- and 31-fold in duplicate samples when a promoter proximal region of the transcript was analyzed, and by sixfold when a region at the distal end of the transcript was analyzed. A conserved open reading frame, orf2, located 3' of hao in all known AOB genomes and in M. capsulatus Bath, was cotranscribed with hao and showed increased mRNA levels in the presence of ammonia. These data led to designating this gene pair as haoAB, with the role of haoB still undefined. We also determined mRNA levels for additional genes that encode proteins involved in N-oxide detoxification: cytochrome c'-beta (CytS) and nitric oxide (NO) reductase (NorCB). Whereas cytS mRNA levels increased in duplicate samples by 28.5- and 40-fold in response to ammonia, the cotranscribed norC-norB mRNA did not increase. Our results strongly suggest that M. capsulatus Bath possesses a functional, ammonia-responsive HAO involved in nitrification.


Assuntos
Proteínas de Bactérias/genética , Metano/metabolismo , Methylococcus capsulatus/enzimologia , Methylococcus capsulatus/genética , Nitritos/metabolismo , Transcrição Gênica , Amônia/metabolismo , Proteínas de Bactérias/metabolismo , Citocromos c'/genética , Citocromos c'/metabolismo , Methylococcus capsulatus/metabolismo , Dados de Sequência Molecular , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA