Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.003
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 608(7921): 93-97, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35794471

RESUMO

Insects, unlike vertebrates, are widely believed to lack male-biased sex steroid hormones1. In the malaria mosquito Anopheles gambiae, the ecdysteroid 20-hydroxyecdysone (20E) appears to have evolved to both control egg development when synthesized by females2 and to induce mating refractoriness when sexually transferred by males3. Because egg development and mating are essential reproductive traits, understanding how Anopheles females integrate these hormonal signals can spur the design of new malaria control programs. Here we reveal that these reproductive functions are regulated by distinct sex steroids through a sophisticated network of ecdysteroid-activating/inactivating enzymes. We identify a male-specific oxidized ecdysteroid, 3-dehydro-20E (3D20E), which safeguards paternity by turning off female sexual receptivity following its sexual transfer and activation by dephosphorylation. Notably, 3D20E transfer also induces expression of a reproductive gene that preserves egg development during Plasmodium infection, ensuring fitness of infected females. Female-derived 20E does not trigger sexual refractoriness but instead licenses oviposition in mated individuals once a 20E-inhibiting kinase is repressed. Identifying this male-specific insect steroid hormone and its roles in regulating female sexual receptivity, fertility and interactions with Plasmodium parasites suggests the possibility for reducing the reproductive success of malaria-transmitting mosquitoes.


Assuntos
Anopheles , Ecdisteroides , Malária , Comportamento Sexual Animal , Animais , Anopheles/enzimologia , Anopheles/parasitologia , Anopheles/fisiologia , Ecdisteroides/biossíntese , Ecdisteroides/metabolismo , Feminino , Fertilidade , Humanos , Malária/parasitologia , Malária/prevenção & controle , Malária/transmissão , Masculino , Mosquitos Vetores/parasitologia , Oviposição , Fosforilação , Plasmodium
2.
Proc Natl Acad Sci U S A ; 120(10): e2214038120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36853946

RESUMO

The association of decreased fecundity with insecticide resistance and the negative sublethal effects of insecticides on insect reproduction indicates the typical trade-off between two highly energy-demanding processes, detoxification and reproduction. However, the underlying mechanisms are poorly understood. The energy sensor adenosine monophosphate-activated protein kinase (AMPK) and the transcription factor Cap "n" collar isoform C (CncC) are important regulators of energy metabolism and xenobiotic response, respectively. In this study, using the beetle Tribolium castaneum as a model organism, we found that deltamethrin-induced oxidative stress activated AMPK, which promoted the nuclear translocation of CncC through its phosphorylation. The CncC not only acts as a transcription activator of cytochrome P450 genes but also regulates the expression of genes coding for ecdysteroid biosynthesis and juvenile hormone (JH) degradation enzymes, resulting in increased ecdysteroid levels as well as decreased JH titer and vitellogenin (Vg) gene expression. These data show that in response to xenobiotic stress, the pleiotropic AMPK-CncC signaling pathway mediates the trade-off between detoxification and reproduction by up-regulating detoxification genes and disturbing hormonal homeostasis.


Assuntos
Proteínas Quinases Ativadas por AMP , Ecdisteroides , Proteínas Quinases Ativadas por AMP/genética , Reprodução , Transdução de Sinais , Xenobióticos , Fatores de Transcrição/metabolismo
3.
Gen Comp Endocrinol ; 355: 114548, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761872

RESUMO

Ecdysteroid molting hormones coordinate arthropod growth and development. Binding of 20-hydroxyecdysone (20E) to ecdysteroid receptor EcR/RXR activates a cascade of nuclear receptor transcription factors that mediate tissue responses to hormone. Insect ecdysteroid responsive and Forkhead box class O (FOXO) transcription factor gene sequences were used to extract orthologs from blackback land crab (Gecarcinus lateralis) Y-organ (YO) transcriptome: Gl-Ecdysone Receptor (EcR), Gl-Broad Complex (Br-C), Gl-E74, Gl-Hormone Receptor 3 (HR3), Gl-Hormone Receptor 4 (HR4), Gl-FOXO, and Gl-Fushi tarazu factor-1 (Ftz-f1). Quantitative polymerase chain reaction quantified mRNA levels in tissues from intermolt animals and in YO of animals induced to molt by multiple limb autotomy (MLA) or eyestalk ablation (ESA). Gl-EcR, Gl-Retinoid X Receptor (RXR), Gl-Br-C, Gl-HR3, Gl-HR4, Gl-E74, Gl-E75, Gl-Ftz-f1, and Gl-FOXO were expressed in all 10 tissues, with Gl-Br-C, Gl-E74, Gl-E75, and Gl-HR4 mRNA levels in the YO lower than those in most of the other tissues. In MLA animals, molting had no effect on Gl-Br-C, Gl-E74, and Gl-Ftz-f1 mRNA levels and little effect on Gl-EcR, Gl-E75, and Gl-HR4 mRNA levels. Gl-HR3 and Gl-FOXO mRNA levels were increased during premolt stages, while Gl-RXR mRNA level was highest during intermolt and premolt stages and lowest at postmolt stage. In ESA animals, YO mRNA levels were not correlated with hemolymph ecdysteroid titers. ESA had no effect on Gl-EcR, Gl-E74, Gl-HR3, Gl-HR4, Gl-Ftz-f1, and Gl-FOXO mRNA levels, while Gl-RXR, Gl-Br-C, and Gl-E75 mRNA levels were decreased at 3 days post-ESA. These data suggest that transcriptional up-regulation of Gl-FOXO and Gl-HR3 contributes to increased YO ecdysteroidogenesis during premolt. By contrast, transcriptional regulation of ecdysteroid responsive genes and ecdysteroidogenesis were uncoupled in the YO of ESA animals.


Assuntos
Ecdisteroides , Muda , Animais , Muda/genética , Ecdisteroides/metabolismo , Ecdisteroides/genética , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Ecdisterona/metabolismo , Braquiúros/genética , Braquiúros/metabolismo , Braquiúros/crescimento & desenvolvimento , Glândulas Endócrinas/metabolismo
4.
Gen Comp Endocrinol ; 357: 114598, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39122124

RESUMO

Environmental cues such as temperature induce macroscopic changes in the molting cycle of crustaceans, however, the physiological mechanisms behind these changes remain unclearWe aimed to investigate the regulatory mechanisms in the intermolt and premolt stages of the Callinectes sapidus molt cycle in response to thermal stimuli. The concentration of ecdysteroids and lipids in the hemolymph, and the expression of heat shock proteins (HSPs) and molt key genes were assessed at 19 °C, 24 °C and 29 °C. The premolt animals exhibited a much larger response to the colder temperature than intermolt animals. Ecdysteroids decreased drastically in premolt animals, whereas the expression of their hepatopancreas receptor (CasEcR) increased, possibly compensating for the low hemolymphatic levels at 19 °C. This decrease might be due to increased HSPs and inhibited ecdysteroidogenesis in the Y-organ. In addition, the molting-inhibiting hormone expression in the X-organ/sinus gland (XO/SG) remained constant between temperatures and stages, suggesting it is constitutive in this species. Lipid concentration in the hemolymph, and the expression of CasEcR and CasHSP90 in the XO/SG were influenced by the molting stage, not temperature. On the other hand, the expression of HSPs in the hepatopancreas is the result of the interaction between the two factors evaluated in the study. Our results demonstrated that temperature is an effective modulator of responses related to the molting cycle at the endocrine level and that temperature below the control condition caused a greater effect on the evaluated responses compared to the thermostable condition, especially when the animal was in the premolt stage.


Assuntos
Braquiúros , Ecdisteroides , Hemolinfa , Muda , Temperatura , Animais , Braquiúros/metabolismo , Braquiúros/fisiologia , Braquiúros/crescimento & desenvolvimento , Muda/fisiologia , Hemolinfa/metabolismo , Ecdisteroides/metabolismo , Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/fisiologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Hepatopâncreas/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38242349

RESUMO

We analyse the developmental and circadian profiles of expression of the genes responsible for ecdysteroidogenesis (Halloween genes) in the PGs of Rhodnius prolixus throughout larval-adult development. Extensive use of in vitro techniques enabled multiple different parameters to be measured in individual PGs. Expression of disembodied and spook closely paralleled the ecdysteroid synthesis of the same PGs, and the ecdysteroid titre in vivo, but with functionally significant exceptions. Various tissues other than PGs expressed one, both or neither genes. Both gonads express both genes in pharate adults (larvae close to ecdysis). Both genes were expressed at low, but significant, levels in UF Rhodnius, raising questions concerning how developmental arrest is maintained in UF animals. IHC confirmed the subcellular localisation of the coded proteins. Gene knockdown suppressed transcription of both genes and ecdysteroid synthesis, with spook apparently regulating the downstream gene disembodied. Transcription of both genes occurred with a daily rhythm (with peaks at night) that was confirmed to be under circadian control using aperiodic conditions. The complex behaviour of the rhythm in LL implied two anatomically distinct oscillators regulate this transcription rhythm. First, the circadian clock in the PGs and second, the circadian rhythm of of Rhodnius PTTH which is released rhythmically from the brain under control of the circadian clock therein, both of which were described previously. We conclude ecdysteroidogenesis in Rhodnius PGs employs a similar pathway as other insects, but its control is complex, involving mechanisms both within and outside the PGs.


Assuntos
Hormônios de Inseto , Rhodnius , Animais , Ecdisteroides/metabolismo , Rhodnius/genética , Rhodnius/metabolismo , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Ritmo Circadiano/fisiologia , Larva/metabolismo
6.
Pestic Biochem Physiol ; 200: 105827, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582591

RESUMO

In addition to the acute lethal toxicity, insecticides might affect population dynamics of insect pests by inducing life history trait changes under low concentrations, however, the underlying mechanisms remain not well understood. Here we examined systemic impacts on development and reproduction caused by low concentration exposures to cyantraniliprole in the fall armyworm (FAW), Spodoptera frugiperda, and the putative underlying mechanisms were investigated. The results showed that exposure of third-instar larvae to LC10 and LC30 of cyantraniliprole significantly extended larvae duration by 1.46 and 5.41 days, respectively. Treatment with LC30 of cyantraniliprole significantly decreased the pupae weight and pupation rate as well as the longevity, fecundity and egg hatchability of female adults. Consistently, we found that exposure of FAW to LC30 cyantraniliprole downregulated the mRNA expression of four ecdysteroid biosynthesis genes including SfNobo, SfShd, SfSpo and SfDib and one ecdysone response gene SfE75 in the larvae as well as the gene encoding vitellogenin (SfVg) in the female adults. We also found that treatment with LC30 of cyantraniliprole significantly decreased the whole body levels of glucose, trehalose, glycogen and triglyceride in the larvae. Our results indicate that low concentration of cyantraniliprole inhibited FAW development by disruption of ecdysteroid biosynthesis as well as carbohydrate and lipid metabolism, which have applied implications for the control of FAW.


Assuntos
Ecdisteroides , Inseticidas , Pirazóis , ortoaminobenzoatos , Animais , Spodoptera , Metabolismo dos Lipídeos , Larva , Inseticidas/toxicidade , Carboidratos
7.
Genomics ; 115(1): 110551, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566947

RESUMO

The growth and development in Tribolium castaneum were poorly understood at the transcriptome level. Currently, we identified 15,756, 9941 and 10,080 differentially expressed transcripts between late eggs VS early larvae, late larvae VS early pupae, and late pupae VS early adults of T. castaneum by RNA-seq, which was confirmed by qRT-PCR analysis on nine genes expression. Functional enrichment analysis indicated that DNA replication, cell cycle and insect hormone biosynthesis significantly enriched differentially expressed genes. The transcription of DNA replication and cell cycle genes decreased after hatching but increased after pupation. The juvenile hormone (JH) and ecdysteroid biosynthesis genes decreased after hatching, and the JH degradation genes were stimulated after pupation and eclosion while the ecdysteroid degradation gene CYP18A1 decreased after pupation. Silencing CYP18A1 elevated the titer of ecdysteroids and caused developmental arrest at the late larval stage. This study promotes the understanding of insect growth and development.


Assuntos
Ecdisteroides , Tribolium , Animais , Ecdisteroides/metabolismo , Interferência de RNA , Transcriptoma , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
8.
Insect Mol Biol ; 32(4): 400-411, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36892191

RESUMO

The control of insect moulting and metamorphosis involves ecdysteroids that orchestrate the execution of developmental genetic programs by binding to dimeric hormone receptors consisting of the ecdysone receptor (EcR) and ultraspiracle (USP). In insects, the main ecdysteroids comprise ecdysone (E), which is synthesized in the prothoracic gland and secreted into the haemolymph, and 20-hydroxyecdysone (20E), which is considered the active form by binding to the nuclear receptor of the target cell. While biosynthesis of ecdysteroids has been studied in detail in different insects, the transport systems involved in guiding these steroid hormones across cellular membranes have just recently begun to be studied. By analysing RNAi phenotypes in the red flour beetle, Tribolium castaneum, we have identified three transporter genes, TcABCG-8A, TcABCG-4D and TcOATP4-C1, whose silencing results in phenotypes similar to that observed when the ecdysone receptor gene TcEcRA is silenced, that is, abortive moulting and abnormal development of adult compound eyes during the larval stage. The genes of all three transporters are expressed at higher levels in the larval fat body of T. castaneum. We analysed potential functions of these transporters by combining RNAi and mass spectrometry. However, the analysis of gene functions is challenged by mutual RNAi effects indicating interdependent gene regulation. Based on our findings, we propose that TcABCG-8A, TcABCG-4D and TcOATP4-C1 participate in the ecdysteroid transport in fat body cells, which are involved in E → 20E conversion catalysed by the P450 enzyme TcShade.


Assuntos
Ecdisteroides , Tribolium , Animais , Ecdisteroides/metabolismo , Tribolium/metabolismo , Corpo Adiposo/metabolismo , Ecdisterona/metabolismo , Muda/genética , Metamorfose Biológica/genética , Ecdisona/metabolismo , Insetos/genética , Larva
9.
J Exp Biol ; 226(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37671530

RESUMO

Previous studies have shown that selection for starvation resistance in Drosophila melanogaster results in delayed eclosion and increased adult fat stores. It is assumed that these traits are caused by the starvation selection pressure, but its mechanism is unknown. We found that our starvation-selected (SS) population stores more fat during larval development and has extended larval development and pupal development time. Developmental checkpoints in the third instar associated with ecdysteroid hormone pulses are increasingly delayed. The delay in the late larval period seen in the SS population is indicative of reduced and delayed ecdysone signaling. An enzyme immunoassay for ecdysteroids (with greatest affinity to the metabolically active 20-hydroxyecdysone and the α-ecdysone precursor) confirmed that the SS population had reduced and delayed hormone production compared with that of fed control (FC) flies. Feeding third instar larvae on food supplemented with α-ecdysone partially rescued the developmental delay and reduced subsequent adult starvation resistance. This work suggests that starvation selection causes reduced and delayed production of ecdysteroids in the larval stage and affects the developmental delay phenotype that contributes to subsequent adult fat storage and starvation resistance.


Assuntos
Ecdisona , Ecdisteroides , Animais , Ecdisona/genética , Drosophila melanogaster/genética , Larva , Fenótipo
10.
Rapid Commun Mass Spectrom ; 37(18): e9611, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37580844

RESUMO

RATIONALE: Recently, there has been a report suggesting that ecdysteroids can enhance sports performance, making them relevant substances in doping control. Hence, it is imperative to examine the analytical characteristics of ecdysteroids in biological samples to identify their misuse in competitive sports. METHODS: To assess the doping of ecdysteroids such as ecdysone, ecdysterone, ponasterone A, turkesterone, and ajugasterone C, a fast and sensitive extraction and detection method was developed, optimized, and validated using equine urine and plasma. Different extraction techniques, namely, solid-phase extraction, liquid-liquid extraction, and dilute-and-inject, were explored to detect ecdysteroids from equine urine and plasma. RESULTS: The most suitable method of detection was solid-phase extraction using ABS Elut-NEXUS, while liquid-liquid extraction and dilute-and-inject methods encountered difficulties due to the high polarity of ecdysteroids and the presence of significant matrix interferences. Mass spectrometric parameters are optimized on both the Q Exactive high-resolution mass spectrometer and the TSQ Altis triple quadrupole mass spectrometer. However, the study indicated that the triple quadrupole mass spectrometer exhibited improved limit of detection when analyzing samples. To achieve optimal separation of the analytes under investigation from the matrix interferences, various liquid chromatography columns were compared. The Selectra PFPP LC column with a mobile phase consisting of 0.2% formic acid in water (mobile phase A) and acetonitrile (mobile phase B) at a flow rate of 0.5 mL/min demonstrated superior performance. CONCLUSIONS: The findings of this study will significantly contribute to the accurate identification of ecdysteroids, facilitating the investigation of their illicit use in horse racing.


Assuntos
Dopagem Esportivo , Ecdisteroides , Cavalos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida , Espectrometria de Massas , Dopagem Esportivo/prevenção & controle , Extração em Fase Sólida
11.
Fish Shellfish Immunol ; 137: 108750, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37084855

RESUMO

An ecdysteroid-regulated 16-kDa protein homolog (named Pc-E16), encoding 150 amino acid residues with a conserved MD-2-related lipid-recognition domain, was first identified in Procambarus clarkii. Phylogenetic analyses indicated similarity between Pc-E16 and 16-kDa proteins from Aplysia californica and insects. Recombinant Pc-E16 protein was successfully expressed in BL21 (DE3) Escherichia coli cells, and polyclonal antibodies against purified Pc-E16 proteins were prepared. In comparison with other tissues, Pc-E16 was highly expressed in the intestine; real-time PCR and Western blotting results indicated that Pc-E16 expression was significantly induced by lipopolysaccharides in hepatopancreas and hemocytes. Pc-E16-mediated signaling pathways were investigated by digital gene expression analysis following RNA interference targeting Pc-E16. A total of 6103 differentially expressed genes (DEGs) were identified, of which 3318 were up- and 2785 were downregulated. Many DEGs were involved in binding and catalytic activity. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that DEGs were clustered into 225 pathways, and 15 significantly enriched pathways were identified at the immune system level. In addition, the expression level of Pc-E16 in hemocytes and hepatopancreas was obviously downregulated at 48 h after dsRNA injection, and Pc-E16-RNAi treatment affected the expression levels of immune-related genes. Altogether, our results suggest that Pc-E16 is involved in the innate immune response of P. clarkii.


Assuntos
Astacoidea , Ecdisteroides , Animais , Ecdisteroides/metabolismo , Filogenia , Perfilação da Expressão Gênica , Imunidade Inata/genética , Proteínas Recombinantes/genética , Hepatopâncreas/metabolismo , Proteínas de Artrópodes
12.
J Nat Prod ; 86(8): 1960-1967, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37530540

RESUMO

The roots of Fibraurea recisa are recognized as a rich source of protoberberine and aporphine alkaloids, but the non-alkaloidal metabolites in this plant are underexplored. The present study investigated the chemical composition of the plant roots using untargeted metabolomics-based molecular networking and MS2LDA motif annotation, revealing the presence of a characteristic fragment motif related to several sinapoyl-functionalized metabolites. Guided by the targeted motif, two new sinapic acid-ecdysteroid hybrids, named 3-O-sinapoyl makisterone A (1) and 2-O-sinapoyl makisterone A (2), were isolated. The structures of these compounds, including their absolute configuration, were elucidated by HR-ESIQTOFMS, MS2 fragmentation, NMR spectroscopy, and chemical degradation coupled with optical rotation measurements. Although neither compound inhibited nitric oxide (NO) production or inducible nitric oxide synthase (iNOS) protein expression on lipopolysaccharide-induced RAW 264 cells, 2 significantly suppressed cyclooxygenase 2 (COX-2) protein expression at 1-30 µM. Additionally, decreased expression of COX-2 protein was barely observed after treatment with methyl sinapate or makisterone A, the steroid skeleton of 1 and 2. These results indicated that the presence of the sinapoyl moiety at C-2 on the C28-ecdysteroid skeleton played a key role in the selectivity for the suppression of the COX-2 protein expression.


Assuntos
Inibidores de Ciclo-Oxigenase 2 , Ecdisteroides , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ecdisteroides/farmacologia , Ésteres , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico , Lipopolissacarídeos/farmacologia
13.
J Nat Prod ; 86(4): 1074-1080, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36825873

RESUMO

Ecdysteroid-containing herbal extracts, commonly prepared from the roots of Cyanotis arachnoidea, are marketed worldwide as a "green" anabolic food supplement. Herein are reported the isolation and complete 1H and 13C NMR signal assignments of three new minor ecdysteroids (compounds 2-4) from this extract. Compound 4 was identified as a possible artifact that gradually forms through the autoxidation of calonysterone. The compounds tested demonstrated a significant protective effect on the blood-brain barrier endothelial cells against oxidative stress or inflammation at a concentration of 1 µM. Based on these results, minor ecdysteroids present in food supplements may offer health benefits in various neurodegenerative disease states.


Assuntos
Commelinaceae , Doenças Neurodegenerativas , Humanos , Ecdisteroides/farmacologia , Ecdisteroides/química , Barreira Hematoencefálica , Células Endoteliais , Commelinaceae/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
14.
Gen Comp Endocrinol ; 332: 114184, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455643

RESUMO

Prothoracicotropic hormone (PTTH) is a central regulator of insect development that regulates the production of the steroid moulting hormones (ecdysteroids) from the prothoracic glands (PGs). Rhodnius PTTH was the first brain neurohormone discovered in any animal almost 100 years ago but has eluded identification and no homologue of Bombyx mori PTTH occurs in its genome. Here, we report Rhodnius PTTH is the first noggin-like PTTH found. It differs in important respects from known PTTHs and is the first PTTH from the Hemimetabola (Exopterygota) to be fully analysed. Recorded PTTHs are widespread in Holometabola but close to absent in hemimetabolous orders. We concluded Rhodnius PTTH likely differed substantially from the known ones. We identified one Rhodnius gene that coded a noggin-like protein (as defined by Molina et al., 2009) that had extensive similarities with known PTTHs but also had two additional cysteines. Sequence and structural analysis showed known PTTHs are closely related to noggin-like proteins, as both possess a growth factor cystine knot preceded by a potential cleavage site. The gene is significantly expressed only in the brain, in a few cells of the dorsal protocerebrum. We vector-expressed the sequence from the potential cleavage site to the C-terminus. This protein was strongly steroidogenic on PGs in vitro. An antiserum to the protein removed the steroidogenic protein released by the brain. RNAi performed on brains in vitro showed profound suppression of transcription of the gene and of production and release of PTTH and thus of ecdysteroid production by PGs. In vivo, the gene is expressed throughout development, in close synchrony with PTTH release, ecdysteroid production by PGs and the ecdysteroid titre. The Rhodnius PTTH monomer is 17kDa and immunoreactive to anti-PTTH of Bombyx mori (a holometabolan). Bombyx PTTH also mildly stimulated Rhodnius PGs. The two additional cysteines form a disulfide at the tip of finger 2, causing a loop of residues to protrude from the finger. A PTTH variant without this loop failed to stimulate PGs, showing the loop is essential for PTTH activity. It is considered that PTTHs of Holometabola evolved from a noggin-like protein in the ancestor of Holometabola and Hemiptera, c.400ma, explaining the absence of holometabolous-type PTTHs from hemimetabolous orders and the differences of Rhodnius PTTH from them. Noggin-like proteins studied from Hemiptera to Arachnida were homologous with Rhodnius PTTH and may be common as PTTHs or other hormones in lower insects.


Assuntos
Bombyx , Hormônios de Inseto , Rhodnius , Animais , Ecdisteroides/metabolismo , Rhodnius/genética , Rhodnius/metabolismo , Ritmo Circadiano/fisiologia , Hormônios de Inseto/genética , Hormônios de Inseto/metabolismo , Larva/metabolismo
15.
Gen Comp Endocrinol ; 331: 114165, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36368438

RESUMO

Protein tyrosine phosphorylation is a reversible, dynamic process regulated by the activities of tyrosine kinases and tyrosine phosphatases. Although the involvement of tyrosine kinases in the prothoracicotropic hormone (PTTH)-stimulated ecdysteroidogenesis in insect prothoracic glands (PGs) has been documented, few studies have been conducted on the involvement of protein tyrosine phosphatases (PTPs) in PTTH-stimulated ecdysteroidogenesis. In the present study, we investigated the correlation between PTPs and PTTH-stimulated ecdysteroidogenesis in Bombyx mori PGs. Our results showed that the basal PTP enzymatic activities exhibited development-specific changes during the last larval instar and pupation stage, with high activities being detected during the later stages of the last larval instar. PTP enzymatic activity was stimulated by PTTH treatment both in vitro and in vivo. Pretreatment with phenylarsine oxide (PAO) and benzylphosphonic acid (BPA), two chemical inhibitors of tyrosine phosphatase, reduced PTTH-stimulated enzymatic activity. Determination of ecdysteroid secretion showed that treatment with PAO and BPA did not affect basal ecdysteroid secretion, but greatly inhibited PTTH-stimulated ecdysteroid secretion, indicating that PTTH-stimulated PTP activity is indeed involved in ecdysteroid secretion. PTTH-stimulated phosphorylation of the extracellular signal-regulated kinase (ERK) and 4E-binding protein (4E-BP) was partially inhibited by pretreatment with either PAO or BPA, indicating the potential link between PTPs and phosphorylation of ERK and 4E-BP. In addition, we also found that in vitro treatment with 20-hydroxyecdysone did not affect PTP enzymatic activity. We further investigated the expressions of two important PTPs (PTP 1B (PTP1B) and the phosphatase and tension homologue (PTEN)) in Bombyx PGs. Our immunoblotting analysis showed that B. mori PGs contained the proteins of PTP1B and PTEN, with PTP1B protein undergoing development-specific changes. Protein levels of PTP1B and PTEN were not affected by PTTH treatment. The gene expression levels of PTP1B and PTEN showed development-specific changes. From these results, we suggest that PTTH-regulated PTP signaling may crosstalk with ERK and target of rapamycin (TOR) signaling pathways and is a necessary component for stimulation of ecdysteroid secretion.


Assuntos
Bombyx , Hormônios de Inseto , Animais , Bombyx/genética , Ecdisteroides/metabolismo , Hormônios de Inseto/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Larva/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Tirosina/metabolismo
16.
Gen Comp Endocrinol ; 340: 114304, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127083

RESUMO

A pair of Y-organs (YOs) synthesize ecdysteroids that initiate and coordinate molting processes in decapod crustaceans. The YO converts cholesterol to secreted products through a biosynthetic pathway involving a Rieske oxygenase encoded by Neverland (Nvd) and cytochrome P450 monooxygenases encoded by Halloween genes Spook (Spo; Cyp307a1), Phantom (Phm; Cyp306a1), Disembodied (Dib; Cyp302a1), and Shadow (Sad; Cyp315a1). NAD kinase (NADK) and 5-aminolevulinic acid synthase (ALAS) support ecdysteroid synthesis in insects. A 20-hydroxylase, encoded by Shed in decapods and Shade in insects, converts ecdysone to the active hormone 20-hydroxyecdysone (20E). 20E is inactivated by cytochrome P450 26-hydroxylase (Cyp18a1). Contigs encoding these eight proteins were extracted from a Gecarcinus lateralis YO transcriptome and their expression was quantified by quantitative polymerase chain reaction. mRNA levels of Gl-Spo and Gl-Phm were four orders of magnitude higher in YO than those in nine other tissues, while mRNA levels of Gl-NADK and Gl-ALAS were similar in all ten tissues. In G. lateralis induced to molt by multiple leg autotomy, YO mRNA levels of Gl-Nvd, Gl-Spo, Gl-Phm, Gl-NADK, and Gl-ALAS were highest in intermolt and premolt stages and lower in postmolt. Gl-Dib mRNA level was not affected by molt stage. mRNA level of Gl-Sad, which converts 2-deoxyecdysone to ecdysone, was higher in mid- and late premolt stages, when YO ecdysteroidogenic capacity is greatest. Gl-Cyp18a1 mRNA level was highest in intermolt, decreased in premolt stages, and was lowest in postmolt. In animals induced to molt by eyestalk ablation, YO mRNA levels of all eight genes were not correlated with increased hemolymph 20E titers. These results suggest that YO ecdysteroidogenic genes are differentially regulated at transcriptional and translational levels.


Assuntos
Braquiúros , Animais , Braquiúros/genética , Braquiúros/metabolismo , Transdução de Sinais/genética , Ecdisteroides/metabolismo , Muda/genética , Ecdisona , RNA Mensageiro/metabolismo
17.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834248

RESUMO

In insects, the ecdysteroid hormone regulates development and reproduction. However, its function in the reproduction process of spider mites is still unclear. In this study, we investigated the effect of the Halloween gene Spook on the oviposition of the reproduction process in a spider mite, Tetranychus urticae. The expression patterns of the ecdysteroid biosynthesis and signaling pathway genes, as analyzed by RT-qPCR, showed that the expression pattern of the Halloween genes was similar to the oviposition pattern of the female mite and the expression patterns of the vitellogenesis-related genes TuVg and TuVgR, suggesting that the Halloween genes are involved in the oviposition of spider mites. To investigate the function of the ecdysteroid hormone on the oviposition of the reproduction process, we carried out an RNAi assay against the Halloween gene Spook by injection in female mites. Effective silencing of TuSpo led to a significant reduction of oviposition. In summary, these results provide an initial study on the effect of Halloween genes on the reproduction in T. urticae and may be a foundation for a new strategy to control spider mites.


Assuntos
Oviposição , Tetranychidae , Animais , Feminino , Ecdisteroides/genética , Reprodução/genética , Interferência de RNA
18.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982800

RESUMO

20-Hydroxyecdysone (20E) plays an essential role in coordinating developmental transitions in insects through responsive protein-coding genes and microRNAs (miRNAs). However, the interplay between 20E and miRNAs during insect metamorphosis is unknown. In this study, using small RNA sequencing, a comparative miRNA transcriptomic analysis in different development stages, and 20E treatment, we identified ame-bantam-3p as a key candidate miRNA involved in honeybee metamorphosis. Target prediction and in vitro dual-luciferase assays confirmed that ame-bantam-3p interacts with the coding region of the megf8 gene and promotes its expression. Meanwhile, temporal expression analysis revealed that the expression of ame-bantam-3p is higher in the larval stage than in prepupal and pupal stages, and that this expression pattern is similar to that of megf8. In vivo, we found that the mRNA level of megf8 was significantly increased after the injection of ame-bantam-3p agomir. A 20E feeding assay showed that 20E downregulated the expression of both ame-bantam-3p and its target gene megf8 on larval days five, six, and seven. Meanwhile, the injection of ame-bantam-3p agomir also reduced the 20E titer, as well as the transcript levels of essential ecdysteroid synthesis genes, including Dib, Phm, Sad, and Nvd. The transcript levels of 20E cascade genes, including EcRA, ECRB1, USP, E75, E93, and Br-c, were also significantly decreased after ame-bantam-3p agomir injection. However, ame-bantam-3p antagomir injection and dsmegf8 injection showed the opposite effect to ame-bantam-3p agomir injection. Ame-bantam-3p agomir treatment ultimately led to mortality and the failure of larval pupation by inhibiting ecdysteroid synthesis and the 20E signaling pathway. However, the expression of 20E signaling-related genes was significantly increased after megf8 knockdown, and larvae injected with dsmegf8 showed early pupation. Combined, our results indicate that ame-bantam-3p is involved in the 20E signaling pathway through positively regulating its target gene megf8 and is indispensable for larval-pupal development in the honeybee. These findings may enhance our understanding of the relationship between 20E signaling and small RNAs during honeybee development.


Assuntos
MicroRNAs , Animais , Abelhas/genética , Larva/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ecdisteroides/metabolismo , Pupa , Ecdisterona/farmacologia , Ecdisterona/metabolismo , Metamorfose Biológica/genética , Família de Proteínas EGF/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
19.
Vopr Pitan ; 92(1): 108-115, 2023.
Artigo em Russo | MEDLINE | ID: mdl-36883545

RESUMO

At present, the scientific based view of creation enriched, specialized and functional products based on bioactive compounds (BAC) of plant origin has been formed. Interactions between polysaccharides (hydrocolloids), macronutrients of the food system and minor BAC are a determining factor in their bioavailability and should be taken into account when developing formulations and evaluated accordingly. The objective of the research was to consider the theoretical aspects of the interaction of polysaccharides and minor BAC in functional food ingredients of plant origin, as well as to provide an overview of currently available methods for their evaluation. Material and methods. The search and analysis of publications were carried out using the eLIBRARY, PubMed, Scopus, Web of Science databases, mainly in the last 10 years. Results. The main interaction mechanisms of the polysaccharides with minor BAC were determined using the example of the components of the polyphenol complex (flavonoids), ecdysteroids. These include: adsorption, the formation of an "inclusion complex", hydrogen bonding between OH-groups. The interaction of BAC with other macromolecules can occur with their significant modification as a result of the formation of complexes and cause a decrease in biological activity. The assessment of the degree of interaction of hydrocolloids with minor BAC can be carried out using both in vitro and in vivo methods. Most of these studies are carried out in vitro, do not take into account many factors that affect the bioavailability of BAC. Thus, it can be noted that, despite significant progress in the development of functional food ingredients based on medicinal plant materials, the studies of the interactions of BAC with polysaccharides using relevant models are not currently carried out to the extent necessary. Conclusion. Based on the data presented in the review, it can be concluded that plant polysaccharides (hydrocolloids) have a significant effect on the biological activity and availability of minor BAC (polyphenols, ecdysteroids). As an optimal technique for a preliminary assessment of the degree of interaction, it is recommended to use a model that includes the main enzymatic systems, which allows you to accurately reproduce the processes occurring in the gastrointestinal tract; at the final stage, it is necessary to confirm the biological activity in vivo.


Assuntos
Ecdisteroides , Ingredientes de Alimentos , Flavonoides , Trato Gastrointestinal , Polifenóis , Polissacarídeos
20.
Dev Biol ; 473: 71-79, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33571487

RESUMO

Metamorphic transition in some tenebrionid beetles is dependent on population density. This phenomenon is useful for pupae that are vulnerable to cannibalism. The physiological mechanism of this adaptive developmental phenomenon remains unclear. In Zophobas atratus, which show density-dependent metamorphosis, larval isolation can induce metamorphosis. We herein demonstrated that the return of isolated larvae to a crowded condition (re-crowding) inhibited their metamorphosis. The timing of metamorphic initiation was slightly extended according to the duration of re-crowding experienced by the isolated larvae. Therefore, the re-crowding induced physiological changes needed for metamorphic inhibition. We investigated whether hormone-related genes involved in signaling of metamorphic inhibitor (juvenile hormone, JH) and molting hormone (ecdysteroid) responded to the re-crowding. An expression analysis showed that gene expression of ecdysteroid signaling was maintained at low levels under the re-crowded condition. Actually, ecdysteroid levels decreased responding to re-crowding. Ecdysteroid injections induced metamorphosis in re-crowded larvae. In contrast, the JH signaling gene showed little fluctuation in both isolated and re-crowded conditions, and knockdown of JH signaling factors did not affect inhibition of metamorphosis under the re-crowded condition. The present study suggests that regulation of ecdysteroid level rather than JH is more crucial in the density dependent metamorphosis in Z. atratus.


Assuntos
Ecdisteroides/metabolismo , Ecdisteroides/fisiologia , Metamorfose Biológica/fisiologia , Animais , Besouros/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Insetos/genética , Larva/metabolismo , Muda/fisiologia , Densidade Demográfica , Pupa/metabolismo , Tenebrio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA