Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Hum Mol Genet ; 32(1): 122-138, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35925866

RESUMO

Bietti crystalline corneoretinal dystrophy (BCD) is an autosomal recessive retinal degenerative disease characterized by yellow-white crystal deposits in the posterior pole, degeneration of the retinal pigment epithelium (RPE), and sclerosis of the choroid. Mutations in the cytochrome P450 4V2 gene (CYP4V2) cause BCD, which is associated with lipid metabolic disruption. The use of gene-replacement therapy in BCD has been hampered by the lack of disease models. To advance CYP4V2 gene-replacement therapy, we generated BCD patient-specific induced pluripotent stem cell (iPSC)-RPE cells and Cyp4v3 knockout (KO) mice as disease models and AAV2/8-CAG-CYP4V2 as treatment vectors. We demonstrated that after adeno-associated virus (AAV)-mediated CYP4V2 gene-replacement therapy BCD-iPSC-RPE cells presented restored cell survival and reduced lipid droplets accumulation; restoration of vision in Cyp4v3 KO mice was revealed by elevated electroretinogram amplitude and ameliorated RPE degeneration. These results suggest that AAV-mediated gene-replacement therapy in BCD patients is a promising strategy.


Assuntos
Distrofias Hereditárias da Córnea , Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Doenças Retinianas , Animais , Camundongos , Distrofias Hereditárias da Córnea/genética , Sistema Enzimático do Citocromo P-450/genética , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Doenças Retinianas/genética , Humanos
2.
J Biol Chem ; 299(6): 104764, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121548

RESUMO

N-acyl amino acids are a large family of circulating lipid metabolites that modulate energy expenditure and fat mass in rodents. However, little is known about the regulation and potential cardiometabolic functions of N-acyl amino acids in humans. Here, we analyze the cardiometabolic phenotype associations and genomic associations of four plasma N-acyl amino acids (N-oleoyl-leucine, N-oleoyl-phenylalanine, N-oleoyl-serine, and N-oleoyl-glycine) in 2351 individuals from the Jackson Heart Study. We find that plasma levels of specific N-acyl amino acids are associated with cardiometabolic disease endpoints independent of free amino acid plasma levels and in patterns according to the amino acid head group. By integrating whole genome sequencing data with N-acyl amino acid levels, we identify that the genetic determinants of N-acyl amino acid levels also cluster according to the amino acid head group. Furthermore, we identify the CYP4F2 locus as a genetic determinant of plasma N-oleoyl-leucine and N-oleoyl-phenylalanine levels in human plasma. In experimental studies, we demonstrate that CYP4F2-mediated hydroxylation of N-oleoyl-leucine and N-oleoyl-phenylalanine results in metabolic diversification and production of many previously unknown lipid metabolites with varying characteristics of the fatty acid tail group, including several that structurally resemble fatty acid hydroxy fatty acids. These studies provide a structural framework for understanding the regulation and disease associations of N-acyl amino acids in humans and identify that the diversity of this lipid signaling family can be significantly expanded through CYP4F-mediated ω-hydroxylation.


Assuntos
Aminoácidos , Família 4 do Citocromo P450 , Ácidos Oleicos , Humanos , Aminoácidos/sangue , Aminoácidos/química , Doenças Cardiovasculares , Família 4 do Citocromo P450/metabolismo , Ácidos Graxos/metabolismo , Leucina , Fenilalanina , Ácidos Oleicos/sangue
3.
Drug Metab Dispos ; 52(6): 498-507, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38604728

RESUMO

Cytochrome P450 (CYP)4Z1, a highly expressed CYP gene in breast cancer, was one of the last CYPs to be identified in the human genome, some 20 years ago. CYP4 enzymes typically catalyze ω-hydroxylation and metabolize ω3 and ω6 polyunsaturated fatty acids to bioactive lipid metabolites that can influence tumor growth and metastasis. These attributes of CYP4Z1 make it an attractive target for new chemotherapeutic drug design, as a potential biomarker for selection of patients that might respond favorably to drugs and for developing enzyme inhibitors as potential therapeutic agents. This review summarizes the current state of knowledge regarding the advancing biochemistry of CYP4Z1, its role in breast cancer, and the recent synthesis of selective chemical inhibitors of the enzyme. We identify gaps that need to be filled to further advance this field and present new experimental data on recombinant CYP4Z1 expression and purification of the active catalytic form. SIGNIFICANCE STATEMENT: In breast cancer, an unmet need is the availability of highly effective therapeutic agents, especially for triple negative breast cancer. The relevance of the work summarized in this mini-review is that it identifies a new potential drug target, CYP4Z1, and discusses ways in which the gene product's catalytic activity might be modulated in order to combat this malignancy and limit its spread.


Assuntos
Neoplasias da Mama , Família 4 do Citocromo P450 , Humanos , Família 4 do Citocromo P450/metabolismo , Família 4 do Citocromo P450/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Feminino , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais , Inibidores das Enzimas do Citocromo P-450/farmacologia
4.
Environ Toxicol ; 39(3): 1505-1520, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37994574

RESUMO

Cytochrome P450 (CYP) 4Z1 (CYP4Z1) has recently garnered much interest as its expression predicts a poor prognosis and as a oncogene in breast cancer, and overexpressed in other many cancers. We previously showed that CYP4Z1 acts as a promoter of cancer stem cells (CSCs) to facilitate the occurrence and development of breast cancer. Here, RNA sequencing found that 1-benzylimidazole (1-Benzy) held a preferable correlation with breast cancer and suppressed the expression of CSC makers. Further functional experiments, including mammary spheroid formation, wound-healing, transwell-invasion, detection of tumor initiation, and metastatic ability, showed that 1-Benzy suppressed the stemness and metastasis of breast cancer cells. Additionally, we further demonstrated that CYP4Z1 is necessary for 1-Benzy-mediated suppression on breast cancer stemness and 1-Benzy exerted a weaker effect in breast cancer cells with CYP4Z1 knockdown. Taken together, our data suggest that 1-Benzy might be a potential drug suppressing breast cancer stemness via targeting CYP4Z1.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Imidazóis , Linhagem Celular Tumoral
5.
J Cell Biochem ; 124(4): 573-585, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36924012

RESUMO

α-Tocopherol (α-TOH) is a potent antioxidant. The concentrations of α-TOH in plasma are closely related to human health. α-TOH can be regulated by the metabolism of cytochrome P450 4F2 (CYP4F2). However, the atomic-level basis for this regulation process remains elusive. Here, we successfully constructed the structure of CYP4F2 by homology modeling and obtained the α-TOH-CYP4F2 complex models using molecular docking. Three parallel 500 ns molecular dynamics simulations were performed on each complex model to investigate the details of the interaction between α-TOH and CYP4F2. MM-GBSA method combined with principal component analysis shows that 8 key residues establish a hydrophobic cavity stabilizing α-TOH in the pocket of CYP4F2 and S423 forms an important hydrogen bond with α-TOH anchoring α-TOH in the favorable position for ω-hydroxylation. Based on our simulation results and the experimental facts, we designed mutation simulation experiments to clarify the important role of two key residues (S423 and V433) in the binding of α-TOH with CYP4F2. The results show that the mutations directly or indirectly change the binding mode of α-TOH and decrease its binding affinity with CYP4F2, which is unfavorable for ω-hydroxylation. Our results could enrich the information on structure-function relationships of CYP4F2 and provide valuable insights into the regulatory mechanism of CYP4F2 on the metabolism of α-TOH.


Assuntos
Simulação de Dinâmica Molecular , alfa-Tocoferol , Humanos , alfa-Tocoferol/metabolismo , Simulação de Acoplamento Molecular , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
6.
Am J Hum Genet ; 107(5): 849-863, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33031748

RESUMO

Variation in levels of the human metabolome reflect changes in homeostasis, providing a window into health and disease. The genetic impact on circulating metabolites in Hispanics, a population with high cardiometabolic disease burden, is largely unknown. We conducted genome-wide association analyses on 640 circulating metabolites in 3,926 Hispanic Community Health Study/Study of Latinos participants. The estimated heritability for 640 metabolites ranged between 0%-54% with a median at 2.5%. We discovered 46 variant-metabolite pairs (p value < 1.2 × 10-10, minor allele frequency ≥ 1%, proportion of variance explained [PEV] mean = 3.4%, PEVrange = 1%-22%) with generalized effects in two population-based studies and confirmed 301 known locus-metabolite associations. Half of the identified variants with generalized effect were located in genes, including five nonsynonymous variants. We identified co-localization with the expression quantitative trait loci at 105 discovered and 151 known loci-metabolites sets. rs5855544, upstream of SLC51A, was associated with higher levels of three steroid sulfates and co-localized with expression levels of SLC51A in several tissues. Mendelian randomization (MR) analysis identified several metabolites associated with coronary heart disease (CHD) and type 2 diabetes. For example, two variants located in or near CYP4F2 (rs2108622 and rs79400241, respectively), involved in vitamin E metabolism, were associated with the levels of octadecanedioate and vitamin E metabolites (gamma-CEHC and gamma-CEHC glucuronide); MR analysis showed that genetically high levels of these metabolites were associated with lower odds of CHD. Our findings document the genetic architecture of circulating metabolites in an underrepresented Hispanic/Latino community, shedding light on disease etiology.


Assuntos
Doença das Coronárias/genética , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Genoma Humano , Metaboloma/genética , Locos de Características Quantitativas , Adulto , Cromanos/metabolismo , Estudos de Coortes , Doença das Coronárias/diagnóstico , Doença das Coronárias/etnologia , Doença das Coronárias/metabolismo , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/etnologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Hispânico ou Latino , Humanos , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Propionatos/metabolismo , Saúde Pública , Característica Quantitativa Herdável , Vitamina E/metabolismo
7.
Drug Metab Dispos ; 51(12): 1561-1568, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37775333

RESUMO

Cytochrome P450 4F2 (CYP4F2) is an enzyme that is involved in the metabolism of arachidonic acid (AA), vitamin E and K, and xenobiotics including drugs. CYP4F2*3 polymorphism (rs2108622; c.1297G>A; p.Val433Met) has been associated with hypertension, ischemic stroke, and variation in the effectiveness of the anticoagulant drug warfarin. In this study, we characterized wild-type CYP4F2 and 28 CYP4F2 variants, including a Val433Met substitution, detected in 8380 Japanese subjects. The CYP4F2 variants were heterologously expressed in 293FT cells to measure the concentrations of CYP4F2 variant holoenzymes using carbon monoxide-reduced difference spectroscopy, where the wild type and 18 holoenzyme variants showed a peak at 450 nm. Kinetic parameters [Vmax , substrate concentration producing half of Vmax (S50 ), and intrinsic clearance (CL int ) as Vmax /S50 ] of AA ω-hydroxylation were determined for the wild type and 21 variants with enzyme activity. Compared with the wild type, two variants showed significantly decreased CL int values for AA ω-hydroxylation. The values for seven variants could not be determined because no enzymatic activity was detected at the highest substrate concentration used. Three-dimensional structural modeling was performed to determine the reason for reduced enzymatic activity of the CYP4F2 variants. Our findings contribute to a better understanding of CYP4F2 variant-associated diseases and possible future therapeutic strategies. SIGNIFICANCE STATEMENT: CYP4F2 is involved in the metabolism of arachidonic acid and vitamin K, and CYP4F2*3 polymorphisms have been associated with hypertension and variation in the effectiveness of the anticoagulant drug warfarin. This study presents a functional analysis of 28 CYP4F2 variants identified in Japanese subjects, demonstrating that seven gene polymorphisms cause loss of CYP4F2 function, and proposes structural changes that lead to altered function.


Assuntos
Família 4 do Citocromo P450 , Hipertensão , Varfarina , Humanos , Anticoagulantes , Ácido Araquidônico/metabolismo , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , População do Leste Asiático , Hidroxilação
8.
J Nat Prod ; 86(11): 2502-2513, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37939299

RESUMO

2-Alkylquinolones are a class of microbial natural products primarily produced in the Pseudomonas and Burkholderia genera that play a key role in modulating quorum sensing. Bacterial alkylquinolones were synthesized and then subjected to oxidative biotransformation using human cytochrome P450 enzyme CYP4F11, heterologously expressed in the fission yeast Schizosaccharomyces pombe. This yielded a range of hydroxylated and carboxylic acid derivatives which had undergone ω-oxidation of the 2-alkyl chain, the structures of which were determined by analysis of NMR and MS data. Oxidation efficiency depended on chain length, with a chain length of eight or nine carbon atoms proving optimal for high yields. Homology modeling suggested that Glu233 was relevant for binding, due to the formation of a hydrogen bond from the quinolone nitrogen to Glu233, and in this position only the longer alkyl chains could come close enough to the heme moiety for effective oxidation. In addition to the direct oxidation products, a number of esters were also isolated, which was attributed to the action of endogenous yeast enzymes on the newly formed ω-hydroxy-alkylquinolones. ω-Oxidation of the alkyl chain significantly reduced the antimicrobial and antibiofilm activity of the quinolones.


Assuntos
Bactérias , Sistema Enzimático do Citocromo P-450 , Humanos , Oxirredução , Sistema Enzimático do Citocromo P-450/metabolismo , Família 4 do Citocromo P450/metabolismo
9.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373382

RESUMO

Malaria is a frequent parasitic infection becomes life threatening due to the disequilibrated immune responses of the host. Avid phagocytosis of malarial pigment hemozoin (HZ) and HZ-containing Plasmodium parasites incapacitates monocyte functions by bioactive lipoperoxidation products 4-hydroxynonenal (4-HNE) and hydroxyeicosatetraenoic acids (HETEs). CYP4F conjugation with 4-HNE is hypothesised to inhibit ω-hydroxylation of 15-HETE, leading to sustained monocyte dysfunction caused by 15-HETE accumulation. A combined immunochemical and mass-spectrometric approach identified 4-HNE-conjugated CYP4F11 in primary human HZ-laden and 4-HNE-treated monocytes. Six distinct 4-HNE-modified amino acid residues were revealed, of which C260 and H261 are localized in the substrate recognition site of CYP4F11. Functional consequences of enzyme modification were investigated on purified human CYP4F11. Palmitic acid, arachidonic acid, 12-HETE, and 15-HETE bound to unconjugated CYP4F11 with apparent dissociation constants of 52, 98, 38, and 73 µM, respectively, while in vitro conjugation with 4-HNE completely blocked substrate binding and enzymatic activity of CYP4F11. Gas chromatographic product profiles confirmed that unmodified CYP4F11 catalysed the ω-hydroxylation while 4-HNE-conjugated CYP4F11 did not. The 15-HETE dose dependently recapitulated the inhibition of the oxidative burst and dendritic cell differentiation by HZ. The inhibition of CYP4F11 by 4-HNE with consequent accumulation of 15-HETE is supposed to be a crucial step in immune suppression in monocytes and immune imbalance in malaria.


Assuntos
Malária , Monócitos , Humanos , Monócitos/metabolismo , Hidroxilação , Cromatografia Gasosa-Espectrometria de Massas , Malária/metabolismo , Terapia de Imunossupressão , Processamento de Proteína Pós-Traducional , Família 4 do Citocromo P450/metabolismo
10.
Breast Cancer Res Treat ; 191(2): 319-326, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34725776

RESUMO

PURPOSE: CYP4Z1 is a human cytochrome P450 enzyme involved in breast cancer progression and prognosis, but its functional role in these processes is not understood. In order to gain more insight into CYP4Z1's properties it was recombinantly expressed in a host animal that does not have an endogenous homologue. METHODS: We generated a transgenic mouse model that specifically expresses human CYP4Z1 in breast tissue under the control of the whey acidic protein promoter. Complementary experiments were done using cell lines derived from human breast cell. RESULTS: Induction of CYP4Z1 expression led to reduction of body weight, activity, and birth rates. Histological analysis revealed no evidence for tumor formation. However, a strong increase in estrogen receptor alpha was observed by immunohistochemistry; weaker but significantly increased immunoreactivity was also detected for collagen I and fibronectin. Overexpression of CYP4Z1 in the human breast cancer cell line MCF7 also led to increased ERα expression. Moreover, increased expression of both CYP4Z1 and ERα was observed in MCF-10A normal breast cells upon cocultivation with MCF-7 cells (with or without overexpression of CYP4Z1). CONCLUSION: These data suggest that CYP4Z1 facilitates breast cancer development by induction of ERα expression via an as yet undefined mechanism.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Regulação para Cima
11.
J Nat Prod ; 85(11): 2603-2609, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36327116

RESUMO

The secondary metabolite pseudopyronine B, isolated from Pseudomonas mosselii P33, was biotransformed by human P450 enzymes, heterologously expressed in the fission yeast Schizosaccharomyces pombe. Small-scale studies confirmed that both CYP4F2 and CYP4F3A were capable of oxidizing the substrate, with the former achieving a higher yield. In larger-scale studies using CYP4F2, three new oxidation products were obtained, the structures of which were elucidated by UV-vis, 1D and 2D NMR, and HR-MS spectroscopy. These corresponded to hydroxylated, carboxylated, and ester derivatives (1-3) of pseudopyronine B, all of which had been oxidized exclusively at the ω-position of the C-6 alkyl chain. In silico homology modeling experiments highlighted key interactions between oxygen atoms of the pyrone ring and two serine residues and a histidine residue of CYP4F2, which hold the substrate in a suitable orientation for oxidation at the terminus of the C-6 alkyl chain. Additional modeling studies with all three pseudopyronines revealed that the seven-carbon alkyl chain of pseudopyronine B was the perfect length for oxidation, with the terminal carbon lying close to the heme iron. The antibacterial activity of the substrates and three oxidation products was also assessed, revealing that oxidation at the ω-position removes all antimicrobial activity. This study both increases the range of known substrates for human CYF4F2 and CYP4F3A enzymes and demonstrates their utility in producing additional natural product derivatives.


Assuntos
Antibacterianos , Sistema Enzimático do Citocromo P-450 , Pironas , Humanos , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Biotransformação , Sistema Enzimático do Citocromo P-450/metabolismo , Família 4 do Citocromo P450/metabolismo , Hidroxilação , Oxirredução , Pironas/química , Pironas/metabolismo , Pironas/farmacologia , Schizosaccharomyces/enzimologia
12.
Retina ; 42(4): 797-806, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34923510

RESUMO

PURPOSE: To investigate the relationship between different CYP4V2 disease-causing variants and disease severity in Bietti crystalline dystrophy (BCD). METHODS: Twenty-one subjects from 19 unrelated families with a clinical diagnosis of BCD were enrolled. A novel severity prediction score for BCD based on the predicted molecular impact of CYP4V2 variants was applied for grouping and subsequent analyses. The more severe variants led to less CYP4V2 protein function preservation and a higher severity prediction score. RESULTS: All subjects harbored two alleles of CYP4V2 disease-causing variants, of which c.802-8_810del17insGC was the most prevalent (14/21, 66.67%) and c.1507G>C was novel. According to the severity score, the subjects were categorized into severe, moderate, and mild groups with different preservation of central vision (mean logMAR visual acuity 0.95 ± 0.82, 0.89 ± 1.22, and 0.56 ± 0.64, respectively). The patients with a lower severity score had slower disease progression. CONCLUSION: This is the first cohort study of BCD in Taiwan, and we established a novel BCD severity index based on the molecular impact of different CYP4V2 variants. More severe impairment of CYP4V2 protein led to a more severe disease course with earlier progression. Our results could be helpful in identifying a therapeutic window for patients with BCD.


Assuntos
Distrofias Hereditárias da Córnea , Doenças Retinianas , Estudos de Coortes , Distrofias Hereditárias da Córnea/diagnóstico , Distrofias Hereditárias da Córnea/genética , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Análise Mutacional de DNA , Humanos , Mutação , Linhagem , Doenças Retinianas/diagnóstico , Doenças Retinianas/genética
13.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055171

RESUMO

Peroxisomal fatty acid α-oxidation is an essential pathway for the degradation of ß-carbon methylated fatty acids such as phytanic acid. One enzyme in this pathway is 2-hydroxyacyl CoA lyase (HACL1), which is responsible for the cleavage of 2-hydroxyphytanoyl-CoA into pristanal and formyl-CoA. Hacl1 deficient mice do not present with a severe phenotype, unlike mice deficient in other α-oxidation enzymes such as phytanoyl-CoA hydroxylase deficiency (Refsum disease) in which neuropathy and ataxia are present. Tissues from wild-type and Hacl1-/- mice fed a high phytol diet were obtained for proteomic and lipidomic analysis. There was no phenotype observed in these mice. Liver, brain, and kidney tissues underwent trypsin digestion for untargeted proteomic liquid chromatography-mass spectrometry analysis, while liver tissues also underwent fatty acid hydrolysis, extraction, and derivatisation for fatty acid gas chromatography-mass spectrometry analysis. The liver fatty acid profile demonstrated an accumulation of phytanic and 2-hydroxyphytanic acid in the Hacl1-/- liver and significant decrease in heptadecanoic acid. The liver proteome showed a significant decrease in the abundance of Hacl1 and a significant increase in the abundance of proteins involved in PPAR signalling, peroxisome proliferation, and omega oxidation, particularly Cyp4a10 and Cyp4a14. In addition, the pathway associated with arachidonic acid metabolism was affected; Cyp2c55 was upregulated and Cyp4f14 and Cyp2b9 were downregulated. The kidney proteome revealed fewer significantly upregulated peroxisomal proteins and the brain proteome was not significantly different in Hacl1-/- mice. This study demonstrates the powerful insight brought by proteomic and metabolomic profiling of Hacl1-/- mice in better understanding disease mechanism in fatty acid α-oxidation disorders.


Assuntos
Carbono-Carbono Liases/genética , Lipidômica/métodos , Peroxissomos/metabolismo , Fitol/administração & dosagem , Proteômica/métodos , Animais , Encéfalo/metabolismo , Família 2 do Citocromo P450/metabolismo , Família 4 do Citocromo P450/metabolismo , Ácidos Graxos/metabolismo , Feminino , Técnicas de Inativação de Genes , Rim/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Oxirredução , Ácido Fitânico/análogos & derivados , Ácido Fitânico/metabolismo , Fitol/farmacologia
14.
Medicina (Kaunas) ; 58(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36143940

RESUMO

Background and Objective: Ovarian cancer is a leading cause of death in females. Since its treatment is challenging and causes severe side effects, novel therapies are urgently needed. One of the potential enzymes implicated in the progression of cancers is Cytochrome 4Z1 (CYP4Z1). Its expression in ovarian cancer remains unknown. Therefore, the current study aims to assess CYP4Z1 expression in different subtypes of ovarian cancers. Materials and Methods: Immunohistochemistry was used to characterize CYP4Z1 expression in 192 cases of ovarian cancers along with eight normal ovarian tissues. The enzyme's association with various clinicopathological characteristics and survival was determined. Results: CYP4Z1 was strongly expressed in 79% of ovarian cancers, compared to negative expression in normal ovarian samples. Importantly, significantly high CYP4Z1 expres-sion was determined in patients with advanced-stage cancer and a high depth of invasion (p < 0.05). Surprisingly, CYP4Z1 expression was significantly associated with a low patient survival rate. Univariate analysis revealed that patient survival was strongly associated with CYP4Z1 expression, tumor stage, depth of invasion, and lymph node metastasis (p < 0.05). Multivariate analysis showed that only CYP4Z1 expression was significantly associated with patient survival (p < 0.05). Conclusions: CYP4Z1 expression is correlated with shorter patient survival and has been identified as an independent indicator of a poor prognosis for ovarian cancer patients.


Assuntos
Neoplasias Ovarianas , Família 4 do Citocromo P450/química , Família 4 do Citocromo P450/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Ovarianas/patologia , Prognóstico
15.
Drug Metab Dispos ; 49(8): 619-628, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34011533

RESUMO

Omecamtiv mecarbil (OM) is a novel cardiac myosin activator that is currently in clinical development for the treatment of heart failure. The absorption and disposition of [14C]OM (60 µCi) were studied after a single intravenous infusion (35 mg over 1 hour) or oral solution dose (35 mg) in 14 healthy male subjects. Mean recovery of the administered [14C]OM dose was 85.1% and 86.5% over 336 hours for the intravenous and oral routes, respectively. After intravenous dosing, 47.8% and 37.3% of the dose was recovered in urine and feces, respectively; after oral dosing, 48.6% and 38.0% was recovered in urine and feces, respectively. Unchanged OM accounted for a minor percentage of radioactivity in urine (mean 7.7% of dose) and feces (mean 4.1% of dose) across all subjects. The major metabolites recovered in urine and feces were M3 (decarbamoylation product) and sequential metabolite M4 (lactam of M3), which accounted for means of 26.5% and 11.6% of the administered dose, respectively. The CYP4 family of enzymes was primarily responsible for the formation of M3 based on in vitro studies. Other metabolic pathways accounted for 14.9% of the administered dose. In pooled plasma, OM, M3, and M4 accounted for 83.8%, 6.0%, and 3.3% of the total [14C]OM-related materials. No other plasma metabolites constituted more than 3% of the administered dose. The bioavailability for OM solution was 93.5% after rapid and extensive absorption. SIGNIFICANCE STATEMENT: This study characterized the absorption and disposition of OM, a novel small molecule being developed for the treatment of heart failure. OM was primarily cleared through metabolism by the CYP4 family through oxidative cleavage of a terminal carbamate moiety that resembles hydrolysis.


Assuntos
Família 4 do Citocromo P450/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Eliminação Hepatobiliar/fisiologia , Absorção Intestinal/fisiologia , Eliminação Renal/fisiologia , Ureia/análogos & derivados , Administração Intravenosa , Administração Oral , Adulto , Disponibilidade Biológica , Biotransformação , Fármacos Cardiovasculares/administração & dosagem , Fármacos Cardiovasculares/farmacocinética , Voluntários Saudáveis , Humanos , Infusões Intravenosas , Masculino , Ureia/administração & dosagem , Ureia/farmacocinética
16.
Kidney Blood Press Res ; 46(5): 601-612, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34320496

RESUMO

INTRODUCTION: 20-Hydroxyeicosatetraenoic acid (20-HETE) is the metabolite of cytochrome P450, which modulates blood pressure by inhibiting renal sodium transport. However, the molecular mechanisms underlying the role of 20-HETE in the development of obesity-related hypertension remain unclear, necessitating this study. METHODS: Cytochrome P450 4F2 (CYP4F2) transgenic mice fed high-fat diet (HFD) were used as research animal models. The expression of renal ion transport molecules targeted by 20-HETE was evaluated by real-time PCR and Western blot (WB). The regulatory effect of 20-HETE and HFD on renal Na+-K+-2Cl- cotransporter, isoform 2 (NKCC2) was explored by immunoprecipitation, WB, and luciferase assay. RESULTS: A 2-week HFD feeding dramatically decreased protein abundance but increased renal NKCC2 mRNA expression in CYP4F2 transgenic mice. The decrease in NKCC2 protein was demonstrated to be due to ubiquitination induced by the synergy between 20-HETE and HFD. The increased PPAR-γ protein in CYP4F2 transgenic mice fed HFD and the activation of rosiglitazone on the luciferase reporter construct of the NKCC2 promoter demonstrated that the increase in NKCC2 mRNA in CYP4F2 transgenic mice fed HFD was a consequence of elevated PPAR-γ protein induced by the synergy between 20-HETE and HFD. CONCLUSIONS: Our data demonstrated that the synergy between 20-HETE and HFD could decrease NKCC2 protein via posttranslational ubiquitination, which was thought to be the main mechanism underlying the short-term effect in response to HFD and might be responsible for the adaptive modulation of renal NKCC2 to resist sodium retention. Moreover, the increased NKCC2 mRNA expression via PPAR-γ-induced transcriptional regulation was thought to be the main mechanism underlying the long-term effect in response to HFD and plays a pivotal role in the development of obesity-related hypertension.


Assuntos
Dieta Hiperlipídica , Ácidos Hidroxieicosatetraenoicos/metabolismo , Rim/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Animais , Pressão Sanguínea , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Dieta Hiperlipídica/efeitos adversos , Regulação da Expressão Gênica , Células HEK293 , Humanos , Hipertensão/etiologia , Camundongos Transgênicos , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Regulação para Cima
17.
Int J Med Sci ; 18(3): 826-834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33437219

RESUMO

Cardiovascular diseases are among the leading causes of death worldwide. Many of those diseases require treatment with warfarin, an anticoagulant that has a large high inter and intra-variability in the required doses. The aim of this study is to find if there are any associations between rs2108622 of CYP4F2, rs7412 and rs405509 of ApoE, and rs1801272 of CYP2A6, and CVD and warfarin dose variability. The selected genes and their polymorphisms are involved in many GWAS associated with cardiovascular disease and variability in warfarin treatment. The study sample consisted of 212 Jordanian Cardiovascular patients and 213 healthy controls. DNA was extracted and the Mass ARRAY™ system was used to genotype four selected SNPs within three genes (CYP4F2, ApoE, and CYP2A6). Only one out of the four selected SNPs (ApoE rs7412 SNP) was found to be associated with the risk of cardiovascular disease. Also, this SNP showed significant differences in warfarin initial doses. CYP2A6 rs1801272 SNP was found to be associated with warfarin sensitivity during the initiation phase of therapy and with warfarin responsiveness and INR measurement during the stabilization phase of therapy. This study improves the current understanding of the high inter and intra-variabilities in response to warfarin, including the variety of dosing requirements and the susceptibility to cardiovascular disease in the Jordanian Arab population. Further study on a larger sample and in different ethnic groups could help in improving our understanding of warfarin's pharmacogenetics and its application in personalized medicine.


Assuntos
Anticoagulantes/administração & dosagem , Doenças Cardiovasculares/tratamento farmacológico , Predisposição Genética para Doença , Variantes Farmacogenômicos , Varfarina/administração & dosagem , Anticoagulantes/farmacocinética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Povo Asiático/genética , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Estudos de Casos e Controles , Citocromo P-450 CYP2A6/genética , Citocromo P-450 CYP2A6/metabolismo , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Relação Dose-Resposta a Droga , Seguimentos , Frequência do Gene , Voluntários Saudáveis , Humanos , Coeficiente Internacional Normatizado , Jordânia/epidemiologia , Varfarina/farmacocinética
18.
Xenobiotica ; 51(8): 901-915, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33993844

RESUMO

8-[(1H-1,2,3-benzotriazol-1-yl)amino]octanoic acid (8-BOA) was recently identified as a selective and potent mechanism-based inactivator (MBI) of breast cancer-associated CYP4Z1 and exhibited favourable inhibitory activity in vitro, thus meriting in vivo characterization.The pharmacokinetics and metabolism of 8-BOA in rats was examined after a single IV bolus dose of 10 mg/kg. A biphasic time-concentration profile resulted in relatively low clearance and a prolonged elimination half-life.The major circulating metabolites identified in plasma were products of ß-oxidation; congeners losing two and four methylene groups accounted for >50% of metabolites by peak area. The -(CH2)2 product was characterized previously as a CYP4Z1 MBI and so represents an active metabolite that may contribute to the desired pharmacological effect.Ex vivo analysis of total CYP content in rat liver and kidney microsomes showed that off-target CYP inactivation was minimal; liver microsomal probe substrate metabolism also demonstrated low off-target inactivation. Standard clinical chemistries provided no indication of acute toxicity.In silico simulations using the free concentration of 8-BOA in plasma suggested that the in vivo dose used here may effectively inactivate CYP4Z1 in a xenografted tumour.


Assuntos
Sistema Enzimático do Citocromo P-450 , Microssomos Hepáticos , Animais , Caprilatos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Família 4 do Citocromo P450/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Oxirredução , Ratos
19.
Proc Natl Acad Sci U S A ; 115(15): 3936-3941, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581279

RESUMO

Bietti's crystalline dystrophy (BCD) is an intractable and progressive chorioretinal degenerative disease caused by mutations in the CYP4V2 gene, resulting in blindness in most patients. Although we and others have shown that retinal pigment epithelium (RPE) cells are primarily impaired in patients with BCD, the underlying mechanisms of RPE cell damage are still unclear because we lack access to appropriate disease models and to lesion-affected cells from patients with BCD. Here, we generated human RPE cells from induced pluripotent stem cells (iPSCs) derived from patients with BCD carrying a CYP4V2 mutation and successfully established an in vitro model of BCD, i.e., BCD patient-specific iPSC-RPE cells. In this model, RPE cells showed degenerative changes of vacuolated cytoplasm similar to those in postmortem specimens from patients with BCD. BCD iPSC-RPE cells exhibited lysosomal dysfunction and impairment of autophagy flux, followed by cell death. Lipidomic analyses revealed the accumulation of glucosylceramide and free cholesterol in BCD-affected cells. Notably, we found that reducing free cholesterol by cyclodextrins or δ-tocopherol in RPE cells rescued BCD phenotypes, whereas glucosylceramide reduction did not affect the BCD phenotype. Our data provide evidence that reducing intracellular free cholesterol may have therapeutic efficacy in patients with BCD.


Assuntos
Colesterol/metabolismo , Distrofias Hereditárias da Córnea/metabolismo , Doenças Retinianas/metabolismo , Animais , Colesterol/análise , Distrofias Hereditárias da Córnea/dietoterapia , Distrofias Hereditárias da Córnea/enzimologia , Distrofias Hereditárias da Córnea/genética , Família 4 do Citocromo P450/genética , Família 4 do Citocromo P450/metabolismo , Humanos , Camundongos , Mutação , Fenótipo , Doenças Retinianas/dietoterapia , Doenças Retinianas/enzimologia , Doenças Retinianas/genética , Epitélio Pigmentado da Retina/enzimologia , Epitélio Pigmentado da Retina/metabolismo
20.
Int J Mol Sci ; 22(3)2021 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-33498614

RESUMO

Oxidative damage by reactive oxygen species (ROS) is one of the main contributors to cell injury and tissue damage in thalassemia patients. Recent studies suggest that ROS generation in non-transfusion-dependent (NTDT) patients occurs as a result of iron overload. Among the different sources of ROS, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes and cytochrome P450 (CYP450) have been proposed to be major contributors for oxidative stress in several diseases. However, the sources of ROS in patients with NTDT remain poorly understood. In this study, Hbbth3/+ mice, a mouse model for ß-thalassemia, were used. These mice exhibit an unchanged or decreased expression of the major NOX isoforms, NOX1, NOX2 and NOX4, when compared to their C57BL/6 control littermates. However, a significant increase in the protein synthesis of CYP4A and CYP4F was observed in the Hbbth3/+ mice when compared to the C57BL/6 control mice. These changes were paralleled by an increased production of 20-hydroxyeicosatetraenoic acid (20-HETE), a CYP4A and CYP4F metabolite. Furthermore, these changes corroborate with onset of ROS production concomitant with liver injury. To our knowledge, this is the first report indicating that CYP450 4A and 4F-induced 20-HETE production mediates reactive oxygen species overgeneration in Hbbth3/+ mice through an NADPH-dependent pathway.


Assuntos
Família 4 do Citocromo P450/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Talassemia beta/metabolismo , Animais , Modelos Animais de Doenças , Hepatite/etiologia , Hepatite/patologia , Ferro/metabolismo , Isoenzimas/metabolismo , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/metabolismo , Talassemia beta/complicações , Talassemia beta/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA