Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.291
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
N Engl J Med ; 389(19): 1753-1765, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37937777

RESUMO

BACKGROUND: Local injections of botulinum toxin type A have been used to treat essential head tremor but have not been extensively studied in randomized trials. METHODS: In a multicenter, double-blind, randomized trial, we assigned, in a 1:1 ratio, adult patients with essential or isolated head tremor to receive botulinum toxin type A or placebo. Botulinum toxin or placebo was injected under electromyographic guidance into each splenius capitis muscle on the day of randomization (day 0) and during week 12. The primary outcome was improvement by at least 2 points on the Clinical Global Impression of Change (CGI) scale at week 6 after the second injection (week 18 after randomization). The CGI scale was used to record the patient's assessment of the degree of improvement or worsening of head tremor since baseline; scores range from 3 (very much improved) to -3 (very much worse). Secondary outcomes included changes in tremor characteristics from baseline to weeks 6, 12, and 24. RESULTS: A total of 120 patients were enrolled; 3 patients were excluded during screening, and 117 patients were randomly assigned to receive botulinum toxin (62 patients) or placebo (55 patients) and were included in the intention-to-treat analysis. Twelve patients in the botulinum toxin group and 2 patients in the placebo group did not receive injections during week 12. The primary outcome - improvement by at least 2 points on the CGI scale at week 18 - was met by 31% of the patients in the botulinum toxin group as compared with 9% of those in the placebo group (relative risk, 3.37; 95% confidence interval, 1.35 to 8.42; P = 0.009). Analyses of secondary outcomes at 6 and 12 weeks but not at 24 weeks were generally supportive of the primary-outcome analysis. Adverse events occurred in approximately half the patients in the botulinum toxin group and included head and neck pain, posterior cervical weakness, and dysphagia. CONCLUSIONS: Injection of botulinum toxin into each splenius capitis muscle on day 0 and during week 12 was more effective than placebo in reducing the severity of isolated or essential head tremor at 18 weeks but not at 24 weeks, when the effects of injection might be expected to wane, and was associated with adverse events. (Funded by the French Ministry of Health; Btx-HT ClinicalTrials.gov number, NCT02555982.).


Assuntos
Toxinas Botulínicas Tipo A , Tremor Essencial , Fármacos Neuromusculares , Tremor , Adulto , Humanos , Toxinas Botulínicas Tipo A/administração & dosagem , Toxinas Botulínicas Tipo A/efeitos adversos , Toxinas Botulínicas Tipo A/uso terapêutico , Método Duplo-Cego , Tremor Essencial/tratamento farmacológico , Cabeça , Resultado do Tratamento , Tremor/tratamento farmacológico , Eletromiografia/métodos , Injeções Intramusculares/métodos , Cefaleia/induzido quimicamente , Cervicalgia/induzido quimicamente , Fármacos Neuromusculares/administração & dosagem , Fármacos Neuromusculares/efeitos adversos , Fármacos Neuromusculares/uso terapêutico
2.
J Neurosci ; 44(32)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38960719

RESUMO

Little is known about the electrophysiologic activity of the intact human spinal cord during volitional movement. We analyzed epidural spinal recordings from a total of five human subjects of both sexes during a variety of upper extremity movements and found that these spinal epidural electrograms contain spectral information distinguishing periods of movement, rest, and sensation. Cervical epidural electrograms also contained spectral changes time-locked with movement. We found that these changes were primarily associated with increased power in the theta (4-8 Hz) band and feature increased theta phase to gamma amplitude coupling, and this increase in theta power can be used to topographically map distinct upper extremity movements onto the cervical spinal cord in accordance with established myotome maps of the upper extremity. Our findings have implications for the development of neurostimulation protocols and devices focused on motor rehabilitation for the upper extremity, and the approach presented here may facilitate spatiotemporal mapping of naturalistic movements.


Assuntos
Movimento , Humanos , Masculino , Feminino , Movimento/fisiologia , Adulto , Volição/fisiologia , Medula Cervical/fisiologia , Espaço Epidural/fisiologia , Vértebras Cervicais/fisiologia , Eletromiografia/métodos , Pessoa de Meia-Idade
3.
PLoS Comput Biol ; 20(7): e1012257, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959262

RESUMO

Neuromechanical studies investigate how the nervous system interacts with the musculoskeletal (MSK) system to generate volitional movements. Such studies have been supported by simulation models that provide insights into variables that cannot be measured experimentally and allow a large number of conditions to be tested before the experimental analysis. However, current simulation models of electromyography (EMG), a core physiological signal in neuromechanical analyses, remain either limited in accuracy and conditions or are computationally heavy to apply. Here, we provide a computational platform to enable future work to overcome these limitations by presenting NeuroMotion, an open-source simulator that can modularly test a variety of approaches to the full-spectrum synthesis of EMG signals during voluntary movements. We demonstrate NeuroMotion using three sample modules. The first module is an upper-limb MSK model with OpenSim API to estimate the muscle fibre lengths and muscle activations during movements. The second module is BioMime, a deep neural network-based EMG generator that receives nonstationary physiological parameter inputs, like the afore-estimated muscle fibre lengths, and efficiently outputs motor unit action potentials (MUAPs). The third module is a motor unit pool model that transforms the muscle activations into discharge timings of motor units. The discharge timings are convolved with the output of BioMime to simulate EMG signals during the movement. We first show how MUAP waveforms change during different levels of physiological parameter variations and different movements. We then show that the synthetic EMG signals during two-degree-of-freedom hand and wrist movements can be used to augment experimental data for regressing joint angles. Ridge regressors trained on the synthetic dataset were directly used to predict joint angles from experimental data. In this way, NeuroMotion was able to generate full-spectrum EMG for the first use-case of human forearm electrophysiology during voluntary hand, wrist, and forearm movements. All intermediate variables are available, which allows the user to study cause-effect relationships in the complex neuromechanical system, fast iterate algorithms before collecting experimental data, and validate algorithms that estimate non-measurable parameters in experiments. We expect this modular platform will enable validation of generative EMG models, complement experimental approaches and empower neuromechanical research.


Assuntos
Biologia Computacional , Eletromiografia , Movimento , Músculo Esquelético , Eletromiografia/métodos , Humanos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Redes Neurais de Computação , Fenômenos Biomecânicos/fisiologia , Simulação por Computador , Potenciais de Ação/fisiologia , Modelos Neurológicos
4.
J Neurosci ; 43(17): 3094-3106, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36914263

RESUMO

Fatigue is the subjective sensation of weariness, increased sense of effort, or exhaustion and is pervasive in neurologic illnesses. Despite its prevalence, we have a limited understanding of the neurophysiological mechanisms underlying fatigue. The cerebellum, known for its role in motor control and learning, is also involved in perceptual processes. However, the role of the cerebellum in fatigue remains largely unexplored. We performed two experiments to examine whether cerebellar excitability is affected after a fatiguing task and its association with fatigue. Using a crossover design, we assessed cerebellar inhibition (CBI) and perception of fatigue in humans before and after "fatigue" and "control" tasks. Thirty-three participants (16 males, 17 females) performed five isometric pinch trials with their thumb and index finger at 80% maximum voluntary capacity (MVC) until failure (force <40% MVC; fatigue) or at 5% MVC for 30 s (control). We found that reduced CBI after the fatigue task correlated with a milder perception of fatigue. In a follow-up experiment, we investigated the behavioral consequences of reduced CBI after fatigue. We measured CBI, perception of fatigue, and performance during a ballistic goal-directed task before and after the same fatigue and control tasks. We replicated the observation that reduced CBI after the fatigue task correlated with a milder perception of fatigue and found that greater endpoint variability after the fatigue task correlated with reduced CBI. The proportional relation between cerebellar excitability and fatigue indicates a role of the cerebellum in the perception of fatigue, which might come at the expense of motor control.SIGNIFICANCE STATEMENT Fatigue is one of the most common and debilitating symptoms in neurologic, neuropsychiatric, and chronic illnesses. Despite its epidemiological importance, there is a limited understanding of the neurophysiological mechanisms underlying fatigue. In a series of experiments, we demonstrate that decreased cerebellar excitability relates to lesser physical fatigue perception and worse motor control. These results showcase the role of the cerebellum in fatigue regulation and suggest that fatigue- and performance-related processes might compete for cerebellar resources.


Assuntos
Cerebelo , Aprendizagem , Feminino , Humanos , Masculino , Cerebelo/fisiologia , Eletromiografia/métodos , Inibição Psicológica , Aprendizagem/fisiologia , Percepção , Estimulação Magnética Transcraniana/métodos , Estudos Cross-Over
5.
J Physiol ; 602(2): 397-412, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178603

RESUMO

Bilateral hand movements are assumed to be coordinated by a neural coupling mechanism. Neural coupling is experimentally reflected in complex electromyographic (EMG) responses in the forearm muscles of both sides to unilateral electrical arm nerve stimulation (ES). The aim of this study was to examine a potential involvement of the reticulospinal system in neural coupling by the application of loud acoustic stimuli (LAS) known to activate neurons of this system. LAS, ES and combined LAS/ES were applied to healthy subjects during visually guided bilateral hand flexion-extension movements. Muscle responses to the different stimuli were evaluated by electrophysiological recordings. Unilateral electrical ulnar nerve stimulation resulted in neural coupling responses in the forearm extensors (FE) of both sides. Interestingly, LAS evoked bilateral EMG responses that were similar in their configuration to those induced by ES. The presence of startles was associated with a shift of the onset and enhanced amplitude of LAS-induced coupling-like responses. Upon combined LAS/ES application, ES facilitated ipsilateral startles and coupling-like responses. Modulation of coupling-like responses by startles, the similarity of the responses to ES and LAS, and their interaction following combined stimulation suggests that both responses are mediated by the reticulospinal system. Our findings provide novel indirect evidence that the reticulospinal system is involved in the neural coupling of hand movements. This becomes clinically relevant in subjects with a damaged corticospinal system where a dominant reticulospinal system leads to involuntary limb coupling, referred to as associated movements. KEY POINTS: Automatic coordination of hand movements is assumed to be mediated by a neural coupling mechanism reflected by bilateral reflex responses in forearm muscles to unilateral electrical arm nerve stimulation (ES). Loud acoustic stimuli (LAS) were applied to assess a potential involvement of the reticulospinal system in the neural coupling mechanism. LAS evoked a bilateral reflex response in the forearm extensors that was similar to the neural coupling response to ES, and which could be separated from the acoustic startle response. Combined application of LAS and ES resulted in a facilitation of startle and coupling-like responses ipsilateral to ES, thus indicating an interaction of afferences from both stimuli. These novel findings provide indirect evidence that the reticulospinal system is a key motor structure for the coupling of bilateral hand movements.


Assuntos
Movimento , Reflexo de Sobressalto , Humanos , Eletromiografia/métodos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Tronco Encefálico
6.
J Physiol ; 602(7): 1385-1404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513002

RESUMO

The purpose of our study was to investigate the influence of a stretch intervention on the common modulation of discharge rate among motor units in the calf muscles during a submaximal isometric contraction. The current report comprises a computational analysis of a motor unit dataset that we published previously (Mazzo et al., 2021). Motor unit activity was recorded from the three main plantar flexor muscles while participants performed an isometric contraction at 10% of the maximal voluntary contraction force before and after each of two interventions. The interventions were a control task (standing balance) and static stretching of the plantar flexor muscles. A factorization analysis on the smoothed discharge rates of the motor units from all three muscles yielded three modes that were independent of the individual muscles. The composition of the modes was not changed by the standing-balance task, whereas the stretching exercise reduced the average correlation in the second mode and increased it in the third mode. A centroid analysis on the correlation values showed that most motor units were associated with two or three modes, which were presumed to indicate shared synaptic inputs. The percentage of motor units adjacent to the seven centroids changed after both interventions: Control intervention, mode 1 decreased and the shared mode 1 + 2 increased; stretch intervention, shared modes either decreased (1 + 2) or increased (1 + 3). These findings indicate that the neuromuscular adjustments during both interventions were sufficient to change the motor unit modes when the same task was performed after each intervention. KEY POINTS: Based on covariation of the discharge rates of motor units in the calf muscles during a submaximal isometric contraction, factor analysis was used to assign the correlated discharge trains to three motor unit modes. The motor unit modes were determined from the combined set of all identified motor units across the three muscles before and after each participant performed a control and a stretch intervention. The composition of the motor unit modes changed after the stretching exercise, but not after the control task (standing balance). A centroid analysis on the distribution of correlation values found that most motor units were associated with a shared centroid and this distribution, presumably reflecting shared synaptic input, changed after both interventions. Our results demonstrate how the distribution of multiple common synaptic inputs to the motor neurons innervating the plantar flexor muscles changes after a brief series of stretches.


Assuntos
Contração Isométrica , Músculo Esquelético , Humanos , Contração Isométrica/fisiologia , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Perna (Membro)/fisiologia , Neurônios Motores/fisiologia , Contração Muscular/fisiologia
7.
J Physiol ; 602(8): 1759-1774, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38502567

RESUMO

5-HT2 receptors on motoneurones play a critical role in facilitating persistent inward currents (PICs). Although facilitation of PICs can enhance self-sustained firing after periods of excitation, the relationship between 5-HT2 receptor activity and self-sustained firing in human motor units (MUs) has not been resolved. MU activity was assessed from the tibialis anterior of 10 healthy adults (24.9 ± 2.8 years) during two contraction protocols. Both protocols featured steady-state isometric contractions with constant descending drive to the motoneurone pool. However, one protocol also included an additional phase of superimposed descending drive. Adding and then removing descending drive in the middle of steady-state contractions altered MU firing behaviour across the motor pool, where newly recruited units in the superimposed phase were unable to switch off (P = 0.0002), and units recruited prior to additional descending drive reduced their discharge rates (P < 0.0001, difference in estimated marginal means (∆) = 2.24 pulses/s). The 5-HT2 receptor antagonist, cyproheptadine, was then administered to determine whether changes in MU firing were mediated by serotonergic mechanisms. 5-HT2 receptor antagonism caused reductions in MU discharge rate (P < 0.001, ∆ = 1.65 pulses/s), recruitment threshold (P = 0.00112, ∆ = 1.09% maximal voluntary contraction) and self-sustained firing duration (P < 0.0001, ∆ = 1.77s) after the additional descending drive was removed in the middle of the steady-state contraction. These findings indicate that serotonergic neuromodulation plays a key role in facilitating discharge and self-sustained firing of human motoneurones, where adaptive changes in MU recruitment must occur to meet the demands of the contraction. KEY POINTS: Animal and cellular preparations indicate that somato-dendritic 5-HT2 receptors regulate the intrinsic excitability of motoneurones. 5-HT2 receptor antagonism reduces estimates of persistent inward currents in motoneurones, which contribute to self-sustained firing when synaptic inputs are reduced or removed. This human study employed a contraction task that slowly increased (and then removed) the additional descending drive in the middle of a steady-state contraction where marked self-sustained firing occurred when the descending drive was removed. 5-HT2 receptor antagonism caused widespread reductions in motor unit (MU) discharge rates during contractions, which was accompanied by reduced recruitment threshold and attenuation of self-sustained firing duration after the removal of the additional descending drive to motoneurones. These findings support the role that serotonergic neuromodulation is a key facilitator of MU discharge and self-sustained firing of human motoneurones, where adaptative changes in MU recruitment must occur to meet the demands of the contraction.


Assuntos
Receptores 5-HT2 de Serotonina , Serotonina , Adulto , Humanos , Serotonina/farmacologia , Músculo Esquelético/fisiologia , Contração Isométrica/fisiologia , Neurônios Motores/fisiologia , Eletromiografia/métodos , Contração Muscular/fisiologia , Recrutamento Neurofisiológico/fisiologia
8.
J Neurophysiol ; 131(2): 187-197, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38117916

RESUMO

Spinal cord injury (SCI) disrupts neuronal function below the lesion epicenter, causing disuse muscle atrophy. We investigated motor unit (MU) activity and synaptic inputs to motoneurons in the caudal region of the injured spinal cord. Participants with C4-C7 cervical injuries were studied. The extensor digitorum communis (EDC) muscle, which is mainly innervated by C8, was assessed for disuse muscle atrophy. Using advanced electromyography and signal-processing techniques, we examined the concurrent activation of a substantial population of MUs during force-tracking tasks. We found that in participants with SCI (n = 9), both MU discharge rates and the amplitudes of MU action potentials were significantly lower than in controls (n = 9). After SCI, MUs were recruited in a limited force range as the strength of muscle contractions increased, implying a disruption in the orderly MU recruitment pattern. Coherence analysis revealed reduced synaptic inputs to motoneurons in the delta band (0.5-5 Hz) for participants with SCI, suggesting diminished common synaptic inputs to the EDC muscle. In addition, participants with SCI exhibited greater muscle force variability. Using principal component analysis on low-frequency MU discharge rates, we found that the first common component (FCC) captured the most discharge variability in participants with SCI. The coefficients of variation (CV) of the FCC correlated with force signal CVs, suggesting force variability mainly results from common synaptic inputs to the EDC muscle after SCI. These results advance our understanding of the neurophysiology of disuse muscle atrophy in human SCI, paving the way for therapeutic interventions to restore muscle function.NEW & NOTEWORTHY This study analyzed motor unit (MU) function below the lesion epicenter in patients with spinal cord injury (SCI). We found reduced MU discharge rates and action potential amplitudes in participants with SCI compared with controls. The strength of common synaptic inputs to motoneurons was reduced in patients with SCI, with increased force variability primarily due to low-frequency oscillations of common inputs. This study enhances understanding of neurophysiological and behavioral changes in disuse muscle atrophy post-SCI.


Assuntos
Traumatismos da Medula Espinal , Medula Espinal , Humanos , Estimulação Elétrica , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Eletromiografia/métodos , Contração Muscular/fisiologia , Atrofia Muscular/patologia
9.
J Neurophysiol ; 131(2): 379-393, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38198664

RESUMO

Local vibration (LV) applied over the muscle tendon constitutes a powerful stimulus to activate the muscle spindle primary (Ia) afferents that project to the spinal level and are conveyed to the cortical level. This study aimed to identify the neuromuscular changes induced by a 30-min LV-inducing illusions of hand extension on the vibrated flexor carpi radialis (FCR) and the antagonist extensor carpi radialis (ECR) muscles. We studied the change of the maximal voluntary isometric contraction (MVIC, experiment 1) for carpal flexion and extension, motor-evoked potentials (MEPs, experiment 2), cervicomedullary motor-evoked potentials (CMEPs, experiment 2), and Hoffmann's reflex (H-reflex, experiment 3) for both muscles at rest. Measurements were performed before (PRE) and at 0, 30, and 60 min after LV protocol. A lasting decrease in strength was only observed for the vibrated muscle. The reduction in CMEPs observed for both muscles seems to support a decrease in alpha motoneurons excitability. In contrast, a slight decrease in MEPs responses was observed only for the vibrated muscle. The MEP/CMEP ratio increase suggested greater cortical excitability after LV for both muscles. In addition, the H-reflex largely decreased for the vibrated and the antagonist muscles. The decrease in the H/CMEP ratio for the vibrated muscle supported both pre- and postsynaptic causes of the decrease in the H-reflex. Finally, LV-inducing illusions of movement reduced alpha motoneurons excitability for both muscles with a concomitant increase in cortical excitability.NEW & NOTEWORTHY Spinal disturbances confound the interpretation of excitability changes in motor areas and compromise the conclusions reached by previous studies using only a corticospinal marker for both vibrated and antagonist muscles. The time course recovery suggests that the H-reflex perturbations for the vibrated muscle do not only depend on changes in alpha motoneurons excitability. Local vibration induces neuromuscular changes in both vibrated and antagonist muscles at the spinal and cortical levels.


Assuntos
Ilusões , Humanos , Eletromiografia/métodos , Ilusões/fisiologia , Vibração , Músculo Esquelético/fisiologia , Tendões/fisiologia , Potencial Evocado Motor/fisiologia , Tratos Piramidais/fisiologia , Estimulação Magnética Transcraniana/métodos
10.
Neurobiol Dis ; 200: 106616, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39103021

RESUMO

BACKGROUND: Increased 4-12 Hz oscillatory activity in the cortico-basal ganglia-thalamo-cortical (CBGTC) loop is reported in dystonia. Coherence analysis is a measure of linear coupling between two signals, revealing oscillatory activity drives that are common across motor units. By performing coherence analysis, activity of the CBGTC-loop can be measured with modalities like local field potentials (LFPs), electromyography (EMG), and electro-encephalography (EEG). The aim of this study is to perform a systematic review on the use of coherence analysis for clinical assessment and treatment of dystonia. METHODS: A systematic review was performed on a search in Embase and PubMed on June 28th, 2023. All studies incorporating coherence analysis and an adult dystonia cohort were included. Three authors evaluated the eligibility of the articles. Quality was assessed using the QUADAS-2 checklist. RESULTS: A total of 41 articles were included, with data of 395 adult dystonia patients. In the selected records, six different types of coherence were investigated: corticocortical, corticopallidal, corticomuscular, pallidopallidal, pallidomuscular, and intermuscular coherence. Various types of 4-12 coherence were found to be increased in all dystonia subtypes. CONCLUSION: There is increased 4-12 Hz coherence found between the cortex, basal ganglia, and affected muscles in all dystonia subtypes. However, the relationship between 4-12 Hz coherence and the dystonic clinical state has not been established. DBS treatment leads to a reduction of 4-12 Hz coherence. In combination with the results of this review, the 4-12 Hz frequency band can be used as a promising phenomenon for the development of a biomarker.


Assuntos
Distonia , Humanos , Gânglios da Base/fisiopatologia , Córtex Cerebral/fisiopatologia , Distonia/diagnóstico , Distonia/fisiopatologia , Distonia/terapia , Distúrbios Distônicos/fisiopatologia , Distúrbios Distônicos/terapia , Distúrbios Distônicos/diagnóstico , Eletroencefalografia/métodos , Eletromiografia/métodos
11.
Eur J Neurosci ; 60(7): 5467-5486, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39072800

RESUMO

Electroencephalogram (EEG) and electromyogram (EMG) are fundamental tools in sleep research. However, investigations into the statistical properties of rodent EEG/EMG signals in the sleep-wake cycle have been limited. The lack of standard criteria in defining sleep stages forces researchers to rely on human expertise to inspect EEG/EMG. The recent increasing demand for analysing large-scale and long-term data has been overwhelming the capabilities of human experts. In this study, we explored the statistical features of EEG signals in the sleep-wake cycle. We found that the normalized EEG power density profile changes its lower and higher frequency powers to a comparable degree in the opposite direction, pivoting around 20-30 Hz between the NREM sleep and the active brain state. We also found that REM sleep has a normalized EEG power density profile that overlaps with wakefulness and a characteristic reduction in the EMG signal. Based on these observations, we proposed three simple statistical features that could span a 3D space. Each sleep-wake stage formed a separate cluster close to a normal distribution in the 3D space. Notably, the suggested features are a natural extension of the conventional definition, making it useful for experts to intuitively interpret the EEG/EMG signal alterations caused by genetic mutations or experimental treatments. In addition, we developed an unsupervised automatic staging algorithm based on these features. The developed algorithm is a valuable tool for expediting the quantitative evaluation of EEG/EMG signals so that researchers can utilize the recent high-throughput genetic or pharmacological methods for sleep research.


Assuntos
Eletroencefalografia , Eletromiografia , Fases do Sono , Eletromiografia/métodos , Eletroencefalografia/métodos , Animais , Fases do Sono/fisiologia , Masculino , Camundongos , Vigília/fisiologia , Camundongos Endogâmicos C57BL , Encéfalo/fisiologia
12.
Eur J Neurosci ; 59(5): 1016-1028, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38275099

RESUMO

This study aimed to examine whether observing an expert's action swapped with an observer's face increases corticospinal excitability during combined action observation and motor imagery (AOMI). Twelve young males performed motor imagery of motor tasks with different difficulties while observing the actions of an expert performer and an expert performer with a swapped face. Motor tasks included bilateral wrist dorsiflexion (EASY) and unilateral two-ball rotating motions (DIFF). During the AOMI of EASY and DIFF, single-pulse transcranial magnetic stimulation was delivered to the left primary motor cortex, and motor-evoked potentials (MEPs) were obtained from the extensor carpi ulnaris and first dorsal interosseous muscles of the right upper limb, respectively. Visual analogue scale (VAS) assessed the subjective similarity of the expert performer with the swapped face in the EASY and DIFF to the participants themselves. The MEP amplitude in DIFF was larger in the observation of the expert performer with the swapped face than that of the expert performer (P = 0.012); however, the corresponding difference was not observed in EASY (P = 1.000). The relative change in the MEP amplitude from observing the action of the expert performer to that of the expert performer with the swapped face was positively correlated with VAS only in DIFF (r = 0.644, P = 0.024). These results indicate that observing the action of an expert performer with the observer's face enhances corticospinal excitability during AOMI, depending on the task difficulty and subjective similarity between the expert performer being observed and the observer.


Assuntos
Imaginação , Córtex Motor , Masculino , Humanos , Imaginação/fisiologia , Músculo Esquelético/fisiologia , Mãos , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Tratos Piramidais/fisiologia , Eletromiografia/métodos
13.
Eur J Neurosci ; 60(6): 5328-5347, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39161111

RESUMO

The superior colliculus (SC) has been increasingly implicated in the rapid processing of evolutionarily relevant stimuli like faces, but the behavioural relevance of such processing is unclear. The SC has also been implicated in the generation of express visuomotor responses (EVR), which are very short-latency (~80 ms) bursts of muscle activity time-locked to visual target presentation. These observations led us to investigate the influence of faces on EVRs. We recorded upper limb muscle activity from healthy participants as they reached toward targets in the presence of a distractor. In some experiments, faces were used as stimuli. Across blocks of trials, we varied the instruction as to which stimulus served as the target or distractor. Doing so allowed us to assess the impact of instruction on muscle recruitment given identical visual stimuli. We found that responses were uniquely modulated in tasks involving high-contrast faces, promoting reaches toward or away from a face depending on instruction. Follow-up experiments confirmed that the phenomenon required highly salient repeated faces and was not observed to non-facial stimuli nor to faces expressing different affects. This study extends the hypothesis that the SC mediates the EVR by demonstrating that faces impact muscle recruitment at short latencies that precede cortical activity for face perception. Our results constitute direct evidence for the behavioural relevance of face detection in the brainstem, and also implicate a role for top-down cortical pre-setting of the EVR depending on task context.


Assuntos
Reconhecimento Facial , Desempenho Psicomotor , Humanos , Masculino , Feminino , Adulto , Desempenho Psicomotor/fisiologia , Adulto Jovem , Reconhecimento Facial/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Tempo de Reação/fisiologia , Colículos Superiores/fisiologia , Estimulação Luminosa/métodos
14.
BMC Neurosci ; 25(1): 43, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39215217

RESUMO

Rapid mapping is a transcranial magnetic stimulation (TMS) mapping method which can significantly reduce data collection time compared to traditional approaches. However, its validity and reliability has only been established for upper-limb muscles during resting-state activity. Here, we determined the validity and reliability of rapid mapping for non-upper limb muscles that require active contraction during TMS: the masseter and quadriceps muscles. Eleven healthy participants attended two sessions, spaced two hours apart, each involving rapid and 'traditional' mapping of the masseter muscle and three quadriceps muscles (rectus femoris, vastus medialis, vastus lateralis). Map parameters included map volume, map area and centre of gravity (CoG) in the medial-lateral and anterior-posterior directions. Low to moderate measurement errors (%SEMeas = 10-32) were observed across muscles. Relative reliability varied from good-to-excellent (ICC = 0.63-0.99) for map volume, poor-to-excellent (ICC = 0.11-0.86) for map area, and fair-to-excellent for CoG (ICC = 0.25-0.8) across muscles. There was Bayesian evidence of equivalence (BF's > 3) in most map outcomes between rapid and traditional maps across all muscles, supporting the validity of the rapid mapping method. Overall, rapid TMS mapping produced similar estimates of map parameters to the traditional method, however the reliability results were mixed. As mapping of non-upper limb muscles is relatively challenging, rapid mapping is a promising substitute for traditional mapping, however further work is required to refine this method.


Assuntos
Contração Muscular , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Masculino , Adulto , Feminino , Reprodutibilidade dos Testes , Contração Muscular/fisiologia , Adulto Jovem , Eletromiografia/métodos , Músculo Masseter/fisiologia , Mapeamento Encefálico/métodos , Potencial Evocado Motor/fisiologia , Músculo Quadríceps/fisiologia , Músculo Esquelético/fisiologia
15.
Am J Physiol Regul Integr Comp Physiol ; 326(5): R438-R447, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38525536

RESUMO

The force drop after transcranial magnetic stimulation (TMS) delivered to the motor cortex during voluntary muscle contractions could inform about muscle relaxation properties. Because of the physiological relation between skeletal muscle fiber-type distribution and size and muscle relaxation, TMS could be a noninvasive index of muscle relaxation in humans. By combining a noninvasive technique to record muscle relaxation in vivo (TMS) with the gold standard technique for muscle tissue sampling (muscle biopsy), we investigated the relation between TMS-induced muscle relaxation in unfatigued and fatigued states, and muscle fiber-type distribution and size. Sixteen participants (7F/9M) volunteered to participate. Maximal knee-extensor voluntary isometric contractions were performed with TMS before and after a 2-min sustained maximal voluntary isometric contraction. Vastus lateralis muscle tissue was obtained separately from the participants' dominant limb. Fiber type I distribution and relative cross-sectional area of fiber type I correlated with TMS-induced muscle relaxation at baseline (r = 0.67, adjusted P = 0.01; r = 0.74, adjusted P = 0.004, respectively) and normalized TMS-induced muscle relaxation as a percentage of baseline (r = 0.50, adjusted P = 0.049; r = 0.56, adjusted P = 0.031, respectively). The variance in the normalized peak relaxation rate at baseline (59.8%, P < 0.001) and in the fatigue resistance (23.0%, P = 0.035) were explained by the relative cross-sectional area of fiber type I to total fiber area. Fiber type I proportional area influences TMS-induced muscle relaxation, suggesting TMS as an alternative method to noninvasively inform about skeletal muscle relaxation properties.NEW & NOTEWORTHY Transcranial magnetic stimulation (TMS)-induced muscle relaxation reflects intrinsic muscle contractile properties by interrupting the drive from the central nervous system during voluntary muscle contractions. We showed that fiber type I proportional area influences the TMS-induced muscle relaxation, suggesting that TMS could be used for the noninvasive estimation of muscle relaxation in unfatigued and fatigued human muscles when the feasibility of more direct method to study relaxation properties (i.e., muscle biopsy) is restricted.


Assuntos
Músculo Esquelético , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Estimulação Elétrica/métodos , Músculo Esquelético/fisiologia , Relaxamento Muscular , Fadiga Muscular/fisiologia , Contração Muscular/fisiologia , Contração Isométrica/fisiologia , Fibras Musculares Esqueléticas , Eletromiografia/métodos
16.
Osteoarthritis Cartilage ; 32(6): 730-739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38442767

RESUMO

OBJECTIVE: To develop and validate a neural network to estimate hip contact forces (HCF), and lower body kinematics and kinetics during walking in individuals with hip osteoarthritis (OA) using synthesised anatomical key points and electromyography. To assess the capability of the neural network to detect directional changes in HCF resulting from prescribed gait modifications. DESIGN: A calibrated electromyography-informed neuromusculoskeletal model was used to compute lower body joint angles, moments, and HCF for 17 participants with mild-to-moderate hip OA. Anatomical key points (e.g., joint centres) were synthesised from marker trajectories and augmented with bias and noise expected from computer vision-based pose estimation systems. Temporal convolutional and long short-term memory neural networks (NN) were trained using leave-one-subject-out validation to predict neuromusculoskeletal modelling outputs from the synthesised key points and measured electromyography data from 5 hip-spanning muscles. RESULTS: HCF was predicted with an average error of 13.4 ± 7.1% of peak force. Joint angles and moments were predicted with an average root-mean-square-error of 5.3 degrees and 0.10 Nm/kg, respectively. The NN could detect changes in peak HCF that occur due to gait modifications with good agreement with neuromusculoskeletal modelling (r2 = 0.72) and a minimum detectable change of 9.5%. CONCLUSION: The developed neural network predicted HCF and lower body joint angles and moments in individuals with hip OA using noisy synthesised key point locations with acceptable errors. Changes in HCF magnitude due to gait modifications were predicted with high accuracy. These findings have important implications for implementation of load-modification based gait retraining interventions for people with hip OA in a natural environment (i.e., home, clinic).


Assuntos
Eletromiografia , Marcha , Articulação do Quadril , Redes Neurais de Computação , Osteoartrite do Quadril , Humanos , Osteoartrite do Quadril/fisiopatologia , Eletromiografia/métodos , Feminino , Masculino , Fenômenos Biomecânicos , Pessoa de Meia-Idade , Articulação do Quadril/fisiopatologia , Idoso , Marcha/fisiologia , Caminhada/fisiologia , Músculo Esquelético/fisiopatologia , Suporte de Carga/fisiologia
17.
Exp Physiol ; 109(6): 915-925, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38595307

RESUMO

Post-activation potentiation (PAP) is defined as an enhanced contractile response of a muscle following its own contractile activity and is influenced by the intensity and duration of the conditioning contraction. The aim of this study was to determine if the combination of intensity and duration, that is, torque-time integral (TTI) is a determinant of PAP amplitude. We compared PAP amplitude following low-to-maximal voluntary conditioning contraction intensities with and without similar TTI in the knee extensors. Twelve healthy males completed two experimental sessions. Femoral nerve stimulation was applied to evoke single twitches on the relaxed quadriceps before and after isometric conditioning contractions of knee extensors. In one session, participants performed conditioning contractions without similar TTI (6 s at 100, 80, 60, 40 and 20% maximal voluntary contraction (MVC)), while they performed conditioning contractions with similar TTI in the other session (6 s at 100%, 7.5 s at 80%, 10 s at 60%, 15 s at 40%, and 30 s at 20% MVC). In both sessions, PAP amplitude was related to conditioning contraction intensity. The higher the conditioning contraction intensity with or without similar TTI, the higher PAP. Significant correlations were found (i) between PAP and conditioning contraction intensity with (r2 = 0.70; P < 0.001) or without similar TTI (r2 = 0.64; P < 0.001), and (ii) between PAP with and without similar TTI (r2 = 0.82; P < 0.001). The results provide evidence that TTI has a minor influence on PAP in the knee extensors. This suggests that to optimize the effect of PAP, it is more relevant to control the intensity of the contraction rather than the TTI.


Assuntos
Contração Isométrica , Torque , Humanos , Masculino , Contração Isométrica/fisiologia , Adulto , Adulto Jovem , Músculo Quadríceps/fisiologia , Estimulação Elétrica/métodos , Joelho/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Contração Muscular/fisiologia , Nervo Femoral/fisiologia
18.
Exp Physiol ; 109(8): 1317-1329, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38888901

RESUMO

Emerging questions in neuromuscular physiology revolve around whether males and females share similar neural control in diverse tasks across a broad range of intensities. In order to explore these features, high-density electromyography was used to record the myoelectrical activity of biceps brachii during trapezoidal isometric contractions at 35% and 70% of maximal voluntary force (MVF) on 11 male and 13 female participants. Identified motor units were then classified as lower-threshold (recruited at ≤30%MVF) and higher-threshold (recruited at >30%MVF). The discharge rate, interspike interval variability, recruitment and derecruitment thresholds, and estimates of neural drive to motor neurons were assessed. Female lower-threshold motor units showed higher neural drive (P < 0.001), accompanied by higher discharge rate at recruitment (P = 0.006), plateau (P = 0.001) and derecruitment (P = 0.001). On the other hand, male higher-threshold motor units showed greater neural drive (P = 0.04), accompanied by higher discharge rate at recruitment (P = 0.005), plateau (P = 0.04) and derecruitment (P = 0.01). Motor unit discharge rate normalised by the recruitment threshold was significantly higher in female lower-threshold motor units (P < 0.001), while no differences were observed in higher-threshold motor units. Recruitment and derecruitment thresholds are higher in males across all intensities (P < 0.01). However, males and females have similar activation and deactivation strategies, as evidenced by similar recruitment-to-derecruitment ratios (P > 0.05). This study encompasses a broad intensity range to analyse motor unit sex-related differences, highlighting higher neural drive and discharge rates in female lower-threshold motor units, elevated recruitment and derecruitment thresholds in males, and convergences in activation and deactivation strategies. HIGHLIGHTS: What is the central question of the study? Do male and female motor units behave similarly in low- and high-intensity contractions? What is the main finding and its importance? Female motor units show higher discharge rates in low-intensity tasks and lower discharge rates in high-intensity tasks, with no differences in recruitment behaviour. A broader inter-spike interval variability was also observed in females. These findings underline that there are sex-specific differences concern the firing strategies based on task intensity.


Assuntos
Eletromiografia , Contração Isométrica , Neurônios Motores , Músculo Esquelético , Recrutamento Neurofisiológico , Humanos , Feminino , Masculino , Eletromiografia/métodos , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Adulto , Recrutamento Neurofisiológico/fisiologia , Contração Isométrica/fisiologia , Adulto Jovem , Caracteres Sexuais , Fatores Sexuais , Potenciais de Ação/fisiologia
19.
Muscle Nerve ; 69(2): 148-156, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37877239

RESUMO

INTRODUCTION/AIMS: Needle electromyography (EMG) and muscle ultrasound can be used to evaluate patients with suspected neuromuscular disorders. The relation between muscle ultrasound pathology and the corresponding needle EMG findings is unknown. In this study we compared the results of concurrent ultrasound and needle EMG examinations in patients suspected of a neuromuscular disorder. METHODS: Retrospective data from 218 patients with pairwise ultrasound and EMG results of 796 muscles were analyzed. We compared overall quantitative and visual muscle ultrasound results to EMGs with neurogenic and myopathic abnormalities and assessed the congruency of both methods in the different clinical diagnosis categories. RESULTS: In muscles of patients with a neuromuscular disorder, abnormalities were found with EMG in 71.8%, and quantitative and visual muscle ultrasound results were abnormal in 19.3% and 35.4% respectively. In muscles with neurogenic EMG abnormalities, quantitative and visual muscle ultrasound results were abnormal in 18.9% versus 35.6%, increasing up to 43.7% versus 87.5% in muscles with the most pronounced signs of denervation. Congruency of EMG and ultrasound was better for more proximal and cranial muscles than for muscles in the hand and lower limb. DISCUSSION: Needle EMG and muscle ultrasound typically produce disparate results and identify different aspects of muscle pathology. Muscle ultrasound seems less suited for detecting mild neurogenic abnormalities. As the severity of neurogenic needle EMG abnormalities increased, muscle ultrasound abnormalities were also increasingly found. Visual analysis seems better suited than grayscale quantification for detecting neurogenic abnormalities.


Assuntos
Doenças Neuromusculares , Humanos , Eletromiografia/métodos , Estudos Retrospectivos , Doenças Neuromusculares/diagnóstico por imagem , Músculos , Mãos , Músculo Esquelético/diagnóstico por imagem
20.
Muscle Nerve ; 69(1): 18-28, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37975205

RESUMO

Phrenic nerve conduction studies (NCSs) and needle electromyography (EMG) can provide important information on the underlying pathophysiology in patients presenting with unexplained shortness of breath, failure to wean from the ventilator, or consideration of phrenic nerve pacemaker implantation. However, these techniques are often technically challenging, require experience, can lack sensitivity and specificity, and, in the case of diaphragm EMG, involve some degree of risk. Diagnostic high-resolution ultrasound has been introduced in recent years as an adjuvant technique readily available at the bedside that can increase the overall sensitivity and specificity of the neurophysiologic evaluation of respiratory symptoms. Two-dimensional ultrasound in the zone of apposition can identify atrophy and evaluate contractility of the diaphragm, in addition to localizing a safe zone for needle EMG. M-mode ultrasound can identify decreased excursion or paradoxical motion of the diaphragm and can increase the reliability of phrenic NCSs. When used in combination, ultrasound, phrenic NCSs and EMG of the diaphragm can differentiate neuropathic, myopathic, and central disorders, and can offer aid in prognosis that is difficult to arrive at solely from clinical examination. This article will review techniques to successfully perform phrenic NCSs, needle EMG of the diaphragm, and ultrasound of the diaphragm. The discussion will include technical pitfalls and clinical pearls as well as future directions and clinical indications.


Assuntos
Dispneia , Doenças do Sistema Nervoso Periférico , Humanos , Reprodutibilidade dos Testes , Eletromiografia/métodos , Diafragma/inervação , Nervo Frênico/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA