Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 279
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 391(1): 119-129, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39095205

RESUMO

Primaquine and Tafenoquine are the only approved drugs that can achieve a radical cure for Plasmodium vivax malaria but are contraindicated in patients who are deficient in glucose 6-phosphate dehydrogenase (G6PDd) due to risk of severe hemolysis from reactive oxygen species generated by redox cycling of drug metabolites. 5-hydroxyprimaquine and its quinoneimine cause robust redox cycling in red blood cells (RBCs) but are so labile as to not be detected in blood or urine. Rather, the quinoneimine is rapidly converted into primaquine-5,6-orthoquinone (5,6-POQ) that is then excreted in the urine. The extent to which 5,6-POQ contributes to hemolysis remains unclear, although some have suggested that it is a minor toxin that should be used predominantly as a surrogate to infer levels of 5-hydroxyprimaquine. In this report, we describe a novel humanized mouse model of the G6PD Mediterranean variant (hG6PDMed-) that recapitulates the human biology of RBC age-dependent enzyme decay, as well as an isogenic matched control mouse with human nondeficient G6PD hG6PDND In vitro challenge of RBCs with 5,6-POQ causes increased generation of superoxide and methemoglobin. Infusion of treated RBCs shows that 5,6-POQ selectively causes in vivo clearance of older hG6PDMed- RBCs. These findings support the hypothesis that 5,6-POQ directly induces hemolysis and challenges the notion that 5,6-POQ is an inactive metabolic waste product. Indeed, given the extreme lability of 5-hydroxyprimaquine and the relative stability of 5,6-POQ, these data raise the possibility that 5,6-POQ is a major hemolytic primaquine metabolite in vivo. SIGNIFICANCE STATEMENT: These findings demonstrate that 5,6-POQ, which has been considered an inert waste product of primaquine metabolism, directly induces ROS that cause clearance of older G6PDd RBCs. As 5,6-POQ is relatively stable compared with other active primaquine metabolites, these data support the hypothesis that 5,6-POQ is a major toxin in primaquine induced hemolysis. The findings herein also establish a new model of G6PDd and provide the first direct evidence, to our knowledge, that young G6PDd RBCs are resistant to primaquine-induced hemolysis.


Assuntos
Eritrócitos , Deficiência de Glucosefosfato Desidrogenase , Hemólise , Primaquina , Animais , Hemólise/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/efeitos dos fármacos , Primaquina/farmacologia , Primaquina/metabolismo , Camundongos , Humanos , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Modelos Animais de Doenças , Masculino , Antimaláricos/farmacologia
2.
J Pharmacol Exp Ther ; 386(3): 323-330, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348965

RESUMO

Glucose 6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans (∼5% of all individuals). G6PD deficiency (G6PDd) is caused by an unstable enzyme and manifests most strongly in red blood cells (RBCs) that cannot synthesize new protein. G6PDd RBCs have decreased ability to mitigate oxidative stress due to lower levels of NADPH, as a result of a defective pentose phosphate pathway. Accordingly, oxidative drugs can result in hemolysis and potentially life-threatening anemia in G6PDd patients. Dapsone is a highly useful drug for treating a variety of pathologies but oral dapsone is contraindicated in patients with G6PDd due to oxidative stress-induced anemia. Dapsone must be metabolized to become hemolytic. Dapsone hydroxylamine (DDS-NOH) has been implicated as the major hemolytic dapsone metabolite, but this has never been tested on G6PDd RBCs with in vivo circulation as a metric. Moreover, the metabolic lesion caused by DDS-NOH is unknown. We report that RBCs from a novel humanized mouse expressing the human Mediterranean G6PD-deficient variant have increased sensitivity to DDS-NOH. In addition, we show that DDS-NOH damaged RBCs can either undergo sequestration (with subsequent return to circulation) or permanent removal in a dose-dependent manner, with G6PD-sufficient RBCs mostly being sequestered, and G6PDd RBCs mostly being permanently removed. Finally, we characterize the metabolic lesion caused by DDS-NOH in G6PDd RBCs and report a blockage in terminal glycolysis resulting in a cellular accumulation of pyruvate. These findings confirm DDS-NOH as a hemolytic metabolite and elucidate metabolic effects of DDS-NOH on G6PDd RBCs. SIGNIFICANCE STATEMENT: These findings confirm that dapsone hydroxylamine, an active metabolite of dapsone, causes in vivo clearance of murine red blood cells expressing a human variant of deficient glucose 6-phosphate dehydrogenase (G6PD), an enzymopathy that affects half a billion individuals (G6PD deficiency). Both cellular mechanisms of clearance (sequestration versus destruction) and specific metabolic disturbances caused by dapsone hydroxylamine are elucidated, providing novel mechanistic understanding.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Hemólise , Animais , Humanos , Camundongos , Dapsona/farmacologia , Dapsona/metabolismo , Eritrócitos/metabolismo , Glucose/metabolismo , Deficiência de Glucosefosfato Desidrogenase/complicações , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Fosfatos/metabolismo
3.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806430

RESUMO

Glucose 6-P dehydrogenase (G6PD) is the first rate-limiting enzyme in pentose phosphate pathway (PPP), and it is proverbial that G6PD is absent in skeletal muscle. However, how and why G6PD is down-regulated during skeletal muscle development is unclear. In this study, we confirmed the expression of G6PD was down-regulated during myogenesis in vitro and in vivo. G6PD was absolutely silent in adult skeletal muscle. Histone H3 acetylation and DNA methylation act together on the expression of G6PD. Neither knock-down of G6PD nor over-expression of G6PD affects myogenic differentiation. Knock-down of G6PD significantly promotes the sensitivity and response of skeletal muscle cells to insulin; over-expression of G6PD significantly injures the sensitivity and response of skeletal muscle cells to insulin. High-fat diet treatment impairs insulin signaling by up-regulating G6PD, and knock-down of G6PD rescues the impaired insulin signaling and glucose uptake caused by high-fat diet treatment. Taken together, this study explored the importance of G6PD deficiency during myogenic differentiation, which provides new sight to treat insulin resistance and type-2 diabetes.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase , Insulina , Músculo Esquelético , Adulto , Glucose/metabolismo , Glucose 1-Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Humanos , Insulina/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo
4.
PLoS Med ; 18(4): e1003576, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33891581

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) activity is dependent upon G6PD genotype and age of the red blood cell (RBC) population, with younger RBCs having higher activity. Peripheral parasitemia with Plasmodium spp. induces hemolysis, replacing older RBCs with younger cells with higher G6PD activity. This study aimed to assess whether G6PD activity varies between individuals with and without malaria or a history of malaria. METHODS AND FINDINGS: Individuals living in the Chittagong Hill Tracts of Bangladesh were enrolled into 3 complementary studies: (i) a prospective, single-arm clinical efficacy trial of patients (n = 175) with uncomplicated malaria done between 2014 and 2015, (ii) a cross-sectional survey done between 2015 and 2016 (n = 999), and (iii) a matched case-control study of aparasitemic individuals with and without a history of malaria done in 2020 (n = 506). G6PD activity was compared between individuals with and without malaria diagnosed by microscopy, rapid diagnostic test (RDT), or polymerase chain reaction (PCR), and in aparasitemic participants with and without a history of malaria. In the cross-sectional survey and clinical trial, 15.5% (182/1,174) of participants had peripheral parasitemia detected by microscopy or RDT, 3.1% (36/1,174) were positive by PCR only, and 81.4% (956/1,174) were aparasitemic. Aparasitemic individuals had significantly lower G6PD activity (median 6.9 U/g Hb, IQR 5.2-8.6) than those with peripheral parasitemia detected by microscopy or RDT (7.9 U/g Hb, IQR 6.6-9.8, p < 0.001), but G6PD activity similar to those with parasitemia detected by PCR alone (submicroscopic parasitemia) (6.1 U/g Hb, IQR 4.8-8.6, p = 0.312). In total, 7.7% (14/182) of patients with malaria had G6PD activity < 70% compared to 25.0% (248/992) of participants with submicroscopic or no parasitemia (odds ratio [OR] 0.25, 95% CI 0.14-0.44, p < 0.001). In the case-control study, the median G6PD activity was 10.3 U/g Hb (IQR 8.8-12.2) in 253 patients with a history of malaria and 10.2 U/g Hb (IQR 8.7-11.8) in 253 individuals without a history of malaria (p = 0.323). The proportion of individuals with G6PD activity < 70% was 11.5% (29/253) in the cases and 15.4% (39/253) in the controls (OR 0.7, 95% CI 0.41-1.23, p = 0.192). Limitations of the study included the non-contemporaneous nature of the clinical trial and cross-sectional survey. CONCLUSIONS: Patients with acute malaria had significantly higher G6PD activity than individuals without malaria, and this could not be accounted for by a protective effect of G6PD deficiency. G6PD-deficient patients with malaria may have higher than expected G6PD enzyme activity and an attenuated risk of primaquine-induced hemolysis compared to the risk when not infected.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Glucosefosfato Desidrogenase/metabolismo , Malária/epidemiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Bangladesh/epidemiologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Estudos Transversais , Feminino , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Humanos , Lactente , Recém-Nascido , Malária/parasitologia , Masculino , Pessoa de Meia-Idade , Parasitemia/epidemiologia , Parasitemia/parasitologia , Adulto Jovem
5.
Blood Cells Mol Dis ; 89: 102572, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33957359

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common X-linked inherited enzymopathic disorder that may lead to transfusion-requiring acute hemolytic anemia (AHA) triggered by fava beans ingestion, infection or some drugs. The gene encoding for G6PD carries a large number of genetic variants that have varying pathogenicity. We reported on three G6PD variants in the Gaza Strip Palestinian population with differing clinical impacts and frequencies: G6PD Mediterraneanc.563T, African G6PD A-c.202A/c.376G, and G6PD Cairoc.404C. We also identified a novel G6PD missense (Ser179Asn) mutation c.536G > A "G6PD Gaza". In this work we explore the effect of these four genetic variants on the structural and substrate (NADP+ and G6P) binding characteristics of the G6PD enzyme using the Monte Carlo (MC) flexible docking and molecular dynamics (MD) simulation approaches. We report that G6PD A-c.202A/c.376G, G6PD Mediterraneanc.563T, G6PD Cairoc.404C and G6PD Gazac.536A mutations cause significant structural changes in G6PD enzyme to induce conformational instability leading to the loss of binding of one or both substrates and are causative of G6PD deficiency.


Assuntos
Glucose-6-Fosfato/metabolismo , Deficiência de Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/genética , NADP/metabolismo , Mutação Puntual , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Multimerização Proteica
6.
J Sci Food Agric ; 101(4): 1562-1571, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32869306

RESUMO

BACKGROUND: Favism is an acute hemolytic syndrome caused by fava bean (FB) ingestion. The purpose of this study was to investigate the possible influences of FB on the metabonomic profile of erythrocytes in glucose-6-phosphate dehydrogenase (G6PD)-deficient (G6PDx) and wild-type (WT) mice. RESULTS: Ninety-two metabolites were identified in the comparison of the G6PDx and WT groups. Eighty-seven metabolites were identified in the erythrocytes of WT and G6PDx mice after FB ingestion. Thirty-eight metabolites were identified in the comparison of the FB-treated G6PDx and the FB-treated WT mouse groups. Among them, the number of glycerophospholipids (GPLs) and polyunsaturated fatty acids (PUFAs) changed significantly, which suggests that GPLs and PUFAs may be responsible for FB stress. CONCLUSION: This study demonstrates that G6PD deficiency might affect the metabonomic profile of erythrocytes in response to FB. © 2020 Society of Chemical Industry.


Assuntos
Eritrócitos/metabolismo , Favismo/metabolismo , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Vicia faba/metabolismo , Animais , Eritrócitos/enzimologia , Ácidos Graxos Insaturados/metabolismo , Favismo/enzimologia , Favismo/genética , Deficiência de Glucosefosfato Desidrogenase/enzimologia , Deficiência de Glucosefosfato Desidrogenase/genética , Glicerofosfolipídeos/metabolismo , Humanos , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C3H , Camundongos Knockout
7.
Biochemistry ; 59(8): 911-920, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32073254

RESUMO

There is a pressing need for compounds with broad-spectrum activity against malaria parasites at various life cycle stages to achieve malaria elimination. However, this goal cannot be accomplished without targeting the tenacious dormant liver-stage hypnozoite that causes multiple relapses after the first episode of illness. In the search for the magic bullet to radically cure Plasmodium vivax malaria, tafenoquine outperformed other candidate drugs and was approved by the U.S. Food and Drug Administration in 2018. Tafenoquine is an 8-aminoquinoline that inhibits multiple life stages of various Plasmodium species. Additionally, its much longer half-life allows for single-dose treatment, which will improve the compliance rate. Despite its approval and the long-time use of other 8-aminoquinolines, the mechanisms behind tafenoquine's activity and adverse effects are still largely unknown. In this Perspective, we discuss the plausible underlying mechanisms of tafenoquine's antiparasitic activity and highlight its role as a cellular stressor. We also discuss potential drug combinations and the development of next-generation 8-aminoquinolines to further improve the therapeutic index of tafenoquine for malaria treatment and prevention.


Assuntos
Aminoquinolinas/uso terapêutico , Antimaláricos/uso terapêutico , Malária Vivax/tratamento farmacológico , Aminoquinolinas/efeitos adversos , Anemia Hemolítica/induzido quimicamente , Animais , Antimaláricos/efeitos adversos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Técnicas de Silenciamento de Genes , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Haplorrinos , Humanos , Metemoglobinemia/induzido quimicamente , Camundongos , Plasmodium cynomolgi/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Peixe-Zebra
8.
PLoS Med ; 17(5): e1003084, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32407380

RESUMO

BACKGROUND: The radical cure of Plasmodium vivax and P. ovale requires treatment with primaquine or tafenoquine to clear dormant liver stages. Either drug can induce haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency, necessitating screening. The reference diagnostic method for G6PD activity is ultraviolet (UV) spectrophotometry; however, a universal G6PD activity threshold above which these drugs can be safely administered is not yet defined. Our study aimed to quantify assay-based variation in G6PD spectrophotometry and to explore the diagnostic implications of applying a universal threshold. METHODS AND FINDINGS: Individual-level data were pooled from studies that used G6PD spectrophotometry. Studies were identified via PubMed search (25 April 2018) and unpublished contributions from contacted authors (PROSPERO: CRD42019121414). Studies were excluded if they assessed only individuals with known haematological conditions, were family studies, or had insufficient details. Studies of malaria patients were included but analysed separately. Included studies were assessed for risk of bias using an adapted form of the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool. Repeatability and intra- and interlaboratory variability in G6PD activity measurements were compared between studies and pooled across the dataset. A universal threshold for G6PD deficiency was derived, and its diagnostic performance was compared to site-specific thresholds. Study participants (n = 15,811) were aged between 0 and 86 years, and 44.4% (7,083) were women. Median (range) activity of G6PD normal (G6PDn) control samples was 10.0 U/g Hb (6.3-14.0) for the Trinity assay and 8.3 U/g Hb (6.8-15.6) for the Randox assay. G6PD activity distributions varied significantly between studies. For the 13 studies that used the Trinity assay, the adjusted male median (AMM; a standardised metric of 100% G6PD activity) varied from 5.7 to 12.6 U/g Hb (p < 0.001). Assay precision varied between laboratories, as assessed by variance in control measurements (from 0.1 to 1.5 U/g Hb; p < 0.001) and study-wise mean coefficient of variation (CV) of replicate measures (from 1.6% to 14.9%; p < 0.001). A universal threshold of 100% G6PD activity was defined as 9.4 U/g Hb, yielding diagnostic thresholds of 6.6 U/g Hb (70% activity) and 2.8 U/g Hb (30% activity). These thresholds diagnosed individuals with less than 30% G6PD activity with study-wise sensitivity from 89% (95% CI: 81%-94%) to 100% (95% CI: 96%-100%) and specificity from 96% (95% CI: 89%-99%) to 100% (100%-100%). However, when considering intermediate deficiency (<70% G6PD activity), sensitivity fell to a minimum of 64% (95% CI: 52%-75%) and specificity to 35% (95% CI: 24%-46%). Our ability to identify underlying factors associated with study-level heterogeneity was limited by the lack of availability of covariate data and diverse study contexts and methodologies. CONCLUSIONS: Our findings indicate that there is substantial variation in G6PD measurements by spectrophotometry between sites. This is likely due to variability in laboratory methods, with possible contribution of unmeasured population factors. While an assay-specific, universal quantitative threshold offers robust diagnosis at the 30% level, inter-study variability impedes performance of universal thresholds at the 70% level. Caution is advised in comparing findings based on absolute G6PD activity measurements across studies. Novel handheld quantitative G6PD diagnostics may allow greater standardisation in the future.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Espectrofotometria , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antimaláricos/uso terapêutico , Criança , Pré-Escolar , Feminino , Deficiência de Glucosefosfato Desidrogenase/tratamento farmacológico , Humanos , Lactente , Recém-Nascido , Malária/epidemiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
J Formos Med Assoc ; 119(1 Pt 1): 69-74, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30979648

RESUMO

BACKGROUND: Nationwide newborn screening for glucose-6-phosphate dehydrogenase (G6PD) deficiency has been implemented in Taiwan since 1987 and the G6PD enzyme activity levels were applied for diagnosis confirmation. As the reference value of G6PD enzyme activity was not available for infants aged 7-90 days, this study was performed to determine the enzyme level in different genotypes. METHODS: Between January 1, 2016 and June 30, 2017, 410 term infants aged 7-90 days old visiting National Taiwan University Hospital Hsinchu branch were enrolled. The comparisons of G6PD enzyme activities among genotype groups were performed. RESULTS: G6PD enzyme activity was negatively correlated with age (R = -0.212, p = 0.01). For infants under 30 days of age, the G6PD enzyme activity levels were 1.4 ± 0.9 U/g Hb in hemizygotes (n = 76), 6.5 ± 2.0 U/g Hb in heterozygotes (n = 47), and 13.6 ± 3.7 U/g Hb in those without G6PD mutations (n = 70). Among infants more than 30 days old, G6PD enzyme activity levels were 0.9 ± 0.5 U/g Hb in hemizygotes (n = 46), 6.0 ± 2.7 U/g Hb in heterozygotes (n = 23), and 11.7 ± 3.4 U/g Hb in those without G6PD mutations (n = 148). G6PD levels differed significantly among the groups defined by genotypes. CONCLUSION: We determined G6PD enzyme activity levels in infants aged between 7 and 90 days in Taiwan. Completing the reference data and determining the cutoff values for different G6PD deficiency disease statuses will help pediatricians to make accurate diagnoses.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Triagem Neonatal , Feminino , Genótipo , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Valores de Referência , Taiwan
10.
Int J Mol Sci ; 21(20)2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33050491

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common genetic inherited trait among humans, affects ~7% of the global population, and is associated with excess risk of cardiovascular disease (CVD). Transforming growth factor-ß (TGF-ß) regulates immune function, proliferation, epithelial-mesenchymal transition, fibrosis, cancer, and vascular dysfunction. This study examined whether G6PD deficiencies can alter TGF-ß-mediated NADPH oxidases (NOX) and cell adhesion molecules (CAM) in human aortic endothelial cells (HAEC). Results show that treatment with high glucose and the saturated free fatty acid palmitate significantly downregulated G6PD; in contrast, mRNA levels of TGF-ß components, NOX and its activity, and reactive oxygen species (ROS) were significantly upregulated in HAEC. The expression levels of TGF-ß and its receptors, NOX and its activity, and ROS were significantly higher in HG-exposed G6PD-deficient cells (G6PD siRNA) compared to G6PD-normal cells. The protein levels of adhesion molecules (ICAM-1 and VCAM-1) and inflammatory cytokines (MCP-1 and TNF) were significantly increased in HG-exposed G6PD-deficient cells compared to G6PD-normal cells. The adherence of monocytes (SC cells) to HAEC was significantly elevated in HG-treated G6PD-deficient cells compared to control cells. Pharmacological inhibition of G6PD enhances ROS, NOX and its activity, and endothelial monocyte adhesion; these effects were impeded by NOX inhibitors. The inhibition of TGF-ß prevents NOX2 and NOX4 mRNA expression and activity, ROS, and adhesion of monocytes to HAEC. L-Cysteine ethyl ester (cell-permeable) suppresses the mRNA levels of TGF-ß and its receptors, along with NOX2 and NOX4, and decreases NOX activity, ROS, and adhesion of monocytes to HAEC. This suggests that G6PD deficiency promotes TGF-ß/NADPH oxidases/ROS signaling, the expression of ICAM-1 and VCAM-1, and the adhesion of leukocytes to the endothelial monolayer, which can contribute to a higher risk for CVD.


Assuntos
Adesão Celular , Células Endoteliais/metabolismo , Deficiência de Glucosefosfato Desidrogenase/etiologia , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Leucócitos/metabolismo , NADPH Oxidases/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Glicemia , Moléculas de Adesão Celular/metabolismo , Suscetibilidade a Doenças , Glucosefosfato Desidrogenase/metabolismo , Humanos , Leucócitos/imunologia , Monócitos/imunologia , Monócitos/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/antagonistas & inibidores
11.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326520

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most frequent human enzymopathy, affecting over 400 million people globally. Worldwide, 217 mutations have been reported at the genetic level, and only 19 have been found in Mexico. The objective of this work was to contribute to the knowledge of the function and structure of three single natural variants (G6PD A+, G6PD San Luis Potosi, and G6PD Guadalajara) and a double mutant (G6PD Mount Sinai), each localized in a different region of the three-dimensional (3D) structure. In the functional characterization of the mutants, we observed a decrease in specific activity, protein expression and purification, catalytic efficiency, and substrate affinity in comparison with wild-type (WT) G6PD. Moreover, the analysis of the effect of all mutations on the structural stability showed that its presence increases denaturation and lability with temperature and it is more sensible to trypsin digestion protease and guanidine hydrochloride compared with WT G6PD. This could be explained by accelerated degradation of the variant enzymes due to reduced stability of the protein, as is shown in patients with G6PD deficiency.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/enzimologia , Deficiência de Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/metabolismo , Naftalenossulfonato de Anilina/química , Catálise , Dicroísmo Circular , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/isolamento & purificação , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Guanidina , Humanos , Cinética , México , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Software , Temperatura , Tripsina/química
12.
J Infect Dis ; 217(8): 1298-1308, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29342267

RESUMO

Background: The World Health Organization recommendation on the use of a single low dose of primaquine (SLD-PQ) to reduce Plasmodium falciparum malaria transmission requires more safety data. Methods: We conducted an open-label, nonrandomized, dose-adjustment trial of the safety of 3 single doses of primaquine in glucose-6-phosphate dehydrogenase (G6PD)-deficient adult males in Mali, followed by an assessment of safety in G6PD-deficient boys aged 11-17 years and those aged 5-10 years, including G6PD-normal control groups. The primary outcome was the greatest within-person percentage drop in hemoglobin concentration within 10 days after treatment. Results: Fifty-one participants were included in analysis. G6PD-deficient adult males received 0.40, 0.45, or 0.50 mg/kg of SLD-PQ. G6PD-deficient boys received 0.40 mg/kg of SLD-PQ. There was no evidence of symptomatic hemolysis, and adverse events considered related to study drug (n = 4) were mild. The mean largest within-person percentage change in hemoglobin level between days 0 and 10 was -9.7% (95% confidence interval [CI], -13.5% to -5.90%) in G6PD-deficient adults receiving 0.50 mg/kg of SLD-PQ, -11.5% (95% CI, -16.1% to -6.96%) in G6PD-deficient boys aged 11-17 years, and -9.61% (95% CI, -7.59% to -13.9%) in G6PD-deficient boys aged 5-10 years. The lowest hemoglobin concentration at any point during the study was 92 g/L. Conclusion: SLD-PQ doses between 0.40 and 0.50 mg/kg were well tolerated in G6PD-deficient males in Mali. Clinical Trials Registration: NCT02535767.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Primaquina/administração & dosagem , Primaquina/efeitos adversos , Adolescente , Adulto , Envelhecimento , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Criança , Pré-Escolar , Relação Dose-Resposta a Droga , Hemoglobinas , Humanos , Masculino , Mali , Pessoa de Meia-Idade , Adulto Jovem
13.
Curr Opin Hematol ; 25(6): 494-499, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30239377

RESUMO

PURPOSE OF REVIEW: Glucose-6-phosphate dehydrogenase (G6PD) deficiency and sickle cell disease (SCD) cause hemolysis, often occurring in individuals of African descent. These disorders co-occur frequently, and possibly interact, altering clinical outcomes in SCD. However, epidemiological investigations of SCD with G6PD deficiency have produced variable results. This contribution reviews the available data about the interaction of G6PD deficiency and SCD. RECENT FINDINGS: Overall, G6PD deficiency contributes few, if any, effects to laboratory values and clinical outcomes in SCD patients, but may impact transfusion efficacy. This observation is most likely because of the relatively increased G6PD activity in the young red blood cell (RBC) population seen in SCD patients with or without G6PD deficiency. In addition, G6PD deficiency possibly interacts with other genetic modifiers, such as α thalassemia, hemoglobin F levels and SCD haplotype. SUMMARY: Although G6PD deficiency is relatively common, it does not appear to clinically impact patients with SCD. Nonetheless, it is important to evaluate G6PD status in patients with SCD to avoid the use of medications that may cause hemolysis. Future studies evaluating the clinical impact of transfusions from G6PD-deficient RBC donors would be of the greatest benefit to the current literature.


Assuntos
Anemia Falciforme/metabolismo , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Anemia Falciforme/enzimologia , Anemia Falciforme/epidemiologia , Eritrócitos/metabolismo , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos
14.
Amino Acids ; 50(7): 909-921, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29626298

RESUMO

L-Cysteine is a precursor of glutathione (GSH), a potent physiological antioxidant. Excess glucose-6-phosphate dehydrogenase (G6PD) deficiency in African Americans and low levels of L-cysteine diet in Hispanics can contributes to GSH deficiency and oxidative stress. Oxidative stress and monocyte adhesion was considered to be an initial event in the progression of vascular dysfunction and atherosclerosis. However, no previous study has investigated the contribution of GSH/G6PD deficiency to the expression of monocyte adhesion molecules. Using human U937 monocytes, this study examined the effect of GSH/G6PD deficiency and L-cysteine supplementation on monocyte adhesion molecules. G6PD/GSH deficiency induced by either siRNA or inhibitors (6AN/BSO, respectively) significantly (p < 0.005) increased the levels of cell adhesion molecules (ICAM-1, VCAM-1, SELL, ITGB1 and 2); NADPH oxidase (NOX), reactive oxygen species (ROS) and MCP-1 were upregulated, and decreases in levels of GSH, and nitric oxide were observed. The expression of ICAM-1 and VCAM-1 mRNA levels increased in high glucose, MCP-1 or TNF-α-treated G6PD-deficient compared to G6PD-normal cells. L-Cysteine treatment significantly (p < 0.005) increased G6PD activity and levels of GSH, and decreased NOX, ROS, and adhesion molecules. Thus, GSH/G6PD deficiency increases susceptibility to monocyte adhesion processes, whereas L-cysteine supplementation can restore cellular GSH/G6PD and attenuates NOX activity and expression of cell adhesion molecules.


Assuntos
Moléculas de Adesão Celular/biossíntese , Cisteína/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Glutationa/metabolismo , Deficiência de Glucosefosfato Desidrogenase/patologia , Humanos , NADPH Oxidase 1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células U937
15.
J Allergy Clin Immunol ; 139(1): 212-219.e3, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27458052

RESUMO

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymatic disorder of red blood cells in human subjects, causing hemolytic anemia linked to impaired nicotinamide adenine dinucleotide phosphate (NADPH) production and imbalanced redox homeostasis in erythrocytes. Because G6PD is expressed by a variety of hematologic and nonhematologic cells, a broader clinical phenotype could be postulated in G6PD-deficient patients. We describe 3 brothers with severe G6PD deficiency and susceptibility to bacterial infection. OBJECTIVE: We sought to study the molecular pathophysiology leading to susceptibility to infection in 3 siblings with severe G6PD deficiency. METHODS: Blood samples of 3 patients with severe G6PD deficiency were analyzed for G6PD enzyme activity, cellular oxidized nicotinamide adenine dinucleotide phosphate/NADPH levels, phagocytic reactive oxygen species production, neutrophil extracellular trap (NET) formation, and neutrophil elastase translocation. RESULTS: In these 3 brothers strongly reduced NADPH oxidase function was found in granulocytes, leading to impaired NET formation. Defective NET formation has thus far been only observed in patients with the NADPH oxidase deficiency chronic granulomatous disease, who require antibiotic and antimycotic prophylaxis to prevent life-threatening bacterial and fungal infections. CONCLUSION: Because severe G6PD deficiency can be a phenocopy of chronic granulomatous disease with regard to the cellular and clinical phenotype, careful evaluation of neutrophil function seems mandatory in these patients to decide on appropriate anti-infective preventive measures. Determining the level of G6PD enzyme activity should be followed by analysis of reactive oxygen species production and NET formation to decide on required antibiotic and antimycotic prophylaxis.


Assuntos
Suscetibilidade a Doenças , Armadilhas Extracelulares/metabolismo , Deficiência de Glucosefosfato Desidrogenase , Infecções Bacterianas , Criança , Eritrócitos/metabolismo , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Granulócitos/metabolismo , Humanos , Lactente , Elastase de Leucócito/metabolismo , Masculino , NADP/metabolismo , Espécies Reativas de Oxigênio/metabolismo
16.
J Assoc Physicians India ; 66(6): 103-104, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31331152

RESUMO

Hepatitis E virus is one of the leading causes of acute viral hepatitis in India but usually manifests as a mild self-limiting illness. It is known that severe intravascular hemolysis can occur in the course of acute Viral Hepatitis E in association with a G6PD deficiency state. Thalassemias are known to cause extravascular hemolysis. The role of ß thalassemia trait in hemolysis during acute hepatitis E infection is not known. In this report we describe a rare coexistence of severe intravascular hemolysis in a patient with hepatitis E infection and ß Thalassemia trait with bilirubin going upto 85 mg/dl without any renal dysfunction or complication. It may point towards an etiological basis of hemolysis in Hepatitis E due to Thalassemia.


Assuntos
Hepatite E/diagnóstico , Talassemia beta/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Hemólise , Humanos , Índia
18.
Am J Perinatol ; 34(3): 305-314, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27464020

RESUMO

Classically, genetically decreased bilirubin conjugation and/or hemolysis account for the mechanisms contributing to neonatal hyperbilirubinemia associated with glucose-6-phosphate dehydrogenase (G6PD) deficiency. However, these mechanisms are not involved in most cases of this hyperbilirubinemia. Additional plausible mechanisms for G6PD deficiency-associated hyperbilirubinemia need to be considered. Glutathione S-transferases (GST) activity depends on a steady quantity of reduced form of glutathione (GSH). If GSH is oxidized, it is reduced back by glutathione reductase, which requires the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH). The main source of NADPH is the pentose phosphate pathway, in which G6PD is the first enzyme. Rat kidney GSH, rat liver GST, and human red blood cell GST levels have been found to positively correlate with G6PD levels in their respective tissues. As G6PD is expressed in hepatocytes, it is expected that GST levels would be significantly decreased in hepatocytes of G6PD-deficient neonates. As hepatic GST binds bilirubin and prevents their reflux into circulation, hypothesis that decreased GST levels in hepatocytes is an additional mechanism contributing to G6PD deficiency-associated hyperbilirubinemia seems plausible. Evidence for and against this hypothesis are discussed in this article hoping to stimulate further research on the role of GST in G6PD deficiency-associated hyperbilirubinemia.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/metabolismo , Glutationa Transferase/metabolismo , Hepatócitos/enzimologia , Hiperbilirrubinemia Neonatal/metabolismo , Animais , Bilirrubina/análogos & derivados , Bilirrubina/sangue , Eritrócitos/enzimologia , Doença de Gilbert/metabolismo , Deficiência de Glucosefosfato Desidrogenase/complicações , Glutationa Transferase/deficiência , Glutationa Transferase/genética , Humanos , Hiperbilirrubinemia Neonatal/complicações , Recém-Nascido
19.
Pestic Biochem Physiol ; 143: 141-146, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183584

RESUMO

Aluminum phosphide (AlP) poisoning is a severe toxicity with 30-70% mortality rate. However, several case reports presented AlP-poisoned patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency and extensive hemolysis who survived the toxicity. This brought to our mind that maybe G6PD deficiency could protect the patients from severe fatal poisoning by this pesticide. In this research, we investigated the protective effect of 6-aminonicotinamide (6-AN)- as a well-established inhibitor of the NADP+- dependent enzyme 6-phosphogluconate dehydrogenase- on isolated rat hepatocytes in AlP poisoning. Hepatocytes were isolated by collagenase perfusion method and incubated into three different flasks: control, AlP, and 6-AN+ALP. Cellar parameters such as cell viability, reactive oxygen species (ROS) formation, mitochondria membrane potential collapse (MMP), lysosomal integrity, content of reduced (GSH) and oxidized glutathione (GSSG) and lipid peroxidation were assayed at intervals. All analyzed cellular parameters significantly decreased in the third group (6-AN+AlP) compared to the second group (AlP), showing the fact that G6PD deficiency induced by 6-AN had a significant protective effect on the hepatocytes. It was concluded that G6PD deficiency significantly reduced the hepatotoxicity of AlP. Future drugs with the power to induce such deficiency may be promising in treatment of AlP poisoning.


Assuntos
6-Aminonicotinamida/farmacologia , Compostos de Alumínio/toxicidade , Glucosefosfato Desidrogenase/antagonistas & inibidores , Hepatócitos/efeitos dos fármacos , Praguicidas/toxicidade , Fosfinas/toxicidade , Substâncias Protetoras/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Glucosefosfato Desidrogenase/metabolismo , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Hepatócitos/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
20.
J Pak Med Assoc ; 67(5): 810-813, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28507380

RESUMO

Both malaria and diabetes are more common in the developing world, and are major public health challenges. A direct relationship between these 2 conditions has not been evaluated. This review article assessed the literature guaging the relationship between these two conditions, and suggests a pragmatic approach to management. References for this review were identified through searches of PubMed, Medline, and Embase for articles published to October 2016 using the terms "diabetes" [MeSH Terms] AND "malaria" [All Fields]. The reference lists of the articles thus identified were also searched. The search was not restricted to English-language literature. Malaria has been documented to be more common in diabetes, in several studies from Africa. Malarial infection during pregnancy is an important cause of low birth weight and anaemia, and may contribute to the intra-uterine hypothesis explanation for the diabetes epidemic. Prevention and timely/effective management of malaria during pregnancy may therefore be viewed as a primordial preventive strategy against diabetes. Patients with diabetes have atypical malaria presentations. Glucose-6-phosphate dehydrogenase deficiency, which is associated with primaquine failure for radical cure is also associated with dysglycaemia. Type 2 Diabetic mice infected with malaria are more efficient at infecting mosquitoes. A similar synergy in humans warrants evaluation, which would then make "diabetic malaria" a public health problem. Metformin has well known anti-malarial properties. There is significant literature available highlighting the link between diabetes and malaria, an area warranting active further research. Metformin as a prophylactic agent for malaria prevention warrants evaluation.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Malária/epidemiologia , Animais , Antimaláricos/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Humanos , Hipoglicemiantes/uso terapêutico , Malária/tratamento farmacológico , Malária/metabolismo , Malária/transmissão , Metformina/uso terapêutico , Gravidez , Complicações Parasitárias na Gravidez/epidemiologia , Primaquina/uso terapêutico , Falha de Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA