Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(17): 6588-6598, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38619494

RESUMO

How timely identification and determination of pathogen species in pathogen-contaminated foods are responsible for rapid and accurate treatments for food safety accidents. Herein, we synthesize four aggregation-induced emissive nanosilicons with different surface potentials and hydrophobicities by encapsulating four tetraphenylethylene derivatives differing in functional groups. The prepared nanosilicons are utilized as receptors to develop a nanosensor array according to their distinctive interactions with pathogens for the rapid and simultaneous discrimination of pathogens. By coupling with machine-learning algorithms, the proposed nanosensor array achieves high performance in identifying eight pathogens within 1 h with high overall accuracy (93.75-100%). Meanwhile, Cronobacter sakazakii and Listeria monocytogenes are taken as model bacteria for the quantitative evaluation of the developed nanosensor array, which can successfully distinguish the concentration of C. sakazakii and L. monocytogenes at more than 103 and 102 CFU mL-1, respectively, and their mixed samples at 105 CFU mL-1 through the artificial neural network. Moreover, eight pathogens at 1 × 104 CFU mL-1 in milk can be successfully identified by the developed nanosensor array, indicating its feasibility in monitoring food hazards.


Assuntos
Microbiologia de Alimentos , Listeria monocytogenes , Aprendizado de Máquina , Listeria monocytogenes/isolamento & purificação , Cronobacter sakazakii/isolamento & purificação , Dióxido de Silício/química , Sistemas Automatizados de Assistência Junto ao Leito , Animais , Leite/microbiologia , Leite/química , Técnicas Biossensoriais , Redes Neurais de Computação
2.
Appl Environ Microbiol ; 90(7): e0070024, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-38953659

RESUMO

Cronobacter species are opportunistic pathogens that are capable of causing morbidity and mortality, particularly in infants. Although the transmission dynamics involved in Cronobacter infections remain largely unknown, contaminated powdered infant formula (PIF) has been linked to 30% of Cronobacter sakazakii cases involving invasive illness in infants. As several lines of evidence have implicated the domestic environment in PIF contamination, we undertook a microbiological survey of homes (N = 263) across the US. Cronobacter spp. and C. sakazakii were isolated from 36.1% and 24.7% of US homes, respectively, with higher recovery rates observed for floor and kitchen surfaces. Multi-locus sequence typing indicated that the dominant strain was C. sakazakii ST4, the sequence type most commonly associated with neonatal meningitis. For comparison purposes, retail foods (N = 4,009) were also surveyed, with the highest contamination frequencies (10.1%-26.3%) seen for nut products, seeds, and grains/baked goods/flours. The sequence type profile of isolates recovered from homes mirrored that of isolates recovered from retail foods, with increased representation of ST1, ST4, ST13, ST17, and ST40. Analysis of 386 whole genomic sequences revealed significant diversity. Redundancies were only observed for isolates recovered from within the same domicile, and there were no identical matches with sequences archived at the NCBI pathogen database. Genes coding for putative virulence and antibiotic resistance factors did not segregate with clinically significant sequence types. Collectively, these findings support the possibility that contamination events occurring within the home should not be overlooked as a contributor to community-onset Cronobacter infections. IMPORTANCE: Cronobacter sakazakii is an opportunistic pathogen that can cause significant morbidity and mortality in neonates. Its transmission dynamics are poorly understood, though powered infant formula (PIF) is thought to be the major transmission vehicle. How the PIF becomes contaminated remains unknown. Our survey shows that roughly 1/4 of US homes are contaminated with Cronobacter sakazakii, particularly in the kitchen setting. Our analyses suggest that the domestic environment may contribute to contamination of PIF and provides insights into mitigating the risk of transmission.


Assuntos
Cronobacter sakazakii , Microbiologia de Alimentos , Fórmulas Infantis , Cronobacter sakazakii/genética , Cronobacter sakazakii/isolamento & purificação , Cronobacter sakazakii/classificação , Estados Unidos , Humanos , Fórmulas Infantis/microbiologia , Tipagem de Sequências Multilocus , Genoma Bacteriano , Lactente , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/transmissão , Características da Família , Genômica
3.
Foodborne Pathog Dis ; 21(9): 586-592, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38963769

RESUMO

Cronobacter species are potential pathogens that can contaminate powdered infant formula. C. sakazakii and C. malonaticus are the most common species of Cronobacter associated with infections. This study mined new molecular targets for the detection of C. sakazakii and C. malonaticus by using comparative genome approaches. Specific target genes mngB and ompR were obtained and used to detect C. sakazakii and C. malonaticus, respectively. A novel detection method, termed ladder-shape melting temperature isothermal amplification (LMTIA), was developed and evaluated. The detection limit for pure C. sakazakii DNA was 1 pg per reaction and 1 fg per reaction for C. malonaticus. The C. sakazakii, C. malonaticus, and the reference stains were all correctly identified. The amplicons can be successfully visualized and identified by naked eyes when hydroxy naphthol blue dye (HNB dye) was used in the reaction. Therefore, the LMTIA assays developed in this study showed potential application for microorganism identification and detection.


Assuntos
Cronobacter sakazakii , Cronobacter , DNA Bacteriano , Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , Cronobacter sakazakii/genética , Cronobacter sakazakii/isolamento & purificação , Cronobacter sakazakii/classificação , Cronobacter/genética , Cronobacter/isolamento & purificação , Cronobacter/classificação , DNA Bacteriano/genética , Genoma Bacteriano , Fórmulas Infantis/microbiologia , Microbiologia de Alimentos , Humanos , Contaminação de Alimentos/análise , Limite de Detecção , Técnicas de Diagnóstico Molecular/métodos , Naftalenossulfonatos
4.
Bull Exp Biol Med ; 177(1): 98-103, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38963599

RESUMO

We examined the effects of elevated temperatures and biocides on survivability of food isolates of Cronobacter spp. (C. sakazakii) and concomitant enterobacteriaceae obtained in microbiological control of infant nutrition products. Increased resistance of certain strains of Cronobacter, Enterobacter cloacae, and Pantoea spp. to thermal processing was revealed. Salmonella, Pantoea, and Cronobacter bacteria were least sensitive to antimicrobial action of chlorine-containing agents. The above properties varied in the strains of the same species. Specifically, only two of three examined isolates of Cronobacter spp. demonstrated lower sensitivity to heat in comparison with the enterobacterial test-cultures of other species.


Assuntos
Cloro , Cronobacter , Desinfetantes , Microbiologia de Alimentos , Desinfetantes/farmacologia , Cronobacter/efeitos dos fármacos , Cronobacter/isolamento & purificação , Cloro/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/isolamento & purificação , Temperatura Alta , Humanos , Cronobacter sakazakii/efeitos dos fármacos , Cronobacter sakazakii/isolamento & purificação , Testes de Sensibilidade Microbiana , Salmonella/efeitos dos fármacos , Salmonella/isolamento & purificação , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/isolamento & purificação
5.
BMC Infect Dis ; 21(1): 493, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044785

RESUMO

INTRODUCTION: Cronobacter sakazakii is an opportunistic Gram-negative, rod-shaped bacterium which may be a causative agent of meningitis in premature infants and enterocolitis and bacteremia in neonates and adults. While there have been multiple cases of C. sakazakii infections, there have been no acute cholangitis cases reported in humans. CASE PRESENTATION: An 81-year-old male with a past medical history of basal cell carcinoma, alcoholic liver cirrhosis, transjugular intrahepatic portosystemic shunt procedure, complicated by staphylococcus bacteremia, pituitary tumor, glaucoma, and hypothyroidism presented to the emergency room with the complaint of diffuse and generalized 10/10 abdominal pain of 1 day's duration. There was a concern for pancreatitis, acute cholangitis, and possible cholecystitis, and the patient underwent a percutaneous cholecystostomy tube placement. Blood cultures from admission and biliary fluid cultures both grew C. sakazakii. The patient was treated with a carbapenem and clinically improved. CONCLUSIONS: The case study described a patient with multiple medical comorbidities that presented with C. sakazakii bacteremia and cholangitis. While this bacterium has been implicated in other infections, we believe this is the first time the bacteria is being documented to have caused acute cholangitis.


Assuntos
Bacteriemia/diagnóstico , Colangite/diagnóstico , Cronobacter sakazakii/isolamento & purificação , Infecções por Enterobacteriaceae/diagnóstico , Idoso de 80 Anos ou mais , Antibacterianos/uso terapêutico , Bacteriemia/complicações , Bacteriemia/terapia , Carbapenêmicos/uso terapêutico , Colangite/microbiologia , Colangite/terapia , Colecistostomia/métodos , Cronobacter sakazakii/patogenicidade , Drenagem/métodos , Infecções por Enterobacteriaceae/complicações , Infecções por Enterobacteriaceae/terapia , Humanos , Masculino , Infecções Oportunistas/diagnóstico , Infecções Oportunistas/microbiologia , Infecções Oportunistas/terapia , Reação em Cadeia da Polimerase/métodos , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
6.
Food Microbiol ; 99: 103831, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34119116

RESUMO

One immunomagnetic separation (IMS) assay based on immunomagnetic beads (IMBs) has been evaluated as a potential pretreatment tool for the separation and enrichment of target bacteria. In this study, we successfully immobilized antibodies onto magnetic bead surfaces to form IMBs through biotin and a streptavidin (SA) system to capture viable but nonculturable (VBNC) Cronobacter sakazakii (C. sakazakii) from dairy products. Various parameters that affected the capture efficiency (CE) of IMS, including the number of antibodies, IMBs dose, incubation time, magnetic separation time, and immunoreaction temperature, were systematically investigated. We further determined the optimal enrichment conditions for different dairy substrates to ensure maximum enrichment of target pathogens in the system. An IMS technique combining improved propidium monoazide (PMAxx) and droplet digital PCR (ddPCR) was established to detect the pathogenic VBNC C. sakazakii. The IMS-PMAxx-ddPCR method after IMBs enrichment showed higher accuracy when the VBNC C. sakazakii was under 1 Log10 copies/g. The detection limit for this method in a background of powdered infant formula (PIF) was 5.6 copies/g. In summary, the developed IMS-PMAxx-ddPCR method has great potential for the analysis and detection of VBNC bacteria in food.


Assuntos
Cronobacter sakazakii/crescimento & desenvolvimento , Cronobacter sakazakii/isolamento & purificação , Laticínios/microbiologia , Separação Imunomagnética/métodos , Azidas/química , Cronobacter sakazakii/química , Cronobacter sakazakii/genética , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Fórmulas Infantis/microbiologia , Viabilidade Microbiana , Reação em Cadeia da Polimerase , Propídio/análogos & derivados , Propídio/química
7.
Analyst ; 145(13): 4477-4483, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32391531

RESUMO

Cronobacter sakazakii is an important opportunistic food-borne pathogen, and it can cause severe diseases with main symptoms including neonatal meningitis, necrotizing enterocolitis, and sepsis. For the achievement of practical and convenient detection of viable C. sakazakii, a simple and robust strategy based on the cascade signal amplification of RT-PCR triggered G-quadruplex DNAzyme catalyzed reaction was firstly used to develop an effective and sensitive DNAzyme electrochemical assay. Without viable C. sakazakii in the samples there are no RT-PCR and DNAzyme products, which can cause a weak electrochemical response. Once viable C. sakazakii exists in the samples, an obvious enhancement of the electrochemical response can be achieved after the target signal is amplified by RT-PCR and the resulting DNAzyme, which catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 with the assistance of the cofactor hemin. Our novel assay can be performed in a range of 2.4 × 107 CFU mL-1 to 3.84 × 104 CFU mL-1 (R2 = 0.9863), with a detection limit of 5.01 × 102 CFU mL-1. Through the assay of 15 real samples, electrochemical detection assay provided the same results as conventional detection methods. Therefore, detection of viable C. sakazakii based on G-quadruplex DNAzyme electrochemical assay with RT-PCR demonstrates the significant advantages of high sensitivity, low cost and simple manipulation over existing approaches and offers an opportunity for potential application in pathogen detection.


Assuntos
Cronobacter sakazakii/isolamento & purificação , DNA Bacteriano/análise , DNA Catalítico/química , Técnicas Eletroquímicas/métodos , Quadruplex G , Benzidinas/química , Cronobacter sakazakii/química , DNA Bacteriano/química , Contaminação de Alimentos/análise , Hemina/química , Peróxido de Hidrogênio/química , Fórmulas Infantis/análise , Fórmulas Infantis/microbiologia , Limite de Detecção , Oxirredução , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
J Dairy Sci ; 103(11): 9969-9979, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32861498

RESUMO

The purpose of this study was to elucidate the antibacterial activity and possible mechanism of action of Amaranthus tricolor crude extract (ATCE) against Cronobacter sakazakii isolated from powdered infant formula (PIF). The antibacterial activity of ATCE was assessed by measuring the diameter of inhibition zone (DIZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The possible mechanism of action of ATCE was revealed by analyzing the effects of ATCE on growth curves and changes in cell membrane potential, intracellular pH, content of bacterial protein and genomic DNA, and cell morphology. Finally, ATCE was applied to the disinfection of C. sakazakii in biofilm on stainless steel tube. The results showed that the DIZ, MIC, and MBC of ATCE against C. sakazakii strains were from 14.35 ± 0.67 to 14.84 ± 0.67 mm, 20 mg/mL, and 40 mg/mL, respectively. Treatment with ATCE ended the logarithmic growth phase of C. sakazakii, and led to depolarization of the cell membranes, reducing intracellular pH and bacterial protein and genomic DNA contents, and resulting in cytoplasmic leakage and deformation. In addition, ATCE effectively inactivated C. sakazakii in biofilm, reducing viable bacteria by approximately 6.5 log cfu/mL bacterial count after treatment with 1 MIC (1 MIC = 20 mg/mL) of ATCE for 20 min at 25°C. Our findings showed that ATCE inactivated C. sakazakii strains isolated from PIF and has potential as a natural disinfectant to reduce the contamination of PIF by C. sakazakii.


Assuntos
Amaranthus/química , Biofilmes/efeitos dos fármacos , Misturas Complexas/farmacologia , Cronobacter sakazakii/efeitos dos fármacos , Microbiologia de Alimentos , Fórmulas Infantis/microbiologia , Biofilmes/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Misturas Complexas/isolamento & purificação , Cronobacter sakazakii/crescimento & desenvolvimento , Cronobacter sakazakii/isolamento & purificação , Cronobacter sakazakii/ultraestrutura , Humanos , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana
9.
Appl Environ Microbiol ; 85(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30446557

RESUMO

Cronobacter sakazakii is a xerotolerant neonatal pathogen epidemiologically linked to powdered infant food formula, often resulting in high mortality rates. Here, we used transcriptome sequencing (RNA-seq) to provide transcriptional insights into the survival of C. sakazakii in desiccated conditions. Our RNA-seq data show that about 22% of the total C. sakazakii genes were significantly upregulated and 9% were downregulated during desiccation survival. When reverse transcription-quantitative PCR (qRT-PCR) was used to validate the RNA-seq data, we found that the primary desiccation response was gradually downregulated during the tested 4 hours of desiccation, while the secondary response remained constitutively upregulated. The 4-hour desiccation tolerance of C. sakazakii was dependent on the immediate microenvironment surrounding the bacterial cell. The removal of Trypticase soy broth (TSB) salts and the introduction of sterile infant formula residues in the microenvironment enhanced the desiccation survival of C. sakazakii SP291. The trehalose biosynthetic pathway encoded by otsA and otsB, a prominent secondary bacterial desiccation response, was highly upregulated in desiccated C. sakazakiiC. sakazakii SP291 ΔotsAB was significantly inhibited compared with the isogenic wild type in an 8-hour desiccation survival assay, confirming the physiological importance of trehalose in desiccation survival. Overall, we provide a comprehensive RNA-seq-based transcriptional overview along with confirmation of the phenotypic importance of trehalose metabolism in Cronobacter sakazakii during desiccation.IMPORTANCECronobacter sakazakii is a pathogen of importance to neonatal health and is known to persist in dry food matrices, such as powdered infant formula (PIF) and its associated production environment. When infections are reported in neonates, mortality rates can be high. The success of this bacterium in surviving these low-moisture environments suggests that Cronobacter species can respond to a variety of environmental signals. Therefore, understanding those signals that aid the persistence of this pathogen in these ecological niches is an important step toward the development of strategies to reduce the risk of contamination of PIF. This research led to the identification of candidate genes that play a role in the persistence of this pathogen in desiccated conditions and, thereby, serve as a model target to design future strategies to mitigate PIF-associated survival of C. sakazakii.


Assuntos
Cronobacter sakazakii/genética , Infecções por Enterobacteriaceae/microbiologia , RNA Bacteriano/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cronobacter sakazakii/classificação , Cronobacter sakazakii/isolamento & purificação , Cronobacter sakazakii/metabolismo , Humanos , Fórmulas Infantis/microbiologia , RNA Bacteriano/metabolismo , Análise de Sequência de RNA , Transcrição Gênica , Trealose/metabolismo
10.
J Dairy Sci ; 102(7): 6023-6026, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31056322

RESUMO

Cronobacter turicensis is a food-borne pathogen found in dairy products. It has been reported to cause bacteremia and enteritis in immunocompromised people, especially infants. Cronobacter turicensis has been isolated from various food sources, and contaminated powdered infant formula was found to be the most common source of infection among infants. Although some gene targets are used for the identification of C. turicensis, they are not specific at the species level. In this study, we analyzed the genome sequence of C. turicensis by bioinformatics and identified 13 specific gene targets. Primer sets targeting these sequences were designed and selected based on their specificity. Finally, primer set CT11, targeting gene CTU_19580, which codes for a hypothetical protein, was selected for development of the PCR assay because it alone produced positive PCR results for C. turicensis. To our knowledge, this is the first time that this gene target has been used to develop PCR detection assays for C. turicensis. The specific PCR assay had detection limits as low as 760 fg/µL for genomic DNA (approximately 158 copies/µL of DNA) and could detect C. turicensis in powdered infant formula with initial cell concentrations as low as 8.5 cfu per 10 g of powdered infant formula after 10 h of enrichment. Thus, this PCR assay is highly sensitive and can be used for rapid detection of C. turicensis.


Assuntos
Cronobacter sakazakii/isolamento & purificação , DNA Bacteriano/análise , Marcação de Genes , Genoma Bacteriano , Reação em Cadeia da Polimerase/métodos , Sequência de Bases , Biologia Computacional , Cronobacter sakazakii/classificação , Cronobacter sakazakii/genética
11.
Clin Infect Dis ; 67(2): 269-274, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29394356

RESUMO

Background: Cronobacter sakazakii causes severe neonatal infections, but we know little about gut carriage of this pathogen in very low birthweight infants. Methods: We sequenced 16S ribosomal RNA (rRNA) genes from 2304 stools from 121 children at St Louis Children's Hospital whose birthweight was ≤1500 g, attempted to isolate C. sakazakii from 157 of these stools, genome-sequenced the recovered isolates, and sought correlations between indices of Cronobacter excretion, host characteristics, and unit formula use. Results: Of these 2304 stools, 1271 (55.2%) contained Cronobacter rRNA gene sequences. The median (interquartile range) per-subject percentage of specimens with at least 1 Cronobacter sequence and the median per-subject read density were 57.1 (25.5-87.3) and 0.07 (0.01-0.67), respectively. There was no variation according to commercially prepared liquid vs powdered formula use in the neonatal intensive care unit, or the day of life that specimens were produced. However, the proportion of specimens containing >4.0% of reads mapping to Cronobacter fell from 4.3% to 0.9% after powdered infant formula was discontinued (P < .0001). We isolated sequence type 4 (ST4) C. sakazakii from multiple specimens from 2 subjects; 1 also harbored sequence type 233. The sequenced ST4 isolates from the 2 subjects had >99.9% sequence identity in the approximately 93% of best-match reference genome that they contained, and shared multiple virulence loci. Conclusions: Very low birthweight infants excrete putatively pathogenic Cronobacter. High-density Cronobacter sequence samples were more common during the use of powdered infant formula. Better understanding of the ecology of Cronobacter in infant guts will inform future prevention and control strategies.


Assuntos
Portador Sadio/microbiologia , Cronobacter sakazakii/isolamento & purificação , Trato Gastrointestinal/microbiologia , Estudos de Coortes , Cronobacter sakazakii/genética , DNA Bacteriano/genética , Infecções por Enterobacteriaceae/microbiologia , Fezes/microbiologia , Microbiologia de Alimentos , Genoma Bacteriano , Genótipo , Humanos , Fórmulas Infantis/microbiologia , Recém-Nascido , Recém-Nascido Prematuro , Recém-Nascido de muito Baixo Peso , RNA Ribossômico 16S/genética , Fatores de Virulência/genética
12.
BMC Genomics ; 19(1): 506, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29954347

RESUMO

BACKGROUND: Cronobacter species are associated with severe foodborne infections in neonates and infants, with particular pathovars associated with specific clinical presentations. However, before 2008 the genus was regarded as a single species named Enterobacter sakazakii which was subdivided into 8 phenotypes. This study re-analyzed, using multi-locus sequence typing (MLST) and whole genome sequence with single nucleotide polymorphism analysis (WGS-SNP), 52 strains which had been identified as Enterobacter sakazakii as according to the convention at the time of isolation. These strains had been isolated from dairy product imports into China from 9 countries between 2005 and 6. Bioinformatic analysis was then used to analyze the relatedness and global dissemination of these strains. RESULT: FusA allele sequencing revealed that 49/52 strains were Cronobacter sakazakii, while the remaining 3 strains were Escherichia coli, Enterobacter cloacae, and Franconibacter helveticus. The C. sakazakii strains comprised of 8 sequence types (STs) which included the neonatal pathovars ST1, ST4 and ST12. The predominant sequence type was ST13 (65.3%, 32/49) which had been isolated from dairy products imported from 6 countries. WGS-SNP analysis of the 32 C. sakazakii ST13 strains revealed 5 clusters and 5 unique strains which did not correlate with the country of product origin. CONCLUSION: The mis-identification of E. coli, E. cloacae and F. helveticus as Cronobacter spp. reinforces the need to apply reliable methods to reduce the incidence of false positive and false negative results which may be of clinical significance. The WGS-SNP analysis demonstrated that indistinguishable Cronobacter strains within a sequence type can be unrelated, and may originate from multiple sources. The use of WGS-SNP analysis to distinguishing of strains within a sequence type has important relevance for tracing the source of outbreaks due to Cronobacter spp.


Assuntos
Cronobacter sakazakii/genética , DNA Bacteriano/isolamento & purificação , Laticínios/microbiologia , Proteínas de Bactérias/genética , China , Cronobacter sakazakii/classificação , Cronobacter sakazakii/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Microbiologia de Alimentos , Humanos , Tipagem de Sequências Multilocus , Fator G para Elongação de Peptídeos/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Sorogrupo , Sequenciamento Completo do Genoma
13.
Emerg Infect Dis ; 24(2): 393-394, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29350166

RESUMO

Cronobacter sakazakii neonatal infections are often epidemiologically linked to the consumption of contaminated powdered infant formula. We describe a case resulting from consumption of contaminated expressed breast milk, as confirmed by whole-genome sequencing. This case highlights potential risks associated with storage and acquisition of expressed breast milk.


Assuntos
Cronobacter sakazakii/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Leite Humano/microbiologia , Austrália/epidemiologia , Extração de Leite/instrumentação , Extração de Leite/métodos , Infecções por Enterobacteriaceae/epidemiologia , Contaminação de Equipamentos , Evolução Fatal , Feminino , Microbiologia de Alimentos , Humanos , Recém-Nascido , Masculino
14.
Lett Appl Microbiol ; 66(4): 329-339, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29341217

RESUMO

Acetoacetate (AAA) was identified as a biofilm inhibitor in a previous study, where the effect of 190 carbon and nitrogen sources on biofilm amounts by Escherichia coli O157:H7 was determined. With this study, we tested the effect of AAA on growth and biofilm amounts of Cronobacter sakazakii, Serratia marcescens and Yersinia enterocolitica. AAA reduced growth and biofilm amounts of the three pathogens, albeit at rather high concentrations of 10 to 35 mg ml-1 . Acetoacetate at a concentration of 5 mg ml-1 reduced Y. enterocolitica mRNA transcripts of the flagellar master regulator operon flhD, the invasion gene inv, and the adhesion gene yadA. Transcription of the regulator of plasmid-encoded virulence genes virF, the plasmid-encoded virulence gene yopQ, and ymoA were largely unaffected by AAA. Importantly, AAA did not cause an increase in transcription of any of the tested virulence genes. As a more cost efficient homologue of AAA, the effect of ethyl acetoacetate (EAA) was tested. EAA reduced growth, biofilm amounts and live bacterial cell counts up to 3 logs. IC50 values ranged from 0·31 mg ml-1 to 5·6 mg ml-1 . In summary, both AAA and EAA inhibit biofilm, but EAA appears to be more effective. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacterial biofilms are communities of bacteria that form on surfaces and are extremely difficult to remove by conventional physical or chemical techniques, antibiotics or the human immune system. Despite advanced technologies, biofilm still contributes to 60 to 80% of human bacterial infections (NIH and CDC) and cause problems in many natural, environmental, bioindustrial or food processing settings. The discovery of novel substances that inhibit biofilm without increasing the virulence of the bacteria opens doors for countless applications where a reduction of biofilm is desired.


Assuntos
Acetoacetatos/farmacologia , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Cronobacter sakazakii/crescimento & desenvolvimento , Escherichia coli O157/crescimento & desenvolvimento , Serratia marcescens/crescimento & desenvolvimento , Yersinia enterocolitica/crescimento & desenvolvimento , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Cronobacter sakazakii/isolamento & purificação , Proteínas de Ligação a DNA/genética , Escherichia coli O157/isolamento & purificação , Expressão Gênica/efeitos dos fármacos , Humanos , Óperon , Plasmídeos , Serratia marcescens/isolamento & purificação , Virulência/genética , Yersinia enterocolitica/isolamento & purificação , Yersinia enterocolitica/patogenicidade
15.
J Dairy Sci ; 101(5): 3835-3843, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29501338

RESUMO

Cronobacter sakazakii is an opportunistic foodborne pathogen that can infect newborns through powdered infant formula (PIF). In this study, we developed a novel enhanced lateral flow immunoassay (LFA) with enhanced sensitivity for detection of C. sakazakii in PIF by the naked eye. The proposed strategy for signal enhancement of the traditional LFA used concentrated gold nanoparticles (AuNP) as the enhancer to conjugate with capture antibodies, which could increase the immobilized capture antibodies concentration at the detection zone to improve capture efficiency. Besides, the detection signal was further amplified by accumulated AuNP as the C. sakazakii labeled with AuNP probes was captured by antibodies conjugated with enhancer at the test line. We also studied the effect of different concentrations of capture antibodies and concentrated AuNP on detection performance, and found that 2.2 mg/mL of capture antibodies and 0.06 nM concentrated AuNP were the optimal combination that could avoid a false-positive signal and maximally amplify the detection signal of the enhanced LFA. Using this strategy, the detection sensitivity of the enhanced LFA was 103 cfu/mL and improved 100-fold compared with traditional LFA. The strip was highly specific to C. sakazakii, and the time for detection of C. sakazakii in PIF was shortened by 3 h. In summary, the enhanced LFA developed by the addition of concentrated AuNP as the enhancer can be used as a sensitive, rapid, visual qualitative and point-of-care test method for detecting target analytes.


Assuntos
Cronobacter sakazakii/isolamento & purificação , Contaminação de Alimentos/análise , Imunoensaio/métodos , Fórmulas Infantis/microbiologia , Cronobacter sakazakii/crescimento & desenvolvimento , Ouro/química , Imunoensaio/instrumentação , Fórmulas Infantis/análise , Nanopartículas Metálicas/química , Pós/análise , Especificidade da Espécie
16.
Sensors (Basel) ; 18(7)2018 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941806

RESUMO

Cronobacter sakazakii is a foodborne pathogen that can cause a rare, septicemia, life-threatening meningitis, and necrotizing enterocolitis in infants. In general, standard methods for pathogen detection rely on culture, plating, colony counting and polymerase chain reaction DNA-sequencing for identification, which are time, equipment and skill demanding. Recently, nanoparticle- and surface-based immunoassays have increasingly been explored for pathogen detection. We investigate the functionalization of gold nanoparticles optimized for irreversible and specific binding to C. sakazakii and their use for spectroscopic detection of the pathogen. We demonstrate how 40-nm gold nanoparticles grafted with a poly(ethylene glycol) brush and functionalized with polyclonal antibodies raised against C. sakazakii can be used to specifically target C. sakazakii. The strong extinction peak of the Au nanoparticle plasmon polariton resonance in the optical range is used as a label for detection of the pathogens. Individual binding of the nanoparticles to the C. sakazakii surface is also verified by transmission electron microscopy. We show that a high degree of surface functionalization with anti-C. sakazakii optimizes the detection and leads to a detection limit as low as 10 CFU/mL within 2 h using a simple cuvette-based UV-Vis spectrometric readout that has great potential for further optimization.


Assuntos
Cronobacter sakazakii/imunologia , Cronobacter sakazakii/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Ouro/imunologia , Nanopartículas Metálicas , Animais , Cronobacter sakazakii/patogenicidade , Infecções por Enterobacteriaceae/diagnóstico , Humanos , Lactente , Limite de Detecção , Reação em Cadeia da Polimerase , Coelhos
17.
Artigo em Inglês | MEDLINE | ID: mdl-27855074

RESUMO

We report the presence of mcr-1 in Escherichia coli and carbapenem-resistant Cronobacter sakazakii from the same diseased chicken. The mcr-1 gene linked with ISApl1 was located on two different IncI2 plasmids, including one multidrug plasmid in E. coli, whereas fosA3-blaNDM-9 was on an IncB/O plasmid in C. sakazakii The development of the fosA3-blaNDM-9 resistance region was mediated by IS26 The colocation of mcr-1 or blaNDM-9 with other resistance genes will accelerate the dissemination of the two genes.


Assuntos
Colistina/farmacologia , Cronobacter sakazakii/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Animais , Antibacterianos/farmacologia , Galinhas/microbiologia , China , Cronobacter sakazakii/genética , Cronobacter sakazakii/isolamento & purificação , Farmacorresistência Bacteriana/efeitos dos fármacos , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/veterinária , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Testes de Sensibilidade Microbiana , Plasmídeos/efeitos dos fármacos , Plasmídeos/genética , beta-Lactamases/genética
18.
Anal Chem ; 89(19): 10194-10200, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28881135

RESUMO

Recent outbreaks of life-threatening neonatal infections linked to Enterobacter sakazakii (ES) heightened the need to develop rapid and ultrasensitive detection strategies, especially those capable of determining the viable cells. This study introduced a continual cascade nanozyme biosensor for the detection of viable ES based on propidium monoazide (PMA), loop-mediated isothermal amplification (LAMP), and Nanozyme strip. The ompA gene of ES was determined using FITC-modified and BIO-modified primers in the LAMP process. LAMP combined with PMA treatment was applied for distinguishing the viable from the dead state of ES. Then, using Fe3O4 magnetic nanoparticles as a nanozyme probe, a magnetic nanoparticle (MNP)-based immunochromatographic strip (Nanozyme strip) was further employed for amplifying signal to allow visual detection and quantification by a strip reader. The LAMP products were sandwiched between the anti-FITC and the anti-BIO, and the accumulation of the Fe3O4 magnetic nanoparticles enabled the visual detection of ES. The detection limit of the nanozyme biosensor was improved by 10 CFU/mL compared with previously reported techniques, and the whole manipulation process was much faster (within 1 h) and simpler (without specialist facilities). Hence, the developed continual cascade nanozyme biosensor has provided a rapid, ultrasensitive, and simple tool for on-site detection of viable ES.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Técnicas Biossensoriais/métodos , Cronobacter sakazakii/metabolismo , DNA Bacteriano/metabolismo , Nanopartículas de Magnetita/química , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Azidas/química , Cronobacter sakazakii/isolamento & purificação , Primers do DNA/química , Primers do DNA/metabolismo , DNA Bacteriano/química , Óxido Ferroso-Férrico/química , Fluoresceína-5-Isotiocianato/química , Imunoensaio , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico , Propídio/análogos & derivados , Propídio/química
19.
Curr Microbiol ; 74(5): 560-565, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28258294

RESUMO

Cronobacter sakazakii is an emerging pathogen causing meningitis, sepsis and necrotizing enterocolitis in neonates and immune-compromised adults. The present study describes the profiling of different virulence factors associated with C. sakazakii isolates derived from plant-based materials and environmental samples (soil, water, and vacuum dust). All the isolates exhibited ß-hemolysis and chitinase activity, and were able to utilize inositol. Among the nine virulence-associated genes, hly gene coding for hemolysin was detected in all the isolates followed by ompA (outer membrane protein); however, plasmid-borne genes were detected at a level of 60% for both cpa (cronobacter plasminogen activator) and eitA (Ferric ion transporter protein) gene, respectively. Furthermore, the isolate C. sakazakii N81 showed cytotoxicity for Caco-2 cells. The presence of the virulence determinants investigated in this study indicates the pathogenic potential of C. sakazakii with their plausible connection with clinical manifestations.


Assuntos
Cronobacter sakazakii/patogenicidade , Microbiologia Ambiental , Plantas/microbiologia , Fatores de Virulência , Linhagem Celular , Sobrevivência Celular , Células Cultivadas , Cronobacter sakazakii/genética , Cronobacter sakazakii/isolamento & purificação , Infecções por Enterobacteriaceae/microbiologia , Perfilação da Expressão Gênica , Humanos , Característica Quantitativa Herdável , Fatores de Virulência/genética
20.
Food Microbiol ; 65: 44-50, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28400018

RESUMO

Cronobacter spp. cause infant disease, several cases have been associated with powdered infant formulae (PIF). In the early 2000s, contamination of German PIF with these opportunistic pathogens was quite common. Before 2008, all isolates Cronobacter spp. had been classified as Enterobacter sakazakii, therefore little is known about species diversity within such isolates. Genetic, serologic, and biochemical traits of 80 Cronobacter isolates, originally obtained 2003-2006 within infant food surveys in Germany, were reassessed in this study. By sequencing of the fusA gene, all isolates were unambiguously assigned to two species, C. sakazakii (n = 73) and C. malonaticus (n = 7). PCR serotyping identified five C. sakazakii serotypes and two C. malonaticus serotypes, biochemical profiling yielded five biogroups. PFGE analysis also showed high heterogeneity in both species. Multilocus sequence typing of 26 selected isolates yielded 16 different sequence types (ST), including C. sakazakii ST 1 (n = 6) and the highly virulent ST 4 (n = 2). The results suggest that just two, but highly heterogeneous species were responsible for the Cronobacter contamination problem which challenged the German PIF industry in the beginning of this century. This fact may have influenced the success of efforts to identify and eliminate sources of contamination.


Assuntos
Cronobacter sakazakii/isolamento & purificação , Cronobacter/classificação , Cronobacter/genética , Microbiologia de Alimentos , Fórmulas Infantis/microbiologia , Técnicas de Tipagem Bacteriana , Cronobacter/isolamento & purificação , Cronobacter sakazakii/classificação , Cronobacter sakazakii/genética , Genótipo , Alemanha , Humanos , Lactente , Tipagem de Sequências Multilocus , Fator G para Elongação de Peptídeos/genética , Reação em Cadeia da Polimerase , Estudos Retrospectivos , Sorotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA