Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 752
Filtrar
1.
Arch Microbiol ; 206(10): 403, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276253

RESUMO

Seaweed endophytes are a rich source of microbial diversity and bioactive compounds. This review provides a comprehensive analysis of the microbial diversity associated with seaweeds and their interaction between them. These diverse bacteria and fungi have distinct metabolic pathways, which result in the synthesis of bioactive compounds with potential applications in a variety of health fields. We examine many types of seaweed-associated microorganisms, their bioactive metabolites, and their potential role in cancer treatment using a comprehensive literature review. By incorporating recent findings, we hope to highlight the importance of seaweed endophytes as a prospective source of novel anticancer drugs and promote additional studies in this area. We also investigate the pharmacokinetic and pharmacodynamic profiles of these bioactive compounds because understanding their absorption, distribution, metabolism, excretion (ADMET), and toxicity profiles is critical for developing bioactive compounds with anticancer potential into effective cancer drugs. This knowledge ensures the safety and efficacy of proposed medications prior to clinical trials. This study not only provides promise for novel and more effective treatments for cancer with fewer side effects, but it also emphasizes the necessity of sustainable harvesting procedures and ethical considerations for protecting the delicate marine ecology during bioprospecting activities.


Assuntos
Antineoplásicos , Bactérias , Endófitos , Fungos , Alga Marinha , Alga Marinha/química , Endófitos/metabolismo , Endófitos/química , Antineoplásicos/farmacologia , Antineoplásicos/farmacocinética , Humanos , Fungos/efeitos dos fármacos , Fungos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Neoplasias/tratamento farmacológico , Animais , Biodiversidade
2.
Arch Microbiol ; 206(5): 229, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647675

RESUMO

In modern times, medicine is predominantly based on evidence-based practices, whereas in ancient times, indigenous people relied on plant-based medicines with factual evidence documented in ancient books or folklore that demonstrated their effectiveness against specific infections. Plants and microbes account for 70% of drugs approved by the USFDA (U.S. Food and Drug Administration). Stilbenes, polyphenolic compounds synthesized by plants under stress conditions, have garnered significant attention for their therapeutic potential, bridging ancient wisdom with modern healthcare. Resveratrol, the most studied stilbene, initially discovered in grapes, red wine, peanuts, and blueberries, exhibits diverse pharmacological properties, including cardiovascular protection, antioxidant effects, anticancer activity, and neuroprotection. Traditional remedies, documented in ancient texts like the Ayurvedic Charak Samhita, foreshadowed the medicinal properties of stilbenes long before their modern scientific validation. Today, stilbenes are integral to the booming wellness and health supplement market, with resveratrol alone projected to reach a market value of 90 million US$ by 2025. However, challenges in stilbene production persist due to limited natural sources and costly extraction methods. Bioprospecting efforts reveal promising candidates for stilbene production, particularly endophytic fungi, which demonstrate high-yield capabilities and genetic modifiability. However, the identification of optimal strains and fermentation processes remains a critical consideration. The current review emphasizes the knowledge of the medicinal properties of Stilbenes (i.e., cardiovascular, antioxidant, anticancer, anti-inflammatory, etc.) isolated from plant and microbial sources, while also discussing strategies for their commercial production and future research directions. This also includes examples of novel stilbenes compounds reported from plant and endophytic fungi.


Assuntos
Resveratrol , Estilbenos , Estilbenos/química , Estilbenos/farmacologia , Humanos , Resveratrol/farmacologia , Resveratrol/química , Fungos/efeitos dos fármacos , Endófitos/química , Endófitos/metabolismo , Endófitos/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Medicina Tradicional , Plantas/química
3.
Arch Microbiol ; 206(9): 372, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126528

RESUMO

Endophytic bacteria found in marine macroalgae have been studied for their potential antimicrobial activity, consequently, they could serve as a valuable source of bioactive compounds to control pathogenic bacteria, yeasts, and fungi. Algae endophytic bacteria were isolated from Caulerpa sp., Ulva sp., Ahnfeltiopsis sp., and Chondracantus chamissoi from Yacila and Cangrejo Beaches (Piura, Peru). Antimicrobial assays against pathogenic bacteria were evaluated using cross-culture, over-plate, and volatile organic compound tests. Afterward, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of selected crude extracts were determined, also ITS molecular analysis, antifungal activity, and PCR of iturin, fengycin, and surfactin genes were performed for bacteria strains exhibiting better activity. Forty-six algae endophytic bacteria were isolated from algae. Ten strains inhibited gram-positive pathogenic bacteria (Enterococcus faecalis, Staphylococcus epidermidis, S. aureus, and Listeria monocytogenes), and 12 inhibited gram-negative bacteria (Escherichia coli and Salmonella enteric sv typhimurium). Bacteria with better activity belong to Bacillus sp., Kluyvera ascorbata, Pantoea agglomerans, Leclercia adecarboxylata, and Enterobacter sp., which only four showed antifungal activities against Candida albicans, C. tropicalis, Colletotrichium sp., Fusarium sp., Fusarium oxysporum, and Alternaria sp. Furthermore, K. ascorbata YAFE21 and Bacillus sp. YCFE4 exhibited iturin and fengycin genes. The results indicate that the algae endophytic bacteria found in this study, particularly K. ascorbata YAFE21, Bacillus sp. YCFR6, L. adecarboxylata CUFE2, Bacillus sp. YUFE8, Enterobacter sp. YAFL1, and P. agglomerans YAFL6, could be investigated as potential producers of antimicrobial compounds due to their broad activity against various microorganisms.


Assuntos
Endófitos , Testes de Sensibilidade Microbiana , Alga Marinha , Endófitos/isolamento & purificação , Endófitos/genética , Endófitos/metabolismo , Endófitos/química , Endófitos/classificação , Alga Marinha/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/classificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Antifúngicos/farmacologia , Antifúngicos/isolamento & purificação , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Fungos/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Ulva/microbiologia , Caulerpa/microbiologia , Bactérias Gram-Positivas/efeitos dos fármacos
4.
Protein Expr Purif ; 223: 106559, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39089400

RESUMO

We have functionally characterized the high-affinity phosphate transporter (PiPT) from the root endophyte fungus Piriformospora indica. PiPT belongs to the major facilitator superfamily (MFS). PiPT protein was purified by affinity chromatography (Ni-NTA) and Size Exclusion Chromatography (SEC). The functionality of solubilized PiPT was determined in detergent-solubilized state by fluorescence quenching and in proteoliposomes. In the fluorescence quenching assay, PiPT exhibited a saturation concentration of approximately 2 µM, at a pH of 4.5. Proteoliposomes of size 121.6 nm radius, showed transportation of radioactive phosphate. Vmax was measured to be 232.2 ± 11 pmol/min/mg protein. We have found Km to be 45.8 ± 6.2 µM suggesting high affinity towards phosphate.


Assuntos
Basidiomycota , Proteínas de Transporte de Fosfato , Basidiomycota/metabolismo , Basidiomycota/química , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/química , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Endófitos/metabolismo , Endófitos/química , Raízes de Plantas/microbiologia , Raízes de Plantas/química , Fosfatos/metabolismo , Fosfatos/química
5.
Ann Bot ; 133(4): 509-520, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38320313

RESUMO

BACKGROUND AND AIMS: In the subfamily Poöideae (Poaceae), certain grass species possess anti-herbivore alkaloids synthesized by fungal endophytes that belong to the genus Epichloë (Clavicipitaceae). The protective role of these symbiotic endophytes can vary, depending on alkaloid concentrations within specific plant-endophyte associations and plant parts. METHODS: We conducted a literature review to identify articles containing alkaloid concentration data for various plant parts in six important pasture species, Lolium arundinaceum, Lolium perenne, Lolium pratense, Lolium multiflorum|Lolium rigidum and Festuca rubra, associated with their common endophytes. We considered the alkaloids lolines (1-aminopyrrolizidines), peramine (pyrrolopyrazines), ergovaline (ergot alkaloids) and lolitrem B (indole-diterpenes). While all these alkaloids have shown bioactivity against insect herbivores, ergovaline and lolitrem B are harmful for mammals. KEY RESULTS: Loline alkaloid levels were higher in the perennial grasses L. pratense and L. arundinaceum compared to the annual species L. multiflorum and L. rigidum, and higher in reproductive tissues than in vegetative structures. This is probably due to the greater biomass accumulation in perennial species that can result in higher endophyte mycelial biomass. Peramine concentrations were higher in L. perenne than in L. arundinaceum and not affected by plant part. This can be attributed to the high within-plant mobility of peramine. Ergovaline and lolitrem B, both hydrophobic compounds, were associated with plant parts where fungal mycelium is usually present, and their concentrations were higher in plant reproductive tissues. Only loline alkaloid data were sufficient for below-ground tissue analyses and concentrations were lower than in above-ground parts. CONCLUSIONS: Our study provides a comprehensive synthesis of fungal alkaloid variation across host grasses and plant parts, essential for understanding the endophyte-conferred defence extent. The patterns can be understood by considering endophyte growth within the plant and alkaloid mobility. Our study identifies research gaps, including the limited documentation of alkaloid presence in roots and the need to investigate the influence of different environmental conditions.


Assuntos
Alcaloides , Endófitos , Epichloe , Festuca , Lolium , Poliaminas , Alcaloides/metabolismo , Alcaloides/análise , Endófitos/química , Endófitos/fisiologia , Epichloe/química , Epichloe/fisiologia , Ergotaminas/metabolismo , Festuca/microbiologia , Festuca/fisiologia , Herbivoria , Compostos Heterocíclicos com 2 Anéis , Alcaloides Indólicos/metabolismo , Lolium/microbiologia , Lolium/fisiologia , Micotoxinas , Defesa das Plantas contra Herbivoria , Poaceae/microbiologia , Poaceae/metabolismo , Simbiose
6.
Microb Cell Fact ; 23(1): 259, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39343880

RESUMO

BACKGROUND: Antimicrobial resistance has emerged as a major global health threat, necessitating the urgent development of new antimicrobials through innovative methods to combat the rising prevalence of resistant microbes. With this view, we developed three novel nanoconjugates using microbial natural pigment for effective application against certain pathogenic microbes. RESULTS: A natural red pigment (RP) extracted from the endophyte Monascus ruber and gamma rays were applied to synthesize RP-ZnO, RP-CuO, and RP-MgO nanoconjugates. The synthesized nanoconjugates were characterized by different techniques to study their properties. The antimicrobial potential of these nanoconjugates was evaluated. Moreover, the antibiofilm, protein leakage, growth curve, and UV light irradiation effect of the synthesized nanoconjugates were also studied. Our results confirmed the nano-size, shape, and stability of the prepared conjugates. RP-ZnO, RP-CuO, and RP-MgO nanoconjugates showed broad antimicrobial potential against the tested bacterial and fungal pathogens. Furthermore, the RP-ZnO nanoconjugate possessed the highest activity, followed by the RP-CuO against the tested microbes. The highest % inhibition of biofilm formation by the RP-ZnO nanoconjugate. Membrane leakage of E. coli and S. aureus by RP-ZnO nanoconjugate was more effective than RP-MgO and RP-CuO nanoconjugates. Finally, UV light irradiation intensified the antibiotic action of the three nanoconjugates and RP-ZnO potential was greater than that of the RP-MgO, and RP-CuO nanoconjugates. CONCLUSION: These findings pave the way for exploiting the synthesized nanoconjugates as potential materials in biomedical applications, promoting natural, green, and eco-friendly approaches.


Assuntos
Monascus , Nanoconjugados , Monascus/metabolismo , Nanoconjugados/química , Biofilmes/efeitos dos fármacos , Pigmentos Biológicos/química , Fermentação , Cobre/química , Cobre/farmacologia , Endófitos/metabolismo , Endófitos/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Testes de Sensibilidade Microbiana , Óxido de Magnésio/química , Óxido de Magnésio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos
7.
Microb Cell Fact ; 23(1): 229, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39152399

RESUMO

Epothilones are one of the common prescribed anticancer drugs for solid tumors, for their exceptional binding affinity with ß-tubulin microtubule, stabilizing their disassembly, causing an ultimate arrest to the cellular growth. Epothilones were initially isolated from Sornagium cellulosum, however, their extremely slow growth rate and low yield of epothilone is the challenge. So, screening for a novel fungal endophyte dwelling medicinal plants, with higher epothilone productivity and feasibility of growth manipulation was the objective. Aspergillus niger EFBL-SR OR342867, an endophyte of Latania loddegesii, has been recognized as the heady epothilone producer (140.2 µg/L). The chemical structural identity of the TLC-purified putative sample of A. niger was resolved from the HPLC, FTIR and LC-ESI-MS/MS analyses, with an identical molecular structure of the authentic epothilone B. The purified A. niger epothilone B showed a resilient activity against MCF-7 (0.022 µM), HepG-2 (0.037 µM), and HCT-116 (0.12 µM), with selectivity indices 21.8, 12.9 and 4, respectively. The purified epothilone B exhibited a potential anti-wound healing activity to HepG-2 and MCF-7 cells by ~ 54.07 and 60.0%, respectively, after 24 h, compared to the untreated cells. The purified epothilone has a significant antiproliferative effect by arresting the cellular growth of MCF-7 at G2/M phase by ~ 2.1 folds, inducing the total apoptosis by ~ 12.2 folds, normalized to the control cells. The epothilone B productivity by A. niger was optimized by the response surface methodology, with ~ 1.4 fold increments (266.9 µg/L), over the control. The epothilone productivity by A. niger was reduced by ~ 2.4 folds by 6 months storage as a slope culture at 4 °C, however, the epothilone productivity was slightly restored with ethylacetate extracts of L. loddegesii, confirming the plant-derived chemical signals that partially triggers the biosynthetic genes of A. niger epothilones. So, this is the first report emphasizing the metabolic potency of A. niger, an endophyte of L. loddegesii, to produce epothilone B, that could be a new platform for industrial production of this drug.


Assuntos
Antineoplásicos , Aspergillus niger , Endófitos , Epotilonas , Cicatrização , Epotilonas/farmacologia , Epotilonas/biossíntese , Epotilonas/química , Epotilonas/metabolismo , Humanos , Endófitos/metabolismo , Endófitos/química , Aspergillus niger/efeitos dos fármacos , Aspergillus niger/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Cicatrização/efeitos dos fármacos , Células MCF-7 , Células Hep G2 , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos
8.
Cell Mol Biol (Noisy-le-grand) ; 70(8): 226-234, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39262238

RESUMO

This study investigates the colonization of endophytic fungi in nettle leaf tissues and evaluates their antibacterial and antioxidant activities. Using an inverted optical microscope, extensive fungal colonization was observed in all leaf parts, with hyphae prevalent in epidermal cells, parenchyma cells, and vascular tissues. 144 endophytic fungal isolates were isolated from 800 leaf fragments, indicating an 18% retention rate. ANOVA analysis revealed significant differences (p < 0. 001) in colonization frequencies among 20 subjects, with subject 3 showing the highest frequency (40%) and subject 11 the lowest (2. 5%). Ethyl acetate extracts of the three most abundant endophytic fungi demonstrated notable antibacterial activity against both Gram-positive and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). Inhibition zones ranged from 9. 5 to 15. 16 mm, with minimum inhibitory concentrations (MICs) between 0. 19 to 25 mg/mL. Alternaria sp. exhibited the highest antimicrobial activity against MRSA. Antioxidant activity was assessed using the DPPH radical scavenging test and FRAP method. All extracts showed substantial free radical scavenging properties, with IC50 values close to those of standards like BHT. Alternaria sp. had the highest antioxidant activity, followed by Epicocum sp. and Ulocladium sp. The FRAP method confirmed high reducing potential, with Alternaria sp. again exhibiting the highest activity. These findings highlight the potential of endophytic fungi in nettle leaves as sources of antimicrobial and antioxidant agents, with significant implications for pharmaceutical and biotechnological applications.


Assuntos
Anti-Infecciosos , Antioxidantes , Endófitos , Fungos , Testes de Sensibilidade Microbiana , Folhas de Planta , Antioxidantes/farmacologia , Antioxidantes/química , Fungos/efeitos dos fármacos , Endófitos/química , Folhas de Planta/microbiologia , Folhas de Planta/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química
9.
Bioorg Chem ; 150: 107576, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38901278

RESUMO

Inflammation and associated disorders have been a major contributing factor to mortality worldwide. The augmented mortality rate and emerging resistance against the approved therapeutics necessitate the discovery of novel chemistries destined for multiple clinical settings. Cellular factories including endophytic fungi have been tapped for chemical diversity with therapeutic potential. The emerging evidence has suggested the potential of bioactive compounds isolated from the endophytic fungi as putative agents to combat inflammation-associated disorders. The review summarizesand assists the readers in comprehending the structural and functional aspects of the medicinal chemistries identified from endophytic fungi as anticancer, antiobesity, antigout, and immunomodulatory agents.


Assuntos
Fungos , Humanos , Fungos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Endófitos/química , Endófitos/metabolismo , Estrutura Molecular , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/química , Fármacos Antiobesidade/isolamento & purificação , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/isolamento & purificação , Fatores Imunológicos/farmacologia , Fatores Imunológicos/química
10.
Mar Drugs ; 22(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667775

RESUMO

The genus Bruguiera, a member of the Rhizophoraceae family, is predominantly found in coastal areas as a mangrove plant, boasting a rich and diverse community of endophytes. This review systematically compiled approximately 496 compounds derived from both the Bruguiera genus and its associated endophytes, including 152 terpenoids, 17 steroids, 16 sulfides, 44 alkaloids and peptides, 66 quinones, 68 polyketides, 19 flavonoids, 38 phenylpropanoids, 54 aromatic compounds, and 22 other compounds. Among these, 201 compounds exhibited a spectrum of activities, including cytotoxicity, antimicrobial, antioxidant, anti-inflammatory, antiviral, antidiabetic, insecticidal and mosquito repellent, and enzyme inhibitory properties, etc. These findings provided promising lead compounds for drug discovery. Certain similar or identical compounds were found to be simultaneously present in both Bruguiera plants and their endophytes, and the phenomenon of their interaction relationship was discussed.


Assuntos
Endófitos , Rhizophoraceae , Endófitos/química , Humanos , Rhizophoraceae/microbiologia , Animais
11.
Mar Drugs ; 22(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38921554

RESUMO

Five new naphthalene derivatives dalesconosides A-D, F (1-4, 6), a known synthetic analogue named dalesconoside E (5), and eighteen known compounds (7-24) were isolated from Daldinia eschscholzii MCZ-18, which is an endophytic fungus obtained from the Chinese mangrove plant Ceriops tagal. Differing from previously reported naphthalenes, compounds 1 and 2 were bearing a rare ribofuranoside substituted at C-1 and the 5-methyltetrahydrofuran-2,3-diol moiety, respectively. Their structures were determined by detailed nuclear magnetic resonance (NMR) and mass spectroscopic (MS) analyses, while the absolute configurations were established by theoretical electronic circular dichroism (ECD) calculation. Compounds 1, 3, 13-17 and 19 showed broad ranges of antimicrobial spectrum against five indicator test microorganisms (Enterococcus faecalis, Methicillin-resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Candida albicans); especially, 1, 16 and 17 were most potent. The variations in structure and attendant biological activities provided fresh insights concerning structure-activity relationships for the naphthalene derivatives.


Assuntos
Testes de Sensibilidade Microbiana , Naftalenos , Naftalenos/farmacologia , Naftalenos/química , Naftalenos/isolamento & purificação , Relação Estrutura-Atividade , Espectroscopia de Ressonância Magnética , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Candida albicans/efeitos dos fármacos , Estrutura Molecular , Rhizophoraceae/microbiologia , Endófitos/química , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação
12.
Mar Drugs ; 22(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921588

RESUMO

Two new meroterpenoids, aspergienynes O and P (1 and 2), one new natural compound, aspergienyne Q (3), and a new α-pyrone derivative named 3-(4-methoxy-2-oxo-2H-pyran-6-yl)butanoic acid (4) were isolated from the mangrove endophytic fungal strain Aspergillus sp. GXNU-Y85, along with five known compounds (5-9). The absolute configurations of those new isolates were confirmed through extensive analysis using spectroscopic data (HRESIMS, NMR, and ECD). The pharmacological study of the anti-proliferation activity indicated that isolates 5 and 9 displayed moderate inhibitory effects against HeLa and A549 cells, with the IC50 values ranging from 16.6 to 45.4 µM.


Assuntos
Aspergillus , Pironas , Terpenos , Aspergillus/química , Humanos , Pironas/farmacologia , Pironas/química , Pironas/isolamento & purificação , Terpenos/farmacologia , Terpenos/química , Terpenos/isolamento & purificação , Células A549 , Células HeLa , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Estrutura Molecular , Endófitos/química , Concentração Inibidora 50 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Espectroscopia de Ressonância Magnética
13.
Mar Drugs ; 22(9)2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39330288

RESUMO

Twelve compounds, including four undescribed cytochalasins, xylariachalasins A-D (1-4), four undescribed polyketides (5-8), and four known cytochalasins (9-12), were isolated from the mangrove endophytic fungus Xylaria arbuscula QYF. Their structures and absolute configurations were established by extensive spectroscopic analyses (1D and 2D NMR, HRESIMS), electronic circular dichroism (ECD) calculations, 13C NMR calculation and DP4+ analysis, single-crystal X-ray diffraction, and the modified Mosher ester method. Compounds 1 and 2 are rare cytochalasin hydroperoxides. In bioactivity assays, Compound 2 exhibited moderate antimicrobial activities against Staphylococcus aureus and Candida albicans with MIC values of 12.5 µM for both Compound 10 exhibited significant cytotoxic activity against MDA-MB-435 with an IC50 value of 3.61 ± 1.60 µM.


Assuntos
Candida albicans , Citocalasinas , Testes de Sensibilidade Microbiana , Policetídeos , Staphylococcus aureus , Xylariales , Policetídeos/farmacologia , Policetídeos/química , Policetídeos/isolamento & purificação , Citocalasinas/farmacologia , Citocalasinas/química , Citocalasinas/isolamento & purificação , Xylariales/química , Staphylococcus aureus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Estrutura Molecular , Endófitos/química , Cristalografia por Raios X
14.
Chem Biodivers ; 21(6): e202400395, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38623912

RESUMO

Endophytic fungi live asymptomatically inside vegetal tissues, and such uncommon habitat contributes to their exceptional chemical diversity. Isolating natural products from endophytic fungi could fail due to silent biosynthetic gene clusters under ordinary in vitro culture conditions, and co-culturing has been assayed to trigger their metabolism. We carried out single and dual cultures with 13 endophyte strains isolated from Euphorbia umbellata leaves. Multivariate statistics applied to untargeted metabolomics compared the chemical profiles of all endophyte cultures. PCA analysis guided the selection of the Aspergillus pseudonomiae J1 - Porogramme brasiliensis J9 dual culture for its most significant chemical differentiation: Five compounds were putatively annotated in the J1-J9 culture according to UHPLC-HRMS data, kojic acid, haliclonol and its diastereoisomer, caffeic acid, and 2-(3,4-dihydroxyphenyl)acetaldehyde. Analysis by PLS-DA using VIP score showed that kojic acid displayed the most significative importance in discriminating single and dual J1-J9 cultures.


Assuntos
Endófitos , Euphorbia , Metabolômica , Euphorbia/química , Euphorbia/microbiologia , Endófitos/química , Endófitos/metabolismo , Endófitos/isolamento & purificação , Folhas de Planta/microbiologia , Folhas de Planta/química , Cromatografia Líquida de Alta Pressão , Pironas/química , Pironas/isolamento & purificação , Pironas/metabolismo , Aspergillus/metabolismo , Aspergillus/química , Aspergillus/isolamento & purificação
15.
Molecules ; 29(17)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39275053

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is a highly threatening foodborne pathogen capable of causing severe organ and life-threatening diseases. Over the past years, various commercial antibiotics have been used to treat MRSA infections. However, these commercial antibiotics have not yielded efficient results and also cause other side effects; therefore, there is a need for the development of effective alternatives to replace these commercial antibiotics. Suberanilic acid, an amide alkaloid obtained from the endophytic fungus Pestalotiopsis trachycarpicola DCL44, has been identified as a significant antimicrobial agent. However, its antibiotic properties on multi-drug-resistant bacteria such as MRSA have not been fully explored. Therefore, to investigate the potential antimicrobial mechanism of suberanilic acid against MRSA, a quantitative proteomics approach using tandem mass tagging (TMT) was used. The results obtained in the study revealed that suberanilic acid targets multiple pathways in MRSA, including disruption of ribosome synthesis, inhibition of membrane translocation for nutrient uptake (ABC transporter system), and causing dysregulation of carbohydrate and amino acid energy metabolism. These results provide new insights into the mechanism of action of suberanilic acid against MRSA and offer technical support and a theoretical basis for the development of novel food antimicrobial agents derived from endophytic fungal origin.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pestalotiopsis , Endófitos/química , Testes de Sensibilidade Microbiana , Proteômica/métodos
16.
Molecules ; 29(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39202967

RESUMO

Penicillide is the founder product of a class of natural products of fungal origin. Although this compound and its analogues have been identified from taxonomically heterogeneous fungi, they are most frequently and typically reported from the species of Talaromyces and Penicillium. The producing strains have been isolated in various ecological contexts, with a notable proportion of endophytes. The occurrence of penicillides in these plant associates may be indicative of a possible role in defensive mutualism based on their bioactive properties, which are also reviewed in this paper. The interesting finding of penicillides in fruits and seeds of Phyllanthus emblica is introductory to a new ground of investigation in view of assessing whether they are produced by the plant directly or as a result of the biosynthetic capacities of some endophytic associates.


Assuntos
Penicillium , Talaromyces , Talaromyces/química , Penicillium/química , Penicillium/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Estrutura Molecular , Humanos , Endófitos/química
17.
Molecules ; 29(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731603

RESUMO

A new quinazolinone alkaloid named peniquinazolinone A (1), as well as eleven known compounds, 2-(2-hydroxy-3-phenylpropionamido)-N-methylbenzamide (2), viridicatin (3), viridicatol (4), (±)-cyclopeptin (5a/5b), dehydrocyclopeptin (6), cyclopenin (7), cyclopenol (8), methyl-indole-3-carboxylate (9), 2,5-dihydroxyphenyl acetate (10), methyl m-hydroxyphenylacetate (11), and conidiogenone B (12), were isolated from the endophytic Penicillium sp. HJT-A-6. The chemical structures of all the compounds were elucidated by comprehensive spectroscopic analysis, including 1D and 2D NMR and HRESIMS. The absolute configuration at C-13 of peniquinazolinone A (1) was established by applying the modified Mosher's method. Compounds 2, 3, and 7 exhibited an optimal promoting effect on the seed germination of Rhodiola tibetica at a concentration of 0.01 mg/mL, while the optimal concentration for compounds 4 and 9 to promote Rhodiola tibetica seed germination was 0.001 mg/mL. Compound 12 showed optimal seed-germination-promoting activity at a concentration of 0.1 mg/mL. Compared with the positive drug 6-benzyladenine (6-BA), compounds 2, 3, 4, 7, 9, and 12 could extend the seed germination period of Rhodiola tibetica up to the 11th day.


Assuntos
Alcaloides , Penicillium , Quinazolinonas , Rhodiola , Sementes , Penicillium/química , Quinazolinonas/química , Quinazolinonas/farmacologia , Rhodiola/química , Rhodiola/microbiologia , Alcaloides/química , Alcaloides/farmacologia , Alcaloides/isolamento & purificação , Germinação/efeitos dos fármacos , Estrutura Molecular , Endófitos/química
18.
Molecules ; 29(15)2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39124856

RESUMO

A talented endophytic Streptomyces sp. PH9030 is derived from the medicinal plant Kadsura coccinea (Lem.) A.C. Smith. The undescribed naphthoquinone naphthgeranine G (5) and seven previously identified compounds, 6-12, were obtained from Streptomyces sp. PH9030. The structure of 5 was identified by comprehensive examination of its HRESIMS, 1D NMR, 2D NMR and ECD data. The inhibitory activities of all the compounds toward α-glucosidase and their antibacterial properties were investigated. The α-glucosidase inhibitory activities of 5, 6, 7 and 9 were reported for the first time, with IC50 values ranging from 66.4 ± 6.7 to 185.9 ± 0.2 µM, as compared with acarbose (IC50 = 671.5 ± 0.2 µM). The molecular docking and molecular dynamics analysis of 5 with α-glucosidase further indicated that it may have a good binding ability with α-glucosidase. Both 9 and 12 exhibited moderate antibacterial activity against methicillin-resistant Staphylococcus aureus, with minimum inhibitory concentration (MIC) values of 16 µg/mL. These results indicate that 5, together with the naphthoquinone scaffold, has the potential to be further developed as a possible inhibitor of α-glucosidase.


Assuntos
Antibacterianos , Inibidores de Glicosídeo Hidrolases , Simulação de Acoplamento Molecular , Naftoquinonas , Fenazinas , Streptomyces , alfa-Glucosidases , Streptomyces/química , Naftoquinonas/química , Naftoquinonas/farmacologia , Naftoquinonas/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/química , alfa-Glucosidases/metabolismo , alfa-Glucosidases/química , Fenazinas/química , Fenazinas/farmacologia , Fenazinas/isolamento & purificação , Testes de Sensibilidade Microbiana , Endófitos/química , Estrutura Molecular , Simulação de Dinâmica Molecular , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos
19.
World J Microbiol Biotechnol ; 40(9): 274, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39030384

RESUMO

Argemone mexicana belonging to family Papaveraceae is a traditional medicinal plant widely utilized by tribal people in India for treating various ailments like skin infections, wounds and inflammation. This plant is very rich in alkaloidal content, which has a great potential in the treatment of anti-inflammatory disorders. Therapeutically promising bioactive molecules are often produced by endophytic fungi associated with medicinal plants. In this investigation, endophytic fungi were isolated from various parts of A. mexicana and screened for alkaloidal content. Among these, one of the fungal isolate, Acremonium alternatum AMEF-5 producing maximum alkaloids showed significant anti-inflammatory activity. Fractionation of this crude fungal extract through column chromatography yielded eight fractions, which were further screened for anti-inflammatory activities. Fraction 3 exhibited significant anti-inflammatory activity by the inhibition of lipoxygenase enzyme (IC50 15.2 ± 0.09 µg/ml), scavenging of the nitric oxide radicals (IC50 11.38 ± 0.35 µg/ml), protein denaturation (IC50 14.93 ± 0.4 µg/ml), trypsin inhibition (IC50 12.06 ± 0.64 µg/ml) and HRBC stabilization (IC50 11.9 ± 0.22 µg/ml). The bioactive alkaloid in fraction 3 was identified as aconitine which was confirmed by UV, FTIR, HPLC, HRMS, 1H NMR, and 13C NMR analysis. This study demonstrates that endophytic fungi serve a potential source for sustainable production of therapeutically important alkaloids.


Assuntos
Aconitina , Acremonium , Anti-Inflamatórios , Endófitos , Acremonium/metabolismo , Acremonium/química , Anti-Inflamatórios/farmacologia , Aconitina/farmacologia , Aconitina/química , Endófitos/metabolismo , Endófitos/química , Endófitos/isolamento & purificação , Animais , Óxido Nítrico/metabolismo , Camundongos , Alcaloides/farmacologia , Lipoxigenase/metabolismo , Células RAW 264.7 , Índia
20.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4470-4476, 2024 Aug.
Artigo em Zh | MEDLINE | ID: mdl-39307783

RESUMO

The secondary metabolites of the endophytic fungus Talaromyces malicola hosted in the arthropod Armadillidium vulgare were separated by silica gel column chromatography, gel column chromatography, and semi-preparative high-performance liquid chromatography. Eleven compounds(1-11) were obtained from the ethyl acetate fraction of the fermentation broth of T. malicola, and their structures were identified by NMR, HR-ESI-MS, UV, IR, and ECD. The 11 compounds were talarosesquiterpene A(1),(3ß,5α,6α,15α,22E)-5,6-epoxyergosta-8(14),22-diene-3,7,15-triol(2), vermistatin(3), hydroxyvermistatin(4), bercheminol A(5), penicillide(6), lunatinin(7), penipurdin A(8), emodin(9), BE-25327(10), and(-)-regiolone(11). Compound 1 was a new diaporol-type sesquiterpene. Compounds 2, 4-5, and 7-11 were isolated from Talaromyces for the first time.


Assuntos
Endófitos , Metabolismo Secundário , Talaromyces , Talaromyces/metabolismo , Talaromyces/química , Animais , Endófitos/química , Endófitos/metabolismo , Estrutura Molecular , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA