Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 754
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(24): e2216574120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276415

RESUMO

The immune deficiency (IMD) pathway is critical for elevating host immunity in both insects and crustaceans. The IMD pathway activation in insects is mediated by peptidoglycan recognition proteins, which do not exist in crustaceans, suggesting a previously unidentified mechanism involved in crustacean IMD pathway activation. In this study, we identified a Marsupenaeus japonicus B class type III scavenger receptor, SRB2, as a receptor for activation of the IMD pathway. SRB2 is up-regulated upon bacterial challenge, while its depletion exacerbates bacterial proliferation and shrimp mortality via abolishing the expression of antimicrobial peptides. The extracellular domain of SRB2 recognizes bacterial lipopolysaccharide (LPS), while its C-terminal intracellular region containing a cryptic RHIM-like motif interacts with IMD, and activates the pathway by promoting nuclear translocation of RELISH. Overexpressing shrimp SRB2 in Drosophila melanogaster S2 cells potentiates LPS-induced IMD pathway activation and diptericin expression. These results unveil a previously unrecognized SRB2-IMD axis responsible for antimicrobial peptide induction and restriction of bacterial infection in crustaceans and provide evidence of biological diversity of IMD signaling in animals. A better understanding of the innate immunity of crustaceans will permit the optimization of prevention and treatment strategies against the arising shrimp diseases.


Assuntos
Crustáceos , Animais , Crustáceos/genética , Crustáceos/imunologia , Crustáceos/metabolismo , Crustáceos/microbiologia , Drosophila melanogaster , Lipopolissacarídeos , Receptores de Reconhecimento de Padrão/genética , Receptores de Reconhecimento de Padrão/metabolismo , Regulação para Cima , Vibrio , Transdução de Sinais , Humanos
2.
J Biol Chem ; 299(12): 105463, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977221

RESUMO

Ferroptosis, characterized by iron-dependent cell death, has recently emerged as a critical defense mechanism against microbial infections. The present study aims to investigate the involvement of exosomes in the induction of ferroptosis and the inhibition of bacterial infection in crustaceans. Our findings provide compelling evidence for the pivotal role of exosomes in the immune response of crustaceans, wherein they facilitate intracellular iron accumulation and activate the ferroptotic pathways. Using RNA-seq and bioinformatic analysis, we demonstrate that cytochrome P450 (CYP) can effectively trigger ferroptosis. Moreover, by conducting an analysis of exosome cargo proteins, we have identified the participation of six-transmembrane epithelial antigen of prostate 4 in the regulation of hemocyte ferroptotic sensitivity. Subsequent functional investigations unveil that six-transmembrane epithelial antigen of prostate 4 enhances cellular Fe2+ levels, thereby triggering Fenton reactions and accelerating CYP-mediated lipid peroxidation, ultimately culminating in ferroptotic cell death. Additionally, the Fe2+-dependent CYP catalyzes the conversion of arachidonic acid into 20-hydroxyeicosatetraenoic acid, which activates the peroxisome proliferator-activated receptor. Consequently, the downstream target of peroxisome proliferator-activated receptor, cluster of differentiation 36, promotes intracellular fatty acid accumulation, lipid peroxidation, and ferroptosis. These significant findings shed light on the immune defense mechanisms employed by crustaceans and provide potential strategies for combating bacterial infections in this species.


Assuntos
Bactérias , Crustáceos , Exossomos , Ferroptose , Ferro , Sistema Enzimático do Citocromo P-450/metabolismo , Exossomos/metabolismo , Ferroptose/fisiologia , Ferro/metabolismo , Peroxidação de Lipídeos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Oxirredutases/metabolismo , Proteínas de Membrana/metabolismo , Antígenos CD36/metabolismo , RNA-Seq , Compostos Ferrosos/metabolismo , Crustáceos/citologia , Crustáceos/genética , Crustáceos/metabolismo , Crustáceos/microbiologia , Ácidos Hidroxieicosatetraenoicos , Ácido Araquidônico/metabolismo , Ácidos Graxos/metabolismo , Bactérias/metabolismo
3.
Microb Cell Fact ; 23(1): 126, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698402

RESUMO

BACKGROUND: Hydrocarbon pollution stemming from petrochemical activities is a significant global environmental concern. Bioremediation, employing microbial chitinase-based bioproducts to detoxify or remove contaminants, presents an intriguing solution for addressing hydrocarbon pollution. Chitooligosaccharides, a product of chitin degradation by chitinase enzymes, emerge as key components in this process. Utilizing chitinaceous wastes as a cost-effective substrate, microbial chitinase can be harnessed to produce Chitooligosaccharides. This investigation explores two strategies to enhance chitinase productivity, firstly, statistical optimization by the Plackett Burman design approach to  evaluating the influence of individual physical and chemical parameters on chitinase production, Followed by  response surface methodology (RSM) which delvs  into the interactions among these factors to optimize chitinase production. Second, to further boost chitinase production, we employed heterologous expression of the chitinase-encoding gene in E. coli BL21(DE3) using a suitable vector. Enhancing chitinase activity not only boosts productivity but also augments the production of Chitooligosaccharides, which are found to be used as emulsifiers. RESULTS: In this study, we focused on optimizing the production of chitinase A from S. marcescens using the Plackett Burman design and response surface methods. This approach led to achieving a maximum activity of 78.65 U/mL. Subsequently, we cloned and expressed the gene responsible for chitinase A in E. coli BL21(DE3). The gene sequence, named SmChiA, spans 1692 base pairs, encoding 563 amino acids with a molecular weight of approximately 58 kDa. This sequence has been deposited in the NCBI GenBank under the accession number "OR643436". The purified recombinant chitinase exhibited a remarkable activity of 228.085 U/mL, with optimal conditions at a pH of 5.5 and a temperature of 65 °C. This activity was 2.9 times higher than that of the optimized enzyme. We then employed the recombinant chitinase A to effectively hydrolyze shrimp waste, yielding chitooligosaccharides (COS) at a rate of 33% of the substrate. The structure of the COS was confirmed through NMR and mass spectrometry analyses. Moreover, the COS demonstrated its utility by forming stable emulsions with various hydrocarbons. Its emulsification index remained stable across a wide range of salinity, pH, and temperature conditions. We further observed that the COS facilitated the recovery of motor oil, burned motor oil, and aniline from polluted sand. Gravimetric assessment of residual hydrocarbons showed a correlation with FTIR analyses, indicating the efficacy of COS in remediation efforts. CONCLUSIONS: The recombinant chitinase holds significant promise for the biological conversion of chitinaceous wastes into chitooligosaccharides (COS), which proved its potential in bioremediation efforts targeting hydrocarbon-contaminated sand.


Assuntos
Biodegradação Ambiental , Quitinases , Quitosana , Oligossacarídeos , Proteínas Recombinantes , Quitinases/metabolismo , Quitinases/genética , Oligossacarídeos/metabolismo , Animais , Quitosana/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Quitina/metabolismo , Hidrocarbonetos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/genética , Crustáceos/metabolismo , Emulsificantes/metabolismo , Emulsificantes/química
4.
Biol Lett ; 20(5): 20230585, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746983

RESUMO

Genes from ancient families are sometimes involved in the convergent evolutionary origins of similar traits, even across vast phylogenetic distances. Sulfotransferases are an ancient family of enzymes that transfer sulfate from a donor to a wide variety of substrates, including probable roles in some bioluminescence systems. Here, we demonstrate multiple sulfotransferases, highly expressed in light organs of the bioluminescent ostracod Vargula tsujii, transfer sulfate in vitro to the luciferin substrate, vargulin. We find luciferin sulfotransferases (LSTs) of ostracods are not orthologous to known LSTs of fireflies or sea pansies; animals with distinct and convergently evolved bioluminescence systems compared to ostracods. Therefore, distantly related sulfotransferases were independently recruited at least three times, leading to parallel evolution of luciferin metabolism in three highly diverged organisms. Reuse of homologous genes is surprising in these bioluminescence systems because the other components, including luciferins and luciferases, are completely distinct. Whether convergently evolved traits incorporate ancient genes with similar functions or instead use distinct, often newer, genes may be constrained by how many genetic solutions exist for a particular function. When fewer solutions exist, as in genetic sulfation of small molecules, evolution may be more constrained to use the same genes time and again.


Assuntos
Crustáceos , Sulfotransferases , Animais , Sulfotransferases/metabolismo , Sulfotransferases/genética , Crustáceos/enzimologia , Crustáceos/genética , Crustáceos/metabolismo , Filogenia , Evolução Molecular , Luminescência
5.
Fish Shellfish Immunol ; 145: 109361, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185393

RESUMO

C-type lectins (CTLs) function as pattern recognition receptors (PRRs) by recognizing invading microorganisms, thereby triggering downstream immune events against infected pathogens. In this study, a novel CTL containing a low-density lipoprotein receptor class A (LDLa) domain was obtained from Litopenaeus vannamei, designed as LvLDLalec. Stimulation by the bacterial pathogen Vibrio anguillarum (V. anguillarum) resulted in remarkable up-regulation of LvLDLalec, as well as release of LvLDLalec into hemolymph. The rLvLDLalec protein possessed broad-spectrum bacterial binding and agglutinating activities, as well as hemocyte attachment ability. Importantly, LvLDLalec facilitated the bacterial clearance in shrimp hemolymph and protected shrimp from bacterial infection. Further studies revealed that LvLDLalec promoted hemocytes phagocytosis against V. anguillarum and lysosomes were involved in the process. Meanwhile, LvLDLalec participated in humoral immunity through activating and inducing nuclear translocation of Dorsal to regulate phagocytosis-related genes and antimicrobial peptides (AMPs) genes, thereby accelerated the removal of invading pathogens in vivo and improved the survival rate of L. vannamei. These results unveil that LvLDLalec serves as a PRR participate in cellular and humoral immunity exerting opsonin activity to play vital roles in the immune regulatory system of L. vannamei.


Assuntos
Infecções Bacterianas , Penaeidae , Animais , Lectinas Tipo C/genética , Fagocitose , Receptores de Reconhecimento de Padrão/genética , Bactérias/metabolismo , Crustáceos/metabolismo , Imunidade Inata/genética , Hemócitos , Proteínas de Artrópodes/genética
6.
Genetica ; 151(6): 339-348, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37831421

RESUMO

The light-dark cycle significantly impacts the growth and development of animals. Mantis shrimps (Oratosquilla oratoria) receive light through their complex photoreceptors. To reveal the adaptive expression mechanism of the mantis shrimp induced in a dark environment, we performed comparative transcriptome analysis with O. oratoria cultured in a light environment (Oo-L) as the control group and O. oratoria cultured in a dark environment (Oo-D) as the experimental group. In the screening of differentially expressed genes (DEGs) between the Oo-L and Oo-D groups, a total of 88 DEGs with |log2FC| > 1 and FDR < 0.05 were identified, of which 78 were upregulated and 10 were downregulated. Then, FBP1 and Pepck were downregulated in the gluconeogenesis pathway, and MKNK2 was upregulated in the MAPK classical pathway, which promoted cell proliferation and differentiation, indicating that the activity of mantis shrimp was slowed and the metabolic rate decreases in the dark environment. As a result, the energy was saved for its growth and development. At the same time, we performed gene set enrichment analysis (GSEA) on all DEGs. In the KEGG pathway analysis, each metabolic pathway in the dark environment showed a slowing trend. GO was enriched in biological processes such as eye development, sensory perception and sensory organ development. The study showed that mantis shrimp slowed down metabolism in the dark, while the role of sensory organs prominent. It provides important information for further understanding the energy metabolism and has great significance to study the physiology of mantis shrimp in dark environment.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Crustáceos/genética , Crustáceos/metabolismo
7.
Molecules ; 28(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175194

RESUMO

One-step fermentation, inoculated with Lactobacillus fermentum (L. fermentum) in shrimp by-products, was carried out to obtain chitin and flavor protein hydrolysates at the same time. The fermentation conditions were optimized using response surface methodology, resulting in chitin with a demineralization rate of 89.48%, a deproteinization rate of 85.11%, and a chitin yield of 16.3%. The surface of chitin after fermentation was shown to be not dense, and there were a lot of pores. According to Fourier transform infrared spectroscopy and X-ray diffraction patterns, the fermented chitin belonged to α-chitin. More than 60 volatiles were identified from the fermentation broth after chitin extraction using gas chromatography-ion transfer spectrometry analysis. L. fermentum fermentation decreased the intensities of volatile compounds related to unsaturated fatty acid oxidation or amino acid deamination. By contrast, much more pleasant flavors related to fruity and roasted aroma were all enhanced in the fermentation broth. Our results suggest an efficient one-step fermentation technique to recover chitin and to increase aroma and flavor constituents from shrimp by-products.


Assuntos
Quitina , Lactobacillus , Animais , Quitina/química , Fermentação , Lactobacillus/metabolismo , Hidrolisados de Proteína/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Crustáceos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
8.
J Exp Zool B Mol Dev Evol ; 338(6): 342-359, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35486026

RESUMO

Body organization within arthropods is enormously diverse, but a fusion of segments into "functional groups" (tagmatization) is found in all species. Within Tetraconata/Pancrustacea, an anterior head, a locomotory thorax region, and a posterior, mostly limbless tagma known as the abdomen is present. The posterior-most tagma in crustaceans is frequently confused with the malacostracan, for example, decapod pleon often misleadingly termed abdomen, however, its evolutionary and developmental origin continues to pose a riddle, especially the completely limbless abdomen of the "entomostracan morphotype" (e.g., fairy shrimps). Since the discovery of Hox genes and their involvement in specifying the morphology or identity of segments, tagmata, or regions along the anteroposterior axis of an organism, only a few studies have focused on model organisms representing the "entomostracan morphotype" and used a variety of dedicated Hox genes and their transcription products to shine light on abdomen formation. The homeotic genes or the molecular processes that determine the identity of the entomostracan abdomen remain unknown to date. This study focuses on the "entomostracan morphotype" representative Derocheilocaris remanei (Mystacocarida). We present a complete overview of development throughout larval stages and investigate homeotic gene expression data using the antibody FP6.87 that binds specifically to epitopes of Ultrabithorax/Abdominal-A proteins. Our results suggest that the abdomen in Mystacocarida is bipartite (abdomen I + abdomen II). We suggest that the limbless abdomen is an evolutionary novelty that evolved several times independently within crustaceans and which might be the result of a progressive reduction of former thoracic segments into abdominal segments.


Assuntos
Artrópodes , Animais , Artrópodes/genética , Padronização Corporal , Crustáceos/anatomia & histologia , Crustáceos/genética , Crustáceos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas
9.
Mar Drugs ; 20(5)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35621961

RESUMO

Marine crustacean waste has not been fully utilized and is a rich source of chitin. Enzymatic degradation has attracted the wide attention of researchers due to its unique biocatalytic ability to protect the environment. Chitosan (CTS) and its derivative chitosan oligosaccharides (COSs) with various biological activities can be obtained by the enzymatic degradation of chitin. Many studies have shown that chitosan and its derivatives, chitosan oligosaccharides (COSs), have beneficial properties, including lipid-lowering, anti-inflammatory and antitumor activities, and have important application value in the medical treatment field, the food industry and agriculture. In this review, we describe the classification, biochemical characteristics and catalytic mechanisms of the major degrading enzymes: chitinases, chitin deacetylases (CDAs) and chitosanases. We also introduced the technology for enzymatic design and modification and proposed the current problems and development trends of enzymatic degradation of chitin polysaccharides. The discussion on the characteristics and catalytic mechanism of chitosan-degrading enzymes will help to develop new types of hydrolases by various biotechnology methods and promote their application in chitosan.


Assuntos
Quitinases , Quitosana , Animais , Quitina/química , Quitinases/metabolismo , Quitosana/química , Crustáceos/metabolismo , Oligossacarídeos/química
10.
Molecules ; 27(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897896

RESUMO

Chitin, the second richest polymer in nature, is composed of the monomer N-acetylglucosamine (GlcNAc), which has numerous functions and is widely applied in the medical, food, and chemical industries. However, due to the highly crystalline configuration and low accessibility in water of the chitin resources, such as shrimp and crab shells, the chitin is difficult utilize, and the traditional chemical method causes serious environment pollution and a waste of resources. In the present study, three genes encoding chitinolytic enzymes, including the N-acetylglucosaminidase from Ostrinia furnacalis (OfHex1), endo-chitinase from Trichoderma viride (TvChi1), and multifunctional chitinase from Chitinolyticbacter meiyuanensis (CmChi1), were expressed in the Pichia pastoris system, and the positive transformants with multiple copies were isolated by the PTVA (post-transformational vector amplification) method, respectively. The three recombinants OfHex1, TvChi1, and CmChi1 were induced by methanol and purified by the chitin affinity adsorption method. The purified recombinants OfHex1 and TvChi1 were characterized, and they were further used together for degrading chitin from shrimp and crab shells to produce GlcNAc through liquid-assisted grinding (LAG) under a water-less condition. The substrate chitin concentration reached up to 300 g/L, and the highest yield of the product GlcNAc reached up to 61.3 g/L using the mechano-enzymatic method. A yield rate of up to 102.2 g GlcNAc per 1 g enzyme was obtained.


Assuntos
Quitina , Quitinases , Acetilglucosamina/metabolismo , Animais , Quitina/química , Quitinases/química , Crustáceos/metabolismo , Água
11.
J Struct Biol ; 213(4): 107810, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34774752

RESUMO

Stomatopoda is a crustacean order including sophisticated predators called spearing and smashing mantis shrimps that are separated from the well-studied Eumalacotraca since the Devonian. The spearing mantis shrimp has developed a spiky dactyl capable of impaling fishes or crustaceans in a fraction of second. In this high velocity hunting technique, the spikes undergo an intense mechanical constraint to which their exoskeleton (or cuticle) has to be adapted. To better understand the spike cuticle internal architecture and composition, electron microscopy, X-ray microanalysis and Raman spectroscopy were used on the spikes of 7 individuals (collected in French Polynesia and Indonesia), but also on parts of the body cuticle that have less mechanical stress to bear. In the body cuticle, several specificities linked to the group were found, allowing to determine the basic structure from which the spike cuticle has evolved. Results also highlighted that the body cuticle of mantis shrimps could be a model close to the ancestral arthropod cuticle by the aspect of its biological layers (epi- and procuticle including exo- and endocuticle) as well as by the Ca-carbonate/phosphate mineral content of these layers. In contrast, the spike cuticle exhibits a deeply modified organization in four functional regions overprinted on the biological layers. Each of them has specific fibre arrangement or mineral content (fluorapatite, ACP or phosphate-rich Ca-carbonate) and is thought to assume specific mechanical roles, conferring appropriate properties on the entire spike. These results agree with an evolution of smashing mantis shrimps from primitive stabbing/spearing shrimps, and thus also allowed a better understanding of the structural modifications described in previous studies on the dactyl club of smashing mantis shrimps.


Assuntos
Estruturas Animais/metabolismo , Biomineralização/fisiologia , Crustáceos/metabolismo , Minerais/metabolismo , Estruturas Animais/química , Estruturas Animais/ultraestrutura , Animais , Carbonato de Cálcio/metabolismo , Fosfatos de Cálcio/metabolismo , Crustáceos/química , Crustáceos/ultraestrutura , Decápodes/química , Decápodes/metabolismo , Decápodes/ultraestrutura , Microanálise por Sonda Eletrônica/métodos , Microscopia Eletrônica de Varredura/métodos , Microscopia Eletrônica de Transmissão/métodos , Comportamento Predatório/fisiologia , Espectrometria por Raios X/métodos , Análise Espectral Raman/métodos
12.
Zoolog Sci ; 38(1): 51-59, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33639718

RESUMO

In vertebrates, gonadotropin-releasing hormone (GnRH) regulates gonadal maturation by stimulating the synthesis and release of pituitary gonadotropins. GnRH has also been identified in invertebrates. Crustacea consists of several classes including Cephalocarida, Remipedia, Branchiopoda (e.g., tadpole shrimp), Hexanauplia (e.g., barnacle) and Malacostraca (e.g., shrimp, crab). In the malacostracan crustaceans, the presence of GnRH has been detected in several species, mainly by immunohistochemistry. In the present study, we examined whether a GnRH-like peptide exists in the brain and/or nerve ganglion of three classes of crustaceans, the tadpole shrimp Triops longicaudatus (Branchiopoda), the barnacle Balanus crenatus (Hexanauplia), and the hermit crab Pagurus filholi (Malacostraca), by immunohistochemistry using a rabbit polyclonal antibody raised against chicken GnRH-II (GnRH2). This antibody was found to recognize the giant freshwater prawn Macrobrachium rosenbergii GnRH (MroGnRH). In the tadpole shrimp, GnRH-like-immunoreactive (ir) cell bodies were located in the circumesophageal connective of the deuterocerebrum, and GnRH-like-ir fibers were detected also in the ventral nerve cord. In the barnacle, GnRH-like-ir cell bodies and fibers were located in the supraesophageal ganglion (brain), the subesophageal ganglion, and the circumesophageal connective. In the hermit crab, GnRH-like-ir cell bodies were detected in the anterior-most part of the supraesophageal ganglion and the subesophageal ganglion. GnRH-like-ir fibers were observed also in the thoracic ganglion and the eyestalk. These results suggest that a GnRH-like peptide exists widely in crustacean species.


Assuntos
Crustáceos/anatomia & histologia , Crustáceos/metabolismo , Gânglios/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Animais , Imuno-Histoquímica , Peptídeos/análise
13.
Subcell Biochem ; 94: 35-62, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32189295

RESUMO

Lipoproteins mediate the transport of apolar lipids in the hydrophilic environment of physiological fluids such as the vertebrate blood and the arthropod hemolymph. In this overview, we will focus on the hemolymph lipoproteins in Crustacea that have received most attention during the last years: the high density lipoprotein/ß-glucan binding proteins (HDL-BGBPs), the vitellogenins (VGs), the clotting proteins (CPs) and the more recently discovered large discoidal lipoproteins (dLPs). VGs are female specific lipoproteins which supply both proteins and lipids as storage material for the oocyte for later use by the developing embryo. Unusual within the invertebrates, the crustacean yolk proteins-formerly designated VGs-are more related to the ApoB type lipoproteins of vertebrates and are now termed apolipocrustaceins. The CPs on the other hand, which are present in both sexes, are related to the (sex specific) VGs of insects and vertebrates. CPs serve in hemostasis and wound closure but also as storage proteins in the oocyte. The HDL-BGBPs are the main lipid transporters, but are also involved in immune defense. Most crustacean lipoproteins belong to the family of the large lipid transfer proteins (LLTPs) such as the intracellular microsomal triglyceride transfer protein, the VGs, CPs and the dLPs. In contrast, the HDL-BGBPs do not belong to the LLTPs and their relationship with other lipoproteins is unknown. However, they originate from a common precursor with the dLPs, whose functions are as yet unknown. The majority of lipoprotein studies have focused on decapod crustaceans, especially shrimps, due to their economic importance. However, we will present evidence that the HDL-BGBPs are restricted to the decapod crustaceans which raises the question as to the main lipid transporting proteins of the other crustacean groups. The diversity of crustaceans lipoproteins thus appears to be more complex than reflected by the present state of knowledge.


Assuntos
Crustáceos , Hemolinfa , Lipoproteínas , Animais , Crustáceos/química , Crustáceos/imunologia , Crustáceos/metabolismo , Hemolinfa/química , Hemolinfa/imunologia , Hemolinfa/metabolismo , Lipoproteínas/biossíntese , Lipoproteínas/química , Lipoproteínas/imunologia , Lipoproteínas/metabolismo
14.
Mar Drugs ; 19(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804177

RESUMO

Chitin is among the most important components of the crustacean cuticular exoskeleton and intestinal peritrophic matrix. With the progress of genomics and sequencing technology, a large number of gene sequences related to chitin metabolism have been deposited in the GenBank database in recent years. Here, we summarized the genes and pathways associated with the biosynthesis and degradation of chitins in crustaceans based on genomic analyses. We found that chitin biosynthesis genes typically occur in single or two copies, whereas chitin degradation genes are all multiple copies. Moreover, the chitinase genes are significantly expanded in most crustacean genomes. The gene structure and expression pattern of these genes are similar to those of insects, albeit with some specific characteristics. Additionally, the potential applications of the chitin metabolism genes in molting regulation and immune defense, as well as industrial chitin degradation and production, are also summarized in this review.


Assuntos
Quitina/biossíntese , Quitinases/genética , Crustáceos/metabolismo , Animais , Quitina/genética , Quitina/metabolismo , Crustáceos/genética , Genômica , Muda/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-33130328

RESUMO

Shrimp are increasingly exposed to warmer temperatures and lower oxygen concentrations in their habitat due to climate change. These conditions may lead to oxidative stress and apoptosis. We studied the effects of high temperature, hypoxia, reoxygenation, and the combination of these factors on lipid peroxidation, protein carbonylation, and caspase-3 activity in gills of white shrimp Litopenaeus vannamei. Silencing of mitochondrial manganese superoxide dismutase (mMnSOD) was used to determine the role of this enzyme in response to the abiotic stressors described above, to avoid oxidative damage and apoptosis. In addition, mMnSOD gene expression and mitochondrial SOD activity were evaluated to determine the efficiency of silencing this enzyme. The results showed that there was no effect of the abiotic stress conditions on the thiobarbituric acid reactive substances (TBARS), but protein carbonylation increased in all the oxidative stress treatments and caspase-3 activity decreased in hypoxia at 28 °C. On the other hand, mMnSOD-silenced shrimp experienced higher oxidative stress, since TBARS, carbonylated proteins and caspase-3 activity increased in some silenced treatments. Unexpectedly, mitochondrial SOD activity increased in some of the silenced treatments as well. Altogether, these results suggest that mMnSOD has a key role in shrimp for the prevention of oxidative damage development and induction of apoptosis in response to hypoxia, reoxygenation, high temperature, and their interactions, as conditions derived from climate change.


Assuntos
Caspase 3/metabolismo , Crustáceos/fisiologia , Técnicas de Silenciamento de Genes , Temperatura Alta , Hipóxia/metabolismo , Mitocôndrias/enzimologia , Estresse Oxidativo/genética , Oxigênio/metabolismo , Superóxido Dismutase/genética , Animais , Crustáceos/metabolismo , Inativação Gênica , Superóxido Dismutase/metabolismo
16.
J Biol Chem ; 294(44): 16440-16450, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31537644

RESUMO

Alternatively-spliced hypervariable immunoglobulin domain-encoding molecules, called Down syndrome cell adhesion molecule (Dscam), have been widely detected as components of the arthropod immune system. Although its ability to specifically bind pathogens and enable phagocytosis of bacteria has been elucidated, the signal transduction mechanisms or effectors that activate post-Dscam-binding pathogens remain poorly characterized. Here, we reveal the alternative splicing exons of Dscam's cytoplasmic tail and its isoforms in the hemocytes of crab (Eriocheir sinensis), showing that the expression of Dscam was acutely induced after an immune challenge, which suggested its functioning for innate immunity. Significantly decreased expression levels of antimicrobial molecular peptides (AMPs) were detected in Dscam-silenced crab hemocytes in vitro, which coincided with their vulnerability to infection by Staphylococcus aureus and higher bacterial concentrations occurring in Dscam-silenced crabs in vivo Further experimental investigation demonstrated that Dscam-regulated AMP expression via the Src homology (SH)3-binding domain in the first constant exon translated protein of the cytoplasmic tail bound with the SH3 domain of the Dock, an SH3/SH2 adaptor protein required for axon guidance. Dock promoted extracellular signal-regulated kinase (ERK) phosphorylation via indirect binding and then regulated dorsal phosphorylation and translocation from the cytoplasm to the nucleus, subsequently promoting AMP expression for the effective removal of bacteria. To the best of our knowledge, this comprehensive study is the first to highlight the critical role of the alternatively-spliced Dscam cytoplasmic tail in antimicrobial control activity. It also suggests possible cross-talk occurring between Dscam and other pattern recognition receptors.


Assuntos
Braquiúros/genética , Braquiúros/imunologia , Moléculas de Adesão Celular/metabolismo , Imunidade Inata/fisiologia , Processamento Alternativo/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/metabolismo , Moléculas de Adesão Celular/genética , Crustáceos/metabolismo , Éxons , Hemócitos/metabolismo , Imunidade Inata/genética , Fagocitose , Filogenia , Isoformas de Proteínas/metabolismo , Splicing de RNA/genética , Alinhamento de Sequência , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
17.
BMC Genomics ; 21(1): 637, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928113

RESUMO

Transcriptome sequencing has opened the field of genomics to a wide variety of researchers, owing to its efficiency, applicability across species and ability to quantify gene expression. The resulting datasets are a rich source of information that can be mined for many years into the future, with each dataset providing a unique angle on a specific context in biology. Maintaining accessibility to this accumulation of data presents quite a challenge for researchers.The primary focus of conventional genomics databases is the storage, navigation and interpretation of sequence data, which is typically classified down to the level of a species or individual. The addition of expression data adds a new dimension to this paradigm - the sampling context. Does gene expression describe different tissues, a temporal distribution or an experimental treatment? These data not only describe an individual, but the biological context surrounding that individual. The structure and utility of a transcriptome database must therefore reflect these attributes. We present an online database which has been designed to maximise the accessibility of crustacean transcriptome data by providing intuitive navigation within and between datasets and instant visualization of gene expression and protein structure.The site is accessible at https://crustybase.org and currently holds 10 datasets from a range of crustacean species. It also allows for upload of novel transcriptome datasets through a simple web interface, allowing the research community to contribute their own data to a pool of shared knowledge.


Assuntos
Crustáceos/genética , Bases de Dados Genéticas , Transcriptoma , Animais , Crustáceos/metabolismo , Software
18.
Fish Shellfish Immunol ; 102: 169-176, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32325214

RESUMO

Crustacean species are considered as a major sector in the aquaculture industry that plays a fundamental role in the world's economy. However, with a wide range of various epidemic diseases in the industry, studies of immune-related genes such as toll-like receptor genes are of great importance. Recently, the TLR in crustacean species has been described to perform a vital role in defense of crustacean against the pathogens. Meanwhile, many TLR genes from crustacean were characterized, and their contribution discovered in innate immunity against several pathogens. This review was aimed to present an overview of the crustacean TLRs including structural features that contained three major domains: a leucine-rich repeat (LRR) domains, a transmembrane area (TM), and a conserved region called Toll/interleukin-1 receptor (TIR) domain. The tissue distribution patterns of TLR genes, which act as a guide for future research on which TLR gene or genes that can be expressed, at which tissue or tissues. We also described recent works on the expression of the TLR gene that evaluated the immune function after pathogen stimulation in shrimp, crab, and crayfish. Furthermore, we recommended a prospective for future investigation plan that might contribute to the development and management systems in the global crustacean aquaculture industry. Lastly, we assumed that a clear understanding of the expression pattern and biological function of crustacean TLR genes could serve as a baseline for future immunological studies.


Assuntos
Proteínas de Artrópodes/imunologia , Crustáceos/imunologia , Imunidade Inata/genética , Receptores Toll-Like/imunologia , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Crustáceos/genética , Crustáceos/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
19.
Mar Drugs ; 18(2)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019265

RESUMO

: Chitin is one of the most abundant biomolecules on earth, occurring in crustacean shells and cell walls of fungi. While the polysaccharide is threatening to pollute coastal ecosystems in the form of accumulating shell-waste, it has the potential to be converted into highly profitable derivatives with applications in medicine, biotechnology, and wastewater treatment, among others. Traditionally this is still mostly done by the employment of aggressive chemicals, yielding low quality while producing toxic by-products. In the last decades, the enzymatic conversion of chitin has been on the rise, albeit still not on the same level of cost-effectiveness compared to the traditional methods due to its multi-step character. Another severe drawback of the biotechnological approach is the highly ordered structure of chitin, which renders it nigh impossible for most glycosidic hydrolases to act upon. So far, only the Auxiliary Activity 10 family (AA10), including lytic polysaccharide monooxygenases (LPMOs), is known to hydrolyse native recalcitrant chitin, which spares the expensive first step of chemical or mechanical pre-treatment to enlarge the substrate surface. The main advantages of enzymatic conversion of chitin over conventional chemical methods are the biocompability and, more strikingly, the higher product specificity, product quality, and yield of the process. Products with a higher Mw due to no unspecific depolymerisation besides an exactly defined degree and pattern of acetylation can be yielded. This provides a new toolset of thousands of new chitin and chitosan derivatives, as the physio-chemical properties can be modified according to the desired application. This review aims to provide an overview of the biotechnological tools currently at hand, as well as challenges and crucial steps to achieve the long-term goal of enzymatic conversion of native chitin into specialty chemical products.


Assuntos
Biotecnologia , Quitina/química , Quitosana/química , Animais , Quitina/isolamento & purificação , Quitina/metabolismo , Quitosana/metabolismo , Crustáceos/metabolismo , Ecossistema , Fungos/metabolismo
20.
Ecotoxicol Environ Saf ; 197: 110626, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32339959

RESUMO

The objective of this study was to evaluate the tissue distributions of antibiotics in the fish, the bioaccumulation and trophic transfer in freshwater food web in Taihu Lake, a large shallow freshwater lake. Twenty four out of 41 antibiotics were detected in the biotas of the food web; and antibiotic concentrations followed the orders: fish plasma ~ fish muscle < fish liver ~ fish bile and fish < invertebrates ~ plankton. Antibiotic concentrations in the liver of piscivores were higher than those in omnivores and planktivores. Most bioaccumulation factors (BAFs) of sulfonamides (SAs), macrolides (MLs), ionophores (IPs) and lincomycin (LIN) were less than 2000 L/kg, indicating low bioaccumulation ability of these compounds in fish. Fluoroquinolones (FQs) were frequently detected in fish liver, invertebrates and plankton with much of BAFs great than 5000 L/kg, indicating that FQs have the potential of bioaccumulation in fish. Relationship analysis between BAFs and physicochemical properties of antibiotics showed that the bioaccumulation of antibiotics in the biota was related with their adsorption ability. Generally, the antibiotics in the food web of Lake Taihu including plankton, invertebrates and fish showed trophic dilution. The normalized estimated daily intake (EDI) values are less than the acceptable daily intake (ADI) values, and then hazard quotients were much less than 1. This result suggests the consumption of fish, crab and shrimp in Lake Taihu would probably not pose direct detrimental effects on humans.


Assuntos
Antibacterianos/análise , Organismos Aquáticos/metabolismo , Monitoramento Ambiental/métodos , Lagos/química , Poluentes Químicos da Água/análise , Animais , Antibacterianos/farmacocinética , Organismos Aquáticos/efeitos dos fármacos , China , Crustáceos/metabolismo , Peixes/metabolismo , Cadeia Alimentar , Humanos , Plâncton/metabolismo , Medição de Risco , Poluentes Químicos da Água/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA