Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 928
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2316006121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38748577

RESUMO

Blood-brain barrier (BBB) models derived from human stem cells are powerful tools to improve our understanding of cerebrovascular diseases and to facilitate drug development for the human brain. Yet providing stem cell-derived endothelial cells with the right signaling cues to acquire BBB characteristics while also retaining their vascular identity remains challenging. Here, we show that the simultaneous activation of cyclic AMP and Wnt/ß-catenin signaling and inhibition of the TGF-ß pathway in endothelial cells robustly induce BBB properties in vitro. To target this interaction, we present a small-molecule cocktail named cARLA, which synergistically enhances barrier tightness in a range of BBB models across species. Mechanistically, we reveal that the three pathways converge on Wnt/ß-catenin signaling to mediate the effect of cARLA via the tight junction protein claudin-5. We demonstrate that cARLA shifts the gene expressional profile of human stem cell-derived endothelial cells toward the in vivo brain endothelial signature, with a higher glycocalyx density and efflux pump activity, lower rates of endocytosis, and a characteristic endothelial response to proinflammatory cytokines. Finally, we illustrate how cARLA can improve the predictive value of human BBB models regarding the brain penetration of drugs and targeted nanoparticles. Due to its synergistic effect, high reproducibility, and ease of use, cARLA has the potential to advance drug development for the human brain by improving BBB models across laboratories.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Barreira Hematoencefálica/metabolismo , Humanos , Células Endoteliais/metabolismo , Animais , Via de Sinalização Wnt , Claudina-5/metabolismo , Claudina-5/genética , AMP Cíclico/metabolismo , Camundongos , Células-Tronco/metabolismo , Células-Tronco/citologia , Junções Íntimas/metabolismo , beta Catenina/metabolismo
2.
PLoS Genet ; 20(1): e1010851, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190417

RESUMO

Blood vessels in different vascular beds vary in size, which is essential for their function and fluid flow along the vascular network. Molecular mechanisms involved in the formation of a vascular lumen of appropriate size, or tubulogenesis, are still only partially understood. Src homology 2 domain containing E (She) protein was previously identified in a screen for proteins that interact with Abelson (Abl)-kinase. However, its biological role has remained unknown. Here we demonstrate that She and Abl signaling regulate vessel size in zebrafish embryos and human endothelial cell culture. Zebrafish she mutants displayed increased endothelial cell number and enlarged lumen size of the dorsal aorta (DA) and defects in blood flow, eventually leading to the DA collapse. Vascular endothelial specific overexpression of she resulted in a reduced diameter of the DA, which correlated with the reduced arterial cell number and lower endothelial cell proliferation. Chemical inhibition of Abl signaling in zebrafish embryos caused a similar reduction in the DA diameter and alleviated the she mutant phenotype, suggesting that She acts as a negative regulator of Abl signaling. Enlargement of the DA size in she mutants correlated with an increased endothelial expression of claudin 5a (cldn5a), which encodes a protein enriched in tight junctions. Inhibition of cldn5a expression partially rescued the enlarged DA in she mutants, suggesting that She regulates DA size, in part, by promoting cldn5a expression. SHE knockdown in human endothelial umbilical vein cells resulted in a similar increase in the diameter of vascular tubes, and also increased phosphorylation of a known ABL downstream effector CRKL. These results argue that SHE functions as an evolutionarily conserved inhibitor of ABL signaling and regulates vessel and lumen size during vascular tubulogenesis.


Assuntos
Peixe-Zebra , Domínios de Homologia de src , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , China , Etnicidade , Transdução de Sinais/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Claudina-5
3.
J Physiol ; 602(10): 2265-2285, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632887

RESUMO

The mechanisms governing brain vascularization during development remain poorly understood. A key regulator of developmental vascularization is delta like 4 (DLL4), a Notch ligand prominently expressed in endothelial cells (EC). Exposure to hyperoxia in premature infants can disrupt the development and functions of cerebral blood vessels and lead to long-term cognitive impairment. However, its role in cerebral vascular development and the impact of postnatal hyperoxia on DLL4 expression in mouse brain EC have not been explored. We determined the DLL4 expression pattern and its downstream signalling gene expression in brain EC using Dll4+/+ and Dll4+/LacZ mice. We also performed in vitro studies using human brain microvascular endothelial cells. Finally, we determined Dll4 and Cldn5 expression in mouse brain EC exposed to postnatal hyperoxia. DLL4 is expressed in various cell types, with EC being the predominant one in immature brains. Moreover, DLL4 deficiency leads to persistent abnormalities in brain microvasculature and increased vascular permeability both in vivo and in vitro. We have identified that DLL4 insufficiency compromises endothelial integrity through the NOTCH-NICD-RBPJ-CLDN5 pathway, resulting in the downregulation of the tight junction protein claudin 5 (CLDN5). Finally, exposure to neonatal hyperoxia reduces DLL4 and CLDN5 expression in developing mouse brain EC. We reveal that DLL4 is indispensable for brain vascular development and maintaining the blood-brain barrier's function and is repressed by neonatal hyperoxia. We speculate that reduced DLL4 signalling in brain EC may contribute to the impaired brain development observed in neonates exposed to hyperoxia. KEY POINTS: The role of delta like 4 (DLL4), a Notch ligand in vascular endothelial cells, in brain vascular development and functions remains unknown. We demonstrate that DLL4 is expressed at a high level during postnatal brain development in immature brains and DLL4 insufficiency leads to abnormal cerebral vasculature and increases vascular permeability both in vivo and in vitro. We identify that DLL4  regulates endothelial integrity through NOTCH-NICD-RBPJ-CLDN5 signalling. Dll4 and Cldn5 expression are decreased in mouse brain endothelial cells exposed to postnatal hyperoxia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Animais Recém-Nascidos , Proteínas de Ligação ao Cálcio , Claudina-5 , Células Endoteliais , Hiperóxia , Receptores Notch , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/crescimento & desenvolvimento , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Células Cultivadas , Claudina-5/metabolismo , Claudina-5/genética , Células Endoteliais/metabolismo , Hiperóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Receptores Notch/metabolismo , Receptores Notch/genética , Transdução de Sinais
4.
Biochem Biophys Res Commun ; 696: 149501, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38232667

RESUMO

Irisin is protective in the cardiac microenvironment and can resist doxorubicin-induced cardiotoxicity. The purpose of this study was to investigate the connection between Irisin, endothelial cell integrity, and mitochondrial dynamics. Primary cardiac microvascular endothelial cells (CMECs) were used to explore the regulatory effects of Irisin on tight junction proteins, mitochondrial dynamics, ß-catenin expression, and transcriptional activity. Results showed that Irisin can suppress doxorubicin-induced upregulation of MMP2 and MMP9, thereby reducing the degradation of tight junction proteins (ZO-1 and Claudin-5) and VE-cadherin. The preservation of Claudin-5 contributes to maintaining Mfn2 expression, which in turn supports mitochondrial fusion. Although Irisin restores doxorubicin-induced downregulation of ß-catenin, it concurrently limits ß-catenin transcriptional activity via Mfn2-mediated sulfenylation. Therefore, this study revealed a novel mechanism linking the protective effects of Irisin on the tight junction proteins and mitochondrial dynamics upon doxorubicin exposure.


Assuntos
Fibronectinas , beta Catenina , beta Catenina/metabolismo , Fibronectinas/metabolismo , Claudina-5/metabolismo , Dinâmica Mitocondrial , Células Endoteliais/metabolismo , Proteínas de Junções Íntimas/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/metabolismo , Junções Íntimas/metabolismo
5.
Cell Tissue Res ; 395(1): 81-103, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38032480

RESUMO

Endothelial cells of mammalian blood vessels have multiple levels of heterogeneity along the vascular tree and among different organs. Further heterogeneity results from blood flow turbulence and variations in shear stress. In the aorta, vascular endothelial protein tyrosine phosphatase (VE-PTP), which dephosphorylates tyrosine kinase receptor Tie2 in the plasma membrane, undergoes downstream polarization and endocytosis in endothelial cells exposed to laminar flow and high shear stress. VE-PTP sequestration promotes Tie2 phosphorylation at tyrosine992 and endothelial barrier tightening. The present study characterized the heterogeneity of VE-PTP polarization, Tie2-pY992 and total Tie2, and claudin-5 in anatomically defined regions of endothelial cells in the mouse descending thoracic aorta, where laminar flow is variable and IgG extravasation is patchy. We discovered that VE-PTP and Tie2-pY992 had mosaic patterns, unlike the uniform distribution of total Tie2. Claudin-5 at tight junctions also had a mosaic pattern, whereas VE-cadherin at adherens junctions bordered all endothelial cells. Importantly, the amounts of Tie2-pY992 and claudin-5 in aortic endothelial cells correlated with downstream polarization of VE-PTP. VE-PTP and Tie2-pY992 also had mosaic patterns in the vena cava, but claudin-5 was nearly absent and extravasated IgG was ubiquitous. Correlation of Tie2-pY992 and claudin-5 with VE-PTP polarization supports their collective interaction in the regulation of endothelial barrier function in the aorta, yet differences between the aorta and vena cava indicate additional flow-related determinants of permeability. Together, the results highlight new levels of endothelial cell functional mosaicism in the aorta and vena cava, where blood flow dynamics are well known to be heterogeneous.


Assuntos
Células Endoteliais , Proteínas Tirosina Fosfatases , Animais , Camundongos , Aorta , Caderinas/metabolismo , Permeabilidade Capilar , Claudina-5/metabolismo , Células Endoteliais/metabolismo , Imunoglobulina G , Mamíferos/metabolismo , Permeabilidade , Proteínas Tirosina Fosfatases/metabolismo
6.
Brain Behav Immun ; 115: 143-156, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37848095

RESUMO

Growing evidence suggests that neurovascular dysfunction characterized by blood-brain barrier (BBB) breakdown underlies the development of psychiatric disorders, such as major depressive disorder (MDD). Tight junction (TJ) proteins are critical modulators of homeostasis and BBB integrity. TJ protein Claudin-5 is the most dominant BBB component and is downregulated in numerous depression models; however, the underlying mechanisms remain elusive. Here, we demonstrate a molecular basis of BBB breakdown that links stress and depression. We implemented an animal model of depression, chronic unpredictable mild stress (CUMS) in male C57BL/6 mice, and showed that hippocampal BBB breakdown was closely associated with stress vulnerability. Concomitantly, we found that dysregulated Cldn5 level coupled with repression of the histone methylation signature at its promoter contributed to stress-induced BBB dysfunction and depression. Moreover, histone methyltransferase enhancer of zeste homolog 2 (EZH2) knockdown improved Cldn5 expression and alleviated depression-like behaviors by suppressing the tri-methylation of lysine 27 on histone 3 (H3K27me3) in chronically stressed mice. Furthermore, the stress-induced excessive transfer of peripheral cytokine tumor necrosis factor-α (TNF-α) into the hippocampus was prevented by Claudin-5 overexpression and EZH2 knockdown. Interestingly, antidepressant treatment could inhibit H3K27me3 deposition at the Cldn5 promoter, reversing the loss of the encoded protein and BBB damage. Considered together, these findings reveal the importance of the hippocampal EZH2-Claudin-5 axis in regulating neurovascular function and MDD development, providing potential therapeutic targets for this psychiatric illness.


Assuntos
Barreira Hematoencefálica , Transtorno Depressivo Maior , Humanos , Masculino , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Histonas/metabolismo , Claudina-5/genética , Claudina-5/metabolismo , Depressão/metabolismo , Transtorno Depressivo Maior/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Camundongos Endogâmicos C57BL
7.
Pharmacol Res ; 200: 107075, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38228255

RESUMO

Claudin-5 (CLDN5) is an essential component of tight junctions (TJs) and is critical for the integrity of the blood-brain barrier (BBB), ensuring homeostasis and protection from damage to the central nervous system (CNS). Currently, many researchers have summarized the role and mechanisms of CLDN5 in CNS diseases. However, it is noteworthy that CLDN5 also plays a significant role in tumor growth and metastasis. In addition, abnormal CLDN5 expression is involved in the development of respiratory diseases, intestinal diseases, cardiac diseases, and diabetic ocular complications. This paper aims to review the structure, expression, and regulation of CLDN5, focusing on its role in tumors, including its expression and regulation, effects on malignant phenotypes, and clinical significance. Furthermore, this paper will provide an overview of the role and mechanisms of CLDN5 in respiratory diseases, intestinal diseases, cardiac diseases, and diabetic ocular complications.


Assuntos
Doenças do Sistema Nervoso Central , Diabetes Mellitus , Cardiopatias , Enteropatias , Neoplasias , Humanos , Claudina-5/genética , Claudina-5/metabolismo , Neoplasias/genética
8.
J Surg Res ; 301: 413-422, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39042975

RESUMO

INTRODUCTION: In recent years, a number of studies have demonstrated that hypoxia reoxygenation (HR) induced by ischemia postconditioning (IPC) reduces endothelial barrier dysfunction and inflammation in various models. When HR occurs, the P38 mitogen-activated protein kinase (P38 MAPK) breaks down the endothelial barrier. But no study has clearly clarified the effect of hypoxia postconditioning (HPC) on P38 MAPK in human dermal microvascular endothelial cells. Therefore, we investigated the function of HPC on P38 MAPK during HR in vitro. METHODS: Human dermal microvascular endothelial cells were cultured in a hypoxic incubator for 8 h. Then cells were reperfused for 12 h (reoxygenation) or postconditioned by 5 min of reoxygenation and 5 min of re-hypoxia 3 times followed by 11.5 h reoxygenation. SB203580 was used as an inhibitor of P38 MAPK. Cell counting kit-8 assay kits were employed to detect cell activity. The corresponding levels of IL-6, IL-8 and IL-1ß were examined via Enzyme-Linked ImmunoSorbent Assay. The endothelial barrier was evaluated using fluorescein isothiocyanate-dextran leakage assay. Western blot was used to detect claudin-5, phosphorylation of P38 MAPK (P-P38 MAPK) and P38 MAPK expression. Claudin-5 localization was studied by immunofluorescence. RESULTS: HR induced endothelial barrier hyperpermeability, elevated inflammation levels, and increased the P-P38 MAPK. But HPC reduced cell injury and maintained the integrity of the endothelial barrier while inhibiting P-P38 MAPK and increasing expression of claudin-5. HPC redistributed claudin-5 in a continuous and linear pattern on the cell membrane. CONCLUSIONS: HPC protects against HR induced downregulation and redistribution of claudin-5 by inhibiting P-P38 MAPK.


Assuntos
Células Endoteliais , Inflamação , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Inflamação/etiologia , Inflamação/prevenção & controle , Células Cultivadas , Hipóxia Celular , Claudina-5/metabolismo , Endotélio Vascular/metabolismo , Fosforilação , Piridinas/farmacologia , Pós-Condicionamento Isquêmico/métodos , Imidazóis
9.
Brain ; 146(6): 2285-2297, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477332

RESUMO

The blood-brain barrier ensures CNS homeostasis and protection from injury. Claudin-5 (CLDN5), an important component of tight junctions, is critical for the integrity of the blood-brain barrier. We have identified de novo heterozygous missense variants in CLDN5 in 15 unrelated patients who presented with a shared constellation of features including developmental delay, seizures (primarily infantile onset focal epilepsy), microcephaly and a recognizable pattern of pontine atrophy and brain calcifications. All variants clustered in one subregion/domain of the CLDN5 gene and the recurrent variants demonstrate genotype-phenotype correlations. We modelled both patient variants and loss of function alleles in the zebrafish to show that the variants analogous to those in patients probably result in a novel aberrant function in CLDN5. In total, human patient and zebrafish data provide parallel evidence that pathogenic sequence variants in CLDN5 cause a novel neurodevelopmental disorder involving disruption of the blood-brain barrier and impaired neuronal function.


Assuntos
Microcefalia , Animais , Humanos , Microcefalia/genética , Claudina-5/genética , Claudina-5/metabolismo , Peixe-Zebra/metabolismo , Barreira Hematoencefálica/metabolismo , Convulsões/genética , Síndrome
10.
Biol Pharm Bull ; 47(3): 549-555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38432910

RESUMO

Severe infection pathogenicity is induced by processes such as pathogen exposure, immune cell activation, inflammatory cytokine production, and vascular hyperpermeability. Highly effective drugs, such as antipathogenic agents, steroids, and antibodies that suppress cytokine function, have been developed to treat the first three processes. However, these drugs cannot completely suppress severe infectious diseases, such as coronavirus disease 2019 (COVID-19). Therefore, developing novel drugs that inhibit vascular hyperpermeability is crucial. This review summarizes the mechanisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced vascular hyperpermeability and identifies inhibitors that increase endothelial cell (EC) junction-related proteins and determines their efficacy in COVID-19 and endotoxemia models. Analyzing the effects of SARS-CoV-2 on vascular permeability revealed that SARS-CoV-2 suppresses Claudin-5 (CLDN5) expression, which is responsible for adhesion between ECs, thereby increasing vascular permeability. Inhibiting CLDN5 function in mice induced vascular hyperpermeability and pulmonary edema. In contrast, Enhancing CLDN5 expression suppressed SARS-CoV-2-induced endothelial hyperpermeability, suggesting that SARS-CoV-2-induced vascular hyperpermeability contributes to pathological progression, which can be suppressed by upregulating EC junction proteins. Based on these results, we focused on Roundabout4 (Robo4), another EC-specific protein that stabilizes EC junctions. EC-specific Robo4 overexpression suppressed vascular hyperpermeability and mortality in lipopolysaccharide-treated mice. An ALK1 inhibitor (a molecule that increases Robo4 expression), suppressed vascular hyperpermeability and mortality in lipopolysaccharide- and SARS-CoV-2-treated mice. These results indicate that Robo4 expression-increasing drugs suppress vascular permeability and pathological phenotype in COVID-19 and endotoxemia models.


Assuntos
COVID-19 , Doenças Transmissíveis , Endotoxemia , Animais , Camundongos , Permeabilidade Capilar , Endotoxemia/tratamento farmacológico , Lipopolissacarídeos , SARS-CoV-2 , Claudina-5 , Citocinas , Receptores de Superfície Celular
11.
Skin Res Technol ; 30(5): e13720, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743384

RESUMO

BACKGROUND: Sensitive skin is hypersensitive to various external stimuli and a defective epidermal permeability barrier is an important clinical feature of sensitive skin. Claudin-5 (CLDN5) expression levels decrease in sensitive skin. This study aimed to explore the impact of CLDN5 deficiency on the permeability barrier in sensitive skin and the regulatory role of miRNAs in CLDN5 expression. MATERIALS AND METHODS: A total of 26 patients were retrospectively enrolled, and the CLDN5 expression and permeability barrier dysfunction in vitro were assessed. Then miRNA-224-5p expression was also assessed in sensitive skin. RESULTS: Immunofluorescence and electron microscopy revealed reduced CLDN5 expression, increased miR-224-5p expression, and disrupted intercellular junctions in sensitive skin. CLDN5 knockdown was associated with lower transepithelial electrical resistance (TEER) and Lucifer yellow penetration in keratinocytes and organotypic skin models. The RNA-seq and qRT-PCR results indicated elevated miR-224-5p expression in sensitive skin; MiR-224-5p directly interacted with the 3`UTR of CLDN5, resulting in CLDN5 deficiency in the luciferase reporter assay. Finally, miR-224-5p reduced TEER in keratinocyte cultures. CONCLUSION: These results suggest that the miR-224-5p-induced reduction in CLDN5 expression leads to impaired permeability barrier function, and that miR-224-5p could be a potential therapeutic target for sensitive skin.


Assuntos
Claudina-5 , MicroRNAs , Permeabilidade , Pele , Adulto , Feminino , Humanos , Masculino , Claudina-5/genética , Claudina-5/metabolismo , Queratinócitos/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Estudos Retrospectivos , Pele/metabolismo
12.
Mar Drugs ; 22(8)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39195457

RESUMO

Tight junctional complexes (TJCs) between cerebral microvascular endothelial cells (CMECs) are essential parts of the blood-brain barrier (BBB), whose regulation closely correlates to the BBB's integrity and function. hCMEC/D3 is the typical cell line used to imitate and investigate the barrier function of the BBB via the construction of an in vitro model. This study aims to investigate the protective effect of the deep-sea-derived fibrinolytic compound FGFC1 against H2O2-induced dysfunction of TJCs and to elucidate the underlying mechanism. The barrier function was shown to decline following exposure to 1 mM H2O2 in an in vitro model of hCMEC/D3 cells, with a decreasing temperature-corrected transendothelial electrical resistance (tcTEER) value. The decrease in the tcTEER value was significantly inhibited by 80 or 100 µM FGFC1, which suggested it efficiently protected the barrier integrity, allowing it to maintain its function against the H2O2-induced dysfunction. According to immunofluorescence microscopy (IFM) and quantitative real-time polymerase chain reaction (qRT-PCR), compared to the H2O2-treated group, 80~100 µM FGFC1 enhanced the expression of claudin-5 (CLDN-5) and VE-cadherin (VE-cad). And this enhancement was indicated to be mainly achieved by both up-regulation of CLDN-5 and inhibition of the down-regulation by H2O2 of VE-cad at the transcriptional level. Supported by FGFC1's molecular docking to these proteins with reasonable binding energy, FGFC1 was proved to exert a positive effect on TJCs' barrier function in hCMEC/D3 cells via targeting CLDN-5 and VE-cad. This is the first report on the protection against H2O2-induced barrier dysfunction by FGFC1 in addition to its thrombolytic effect. With CLDN-5 and VE-cad as the potential target proteins of FGFC1, this study provides evidence at the cellular and molecular levels for FGFC1's reducing the risk of bleeding transformation following its application in thrombolytic therapy for cerebral thrombosis.


Assuntos
Caderinas , Células Endoteliais , Peróxido de Hidrogênio , Junções Íntimas , Humanos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Linhagem Celular , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Caderinas/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Fibrinolíticos/farmacologia , Claudina-5/metabolismo , Antígenos CD/metabolismo , Simulação de Acoplamento Molecular , Fatores de Crescimento de Fibroblastos/farmacologia
13.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338697

RESUMO

The blood-brain barrier (BBB) plays pivotal roles in synaptic and neuronal functioning by sealing the space between adjacent microvascular endothelial cells. BBB breakdown is present in patients with mild cognitive impairment (MCI) or Alzheimer disease (AD). Claudin-5 (CLDN-5) is a tetra-spanning protein essential for sealing the intercellular space between adjacent endothelial cells in the BBB. In this study, we developed a blood-based assay for CLDN-5 and investigated its diagnostic utility using 100 cognitively normal (control) subjects, 100 patients with MCI, and 100 patients with AD. Plasma CLDN-5 levels were increased in patients with AD (3.08 ng/mL) compared with controls (2.77 ng/mL). Plasma levels of phosphorylated tau (pTau181), a biomarker of pathological tau, were elevated in patients with MCI or AD (2.86 and 4.20 pg/mL, respectively) compared with control subjects (1.81 pg/mL). In patients with MCI or AD, plasma levels of CLDN-5-but not pTau181-decreased with age, suggesting some age-dependent BBB changes in MCI and AD. These findings suggest that plasma CLDN-5 may a potential biochemical marker for the diagnosis of AD.


Assuntos
Doença de Alzheimer , Claudina-5 , Disfunção Cognitiva , Humanos , Doença de Alzheimer/sangue , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides , Biomarcadores , Barreira Hematoencefálica , Claudina-5/sangue , Claudina-5/química , Claudina-5/metabolismo , Disfunção Cognitiva/sangue , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/metabolismo , Células Endoteliais , Proteínas tau
14.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474310

RESUMO

Obstructive sleep apnea (OSA) is characterized by intermittent repeated episodes of hypoxia-reoxygenation. OSA is associated with cerebrovascular consequences. An enhanced blood-brain barrier (BBB) permeability has been proposed as a marker of those disorders. We studied in mice the effects of 1 day and 15 days intermittent hypoxia (IH) exposure on BBB function. We focused on the dorsal part of the hippocampus and attempted to identify the molecular mechanisms by combining in vivo BBB permeability (Evans blue tests) and mRNA expression of several junction proteins (zona occludens (ZO-1,2,3), VE-cadherin, claudins (1,5,12), cingulin) and of aquaporins (1,4,9) on hippocampal brain tissues. After 15 days of IH exposure we observed an increase in BBB permeability, associated with increased mRNA expressions of claudins 1 and 12, aquaporins 1 and 9. IH seemed to increase early for claudin-1 mRNA expression as it doubled with 1 day of exposure and returned near to its base level after 15 days. Claudin-1 overexpression may represent an immediate response to IH exposure. Then, after 15 days of exposure, an increase in functional BBB permeability was associated with enhanced expression of aquaporin. These BBB alterations are possibly associated with a vasogenic oedema that may affect brain functions and accelerate neurodegenerative processes.


Assuntos
Aquaporinas , Apneia Obstrutiva do Sono , Camundongos , Animais , Barreira Hematoencefálica/metabolismo , Claudina-1/metabolismo , Modelos Animais de Doenças , Hipóxia/metabolismo , Claudinas/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Permeabilidade , Aquaporinas/metabolismo , RNA Mensageiro/metabolismo , Claudina-5/metabolismo
15.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928202

RESUMO

Blood-brain barrier (BBB) dysfunction is a key feature in neuroimmunological and neurodegenerative diseases. In this study, we developed a microfluidic human BBB-on-a-chip to model barrier dysfunction and immune cell migration using immortalized TY10 brain endothelial cells, pericytes, and astrocytes. It was found that immortalized TY10 brain endothelial cells developed a microvascular structure under flow. Pericytes were localized on the basal side surrounding the TY10 microvascular structure, showing an in vivo-like structure. Barrier integrity increased under co-culture with pericytes. In addition, both ethylenediaminetetraacetic acid (EDTA) and anti-Claudin-5 (CLDN5) neutralizing antibody caused a decrease in the transendothelial electrical resistance (TEER). EDTA caused the leakage of 20 kDa dextran, suggesting different effects on the BBB based on the mechanism of action, whereas anti-CLDN5 antibody did not cause leakage. In the tri-culture model, human T cells migrated through endothelial vessels towards basal C-X-C motif chemokine ligand 12 (CXCL12). The live-imaging analysis confirmed the extravasation of fluorescence-labelled T cells in a CXCL12-concentration- and time-dependent manner. Our BBB model had an in vivo-like structure and successfully represented barrier dysfunction and transendothelial T cell migration. In addition, our study suggests that the inhibition of CLDN5 attenuates the BBB in humans. This platform has various potential uses in relation to the BBB in both drug discovery research and in elucidating the mechanisms of central nervous system diseases.


Assuntos
Barreira Hematoencefálica , Movimento Celular , Células Endoteliais , Dispositivos Lab-On-A-Chip , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Descoberta de Drogas/métodos , Técnicas de Cocultura , Pericitos/metabolismo , Pericitos/efeitos dos fármacos , Claudina-5/metabolismo , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos
16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 74-80, 2024 Jan 20.
Artigo em Zh | MEDLINE | ID: mdl-38322523

RESUMO

Objective: To explore the mechanobiological mechanism of fluid shear force (FSF) on the protection, injury, and destruction of the structure and function of the blood-brain barrier (BBB) under normal physiological conditions, ischemic hypoperfusion, and postoperative hyperperfusion conditions. BBB is mainly composed of brain microvascular endothelial cells. Rat brain microvascular endothelial cells (rBMECs) were used as model cells to conduct the investigation. Methods: rBMECs were seeded at a density of 1×105 cells/cm2 and incubated for 48 h. FSF was applied to the rBMECs at 0.5, 2, and 20 dyn/cm2, respectively, simulating the stress BBB incurs under low perfusion, normal physiological conditions, and high FSF after bypass grafting when there is cerebral vascular stenosis. In addition, a rBMECs static culture group was set up as the control (no force was applied). Light microscope, scanning electron microscope (SEM), and laser confocal microscope (LSCM) were used to observe the changes in cell morphology and cytoskeleton. Transmission electron microscope (TEM) was used to observe the tight junctions. Immunofluorescence assay was performed to determine changes in the distribution of tight junction-associated proteins claudin-5, occludin, and ZO-1 and adherens junction-associated proteins VE-cadherin and PECAM-1. Western blot was performed to determine the expression levels of tight junction-associated proteins claudin-5, ZO-1, and JAM4, adherens junction-associated protein VE-cadherin, and key proteins in Rho GTPases signaling (Rac1, Cdc42, and RhoA) under FSF at different intensities. Results: Microscopic observation showed that the cytoskeleton exhibited disorderly arrangement and irregular orientation under static culture and low shear force (0.5 dyn/cm2). Under normal physiological shear force (2 dyn/cm2), the cytoskeleton was rearranged in the orientation of the FSF and an effective tight junction structure was observed between cells. Under high shear force (20 dyn/cm2), the intercellular space was enlarged and no effective tight junction structure was observed. Immunofluorescence results showed that, under low shear force, the gap between the cells decreased, but there was also decreased distribution of tight junction-associated proteins and adherens junction-associated proteins at the intercellular junctions. Under normal physiological conditions, the cells were tightly connected and most of the tight junction-associated proteins were concentrated at the intercellular junctions. Under high shear force, the gap between the cells increased significantly and the tight junction and adherens junction structures were disrupted. According to the Western blot results, under low shear force, the expression levels of claudin-5, ZO-1, and VE-cadherin were significantly up-regulated compared with those of the control group (P<0.05). Under normal physiological shear force, claudin-5, ZO-1, JAM4, and VE-cadherin were highly expressed compared with those of the control group (P<0.05). Under high shear force, the expressions of claudin-5, ZO-1, JAM4, and VE-cadherin were significantly down-regulated compared with those of the normal physiological shear force group (P<0.05). Under normal physiological shear force, intercellular expressions of Rho GTPases proteins (Rac1, Cdc42, and RhoA) were up-regulated and were higher than those of the other experimental groups (P<0.05). The expressions of Rho GTPases under low and high shear forces were down-regulated compared with that of the normal physiological shear force group (P<0.05). Conclusion: Under normal physiological conditions, FSF helps maintain the integrity of the BBB structure, while low or high shear force can damage or destroy the BBB structure. The regulation of BBB by FSF is closely related to the expression and distribution of tight junction-associated proteins and adherens junction-associated proteins.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Ratos , Animais , Claudina-5/metabolismo , Encéfalo/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
17.
J Neurosci ; 42(8): 1406-1416, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34965971

RESUMO

In the mammalian brain, perivascular astrocytes (PAs) closely juxtapose blood vessels and are postulated to have important roles in the control of vascular physiology, including regulation of the blood-brain barrier (BBB). Deciphering specific functions for PAs in BBB biology, however, has been limited by the ability to distinguish these cells from other astrocyte populations. In order to characterize selective roles for PAs in vivo, a new mouse model has been generated in which the endogenous megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1) gene drives expression of Cre fused to a mutated estrogen ligand-binding domain (Mlc1-T2A-CreERT2). This knock-in mouse model, which we term MLCT, allows for selective identification and tracking of PAs in the postnatal brain. We also demonstrate that MLCT-mediated ablation of PAs causes severe defects in BBB integrity, resulting in premature death. PA loss results in aberrant localization of Claudin 5 and -VE-Cadherin in endothelial cell junctions as well as robust microgliosis. Collectively, these data reveal essential functions for Mlc1-expressing PAs in regulating endothelial barrier integrity in mice and indicate that primary defects in astrocytes that cause BBB breakdown may contribute to human neurologic disorders.SIGNIFICANCE STATEMENT Interlaced among the billions of neurons and glia in the mammalian brain is an elaborate network of blood vessels. Signals from the brain parenchyma control the unique permeability properties of cerebral blood vessels known as the blood-brain barrier (BBB). However, we understand very little about the relative contributions of different neural cell types in the regulation of BBB functions. Here, we show that a specific subpopulation of astrocyte is essential for control of BBB integrity, with ablation of these cells leading to defects in endothelial cell junctions, BBB breakdown, and resulting neurologic deficits.


Assuntos
Astrócitos , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central , Animais , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Claudina-5/genética , Cistos , Modelos Animais de Doenças , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Mamíferos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos
18.
Am J Physiol Cell Physiol ; 325(4): C951-C971, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642239

RESUMO

Endothelial integrity is critical in mitigating a vicious cascade of secondary injuries following acute ischemic stroke (AIS). Matrix metalloproteinase-9 (MMP-9), a contributor to endothelial integrity loss, is elevated during stroke and is associated with worsened stroke outcome. We investigated the FDA-approved selective sphingosine-1-phosphate receptor 1 (S1PR1) ligand, ozanimod, on the regulation/activity of MMP-9 as well as endothelial barrier components [platelet endothelial cell adhesion molecule 1 (PECAM-1), claudin-5, and zonula occludens 1 (ZO-1)] in human brain microvascular endothelial cells (HBMECs) following hypoxia plus glucose deprivation (HGD). We previously reported that S1PR1 activation improves HBMEC integrity; however, mechanisms underlying S1PR1 involvement in endothelial cell barrier integrity have not been clearly elucidated. We hypothesized that ozanimod would attenuate an HGD-induced increase in MMP-9 activity that would concomitantly attenuate the loss of integral barrier components. Male HBMECs were treated with ozanimod or vehicle and exposed to 3 h of normoxia (21% O2) or HGD (1% O2). Immunoblotting, zymography, qRT-PCR, and immunocytochemical labeling techniques assessed processes related to MMP-9 and barrier markers. We observed that HGD acutely increased MMP-9 activity and reduced claudin-5 and PECAM-1 levels, and ozanimod attenuated these responses. In situ analysis, via PROSPER, suggested that attenuation of MMP-9 activity may be a primary factor in maintaining these integral barrier proteins. We also observed that HGD increased intracellular mechanisms associated with augmented MMP-9 activation; however, ozanimod had no effect on these select factors. Thus, we conclude that ozanimod has the potential to attenuate HGD-mediated decreases in HBMEC integrity in part by decreasing MMP-9 activity as well as preserving barrier properties.NEW & NOTEWORTHY We have identified a potential novel mechanism by which ozanimod, a selective sphingosine-1-phosphate receptor 1 (S1PR1) agonist, attenuates hypoxia plus glucose deprivation (HGD)-induced matrix metalloproteinase-9 (MMP-9) activity and disruptions in integral human brain endothelial cell barrier proteins. Our results suggest that ischemic-like injury elicits increased MMP-9 activity and alterations of barrier integrity proteins in human brain microvascular endothelial cells (HBMECs) and that ozanimod via S1PR1 attenuates these HGD-induced responses, adding to its therapeutic potential in cerebrovascular protection during the acute phase of ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Masculino , Barreira Hematoencefálica/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Células Endoteliais/metabolismo , Claudina-5/metabolismo , AVC Isquêmico/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Isquemia/metabolismo , Hipóxia/metabolismo , Glucose/metabolismo
19.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L135-L142, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310768

RESUMO

In acute lung injury, the lung endothelial barrier is compromised. Loss of endothelial barrier integrity occurs in association with decreased levels of the tight junction protein claudin-5. Restoration of their levels by gene transfection may improve the vascular barrier, but how to limit transfection solely to regions of the lung that are injured is unknown. We hypothesized that thoracic ultrasound in combination with intravenous microbubbles (USMBs) could be used to achieve regional gene transfection in injured lung regions and improve endothelial barrier function. Since air blocks ultrasound energy, insonation of the lung is only achieved in areas of lung injury (edema and atelectasis); healthy lung is spared. Cavitation of the microbubbles achieves local tissue transfection. Here we demonstrate successful USMB-mediated gene transfection in the injured lungs of mice. After thoracic insonation, transfection was confined to the lung and only occurred in the setting of injured (but not healthy) lung. In a mouse model of acute lung injury, we observed downregulation of endogenous claudin-5 and an acute improvement in lung vascular leakage and in oxygenation after claudin-5 overexpression by transfection. The improvement occurred without any impairment of the immune response as measured by pathogen clearance, alveolar cytokines, and lung histology. In conclusion, USMB-mediated transfection targets injured lung regions and is a novel approach to the treatment of lung injury.NEW & NOTEWORTHY Acute respiratory distress syndrome is characterized by spatial heterogeneity, with severely injured lung regions adjacent to relatively normal areas. This makes targeting treatment to the injured regions difficult. Here we use thoracic ultrasound and intravenous microbubbles (USMBs) to direct gene transfection specifically to injured lung regions. Transfection of the tight junction protein claudin-5 improved oxygenation and decreased vascular leakage without impairing innate immunity. These findings suggest that USMB is a novel treatment for ARDS.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Animais , Camundongos , Lesão Pulmonar Aguda/patologia , Claudina-5/genética , Claudina-5/metabolismo , Imunidade Inata , Pulmão/metabolismo , Síndrome do Desconforto Respiratório/patologia , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo , Transfecção , Ultrassonografia de Intervenção
20.
Neurobiol Dis ; 185: 106264, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37597815

RESUMO

BACKGROUND: Impairment of the blood-brain barrier (BBB) is considered to be a common feature among neurodegenerative diseases, including Alzheimer's, Parkinson's and prion diseases. In prion disease, increased BBB permeability was reported 40 years ago, yet the mechanisms behind the loss of BBB integrity have never been explored. Recently, we showed that reactive astrocytes associated with prion diseases are neurotoxic. The current work examines the potential link between astrocyte reactivity and BBB breakdown. RESULTS: In prion-infected mice, the loss of BBB integrity and aberrant localization of aquaporin 4 (AQP4), a sign of retraction of astrocytic endfeet from blood vessels, were noticeable prior to disease onset. Gaps in cell-to-cell junctions along blood vessels, together with downregulation of Occludin, Claudin-5 and VE-cadherin, which constitute tight and adherens junctions, suggested that loss of BBB integrity is linked with degeneration of vascular endothelial cells. In contrast to cells isolated from non-infected adult mice, endothelial cells originating from prion-infected mice displayed disease-associated changes, including lower levels of Occludin, Claudin-5 and VE-cadherin expression, impaired tight and adherens junctions, and reduced trans-endothelial electrical resistance (TEER). Endothelial cells isolated from non-infected mice, when co-cultured with reactive astrocytes isolated from prion-infected animals or treated with media conditioned by the reactive astrocytes, developed the disease-associated phenotype observed in the endothelial cells from prion-infected mice. Reactive astrocytes were found to produce high levels of secreted IL-6, and treatment of endothelial monolayers originating from non-infected animals with recombinant IL-6 alone reduced their TEER. Remarkably, treatment with extracellular vesicles produced by normal astrocytes partially reversed the disease phenotype of endothelial cells isolated from prion-infected animals. CONCLUSIONS: To our knowledge, the current work is the first to illustrate early BBB breakdown in prion disease and to document that reactive astrocytes associated with prion disease are detrimental to BBB integrity. Moreover, our findings suggest that the harmful effects are linked to proinflammatory factors secreted by reactive astrocytes.


Assuntos
Doenças Priônicas , Príons , Animais , Camundongos , Barreira Hematoencefálica , Astrócitos , Células Endoteliais , Claudina-5 , Interleucina-6 , Ocludina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA