Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
1.
Cell ; 184(12): 3125-3142.e25, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33930289

RESUMO

The N6-methyladenosine (m6A) RNA modification is used widely to alter the fate of mRNAs. Here we demonstrate that the C. elegans writer METT-10 (the ortholog of mouse METTL16) deposits an m6A mark on the 3' splice site (AG) of the S-adenosylmethionine (SAM) synthetase pre-mRNA, which inhibits its proper splicing and protein production. The mechanism is triggered by a rich diet and acts as an m6A-mediated switch to stop SAM production and regulate its homeostasis. Although the mammalian SAM synthetase pre-mRNA is not regulated via this mechanism, we show that splicing inhibition by 3' splice site m6A is conserved in mammals. The modification functions by physically preventing the essential splicing factor U2AF35 from recognizing the 3' splice site. We propose that use of splice-site m6A is an ancient mechanism for splicing regulation.


Assuntos
Adenosina/análogos & derivados , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Fator de Processamento U2AF/metabolismo , Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Sequência Conservada/genética , Dieta , Células HeLa , Humanos , Íntrons/genética , Metionina Adenosiltransferase , Metilação , Metiltransferases/química , Camundongos , Mutação/genética , Conformação de Ácido Nucleico , Ligação Proteica , Precursores de RNA/química , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno , S-Adenosilmetionina , Transcriptoma/genética
2.
Mol Cell ; 84(14): 2618-2633.e10, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39025073

RESUMO

The twenty-three Fanconi anemia (FA) proteins cooperate in the FA/BRCA pathway to repair DNA interstrand cross-links (ICLs). The cell division cycle and apoptosis regulator 1 (CCAR1) protein is also a regulator of ICL repair, though its possible function in the FA/BRCA pathway remains unknown. Here, we demonstrate that CCAR1 plays a unique upstream role in the FA/BRCA pathway and is required for FANCA protein expression in human cells. Interestingly, CCAR1 co-immunoprecipitates with FANCA pre-mRNA and is required for FANCA mRNA processing. Loss of CCAR1 results in retention of a poison exon in the FANCA transcript, thereby leading to reduced FANCA protein expression. A unique domain of CCAR1, the EF hand domain, is required for interaction with the U2AF heterodimer of the spliceosome and for excision of the poison exon. Taken together, CCAR1 is a splicing modulator required for normal splicing of the FANCA mRNA and other mRNAs involved in various cellular pathways.


Assuntos
Proteínas Reguladoras de Apoptose , Proteínas de Ciclo Celular , Proteína do Grupo de Complementação A da Anemia de Fanconi , Anemia de Fanconi , Splicing de RNA , Fator de Processamento U2AF , Humanos , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Reparo do DNA , Endodesoxirribonucleases , Éxons , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação A da Anemia de Fanconi/genética , Proteína do Grupo de Complementação A da Anemia de Fanconi/metabolismo , Células HEK293 , Células HeLa , Ligação Proteica , Precursores de RNA/metabolismo , Precursores de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Spliceossomos/metabolismo , Spliceossomos/genética , Fator de Processamento U2AF/metabolismo , Fator de Processamento U2AF/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo
3.
Mol Cell ; 82(6): 1107-1122.e7, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35303483

RESUMO

Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3' splice site (3'SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3'SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3'SS contacts at -3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Fator de Processamento U2AF , Grânulos de Estresse , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Sítios de Splice de RNA , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Grânulos de Estresse/metabolismo
4.
PLoS Genet ; 20(6): e1011316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38833506

RESUMO

Splicing is an important step of gene expression regulation in eukaryotes, as there are many mRNA precursors that can be alternatively spliced in different tissues, at different cell cycle phases or under different external stimuli. We have developed several integrated fluorescence-based in vivo splicing reporter constructs that allow the quantification of fission yeast splicing in vivo on intact cells, and we have compared their splicing efficiency in a wild type strain and in a prp2-1 (U2AF65) genetic background, showing a clear dependency between Prp2 and a consensus signal at 5' splicing site (5'SS). To isolate novel genes involved in regulated splicing, we have crossed the reporter showing more intron retention with the Schizosaccharomyces pombe knock out collection. Among the candidate genes involved in the regulation of splicing, we have detected strong splicing defects in two of the mutants -Δcwf12, a member of the NineTeen Complex (NTC) and Δsaf5, a methylosome subunit that acts together with the survival motor neuron (SMN) complex in small nuclear ribonucleoproteins (snRNP) biogenesis. We have identified that strains with mutations in cwf12 have inefficient splicing, mainly when the 5'SS differs from the consensus. However, although Δsaf5 cells also have some dependency on 5'SS sequence, we noticed that when one intron of a given pre-mRNA was affected, the rest of the introns of the same pre-mRNA had high probabilities of being also affected. This observation points Saf5 as a link between transcription rate and splicing.


Assuntos
Splicing de RNA , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transcrição Gênica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Regulação Fúngica da Expressão Gênica , Íntrons/genética , Mutação , Processamento Alternativo/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sítios de Splice de RNA/genética , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo
5.
Proc Natl Acad Sci U S A ; 121(13): e2306814121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513102

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with aggressive behavior and poor prognosis. Current therapeutic options available for TNBC patients are primarily chemotherapy. With our evolving understanding of this disease, novel targeted therapies, including poly ADP-ribose polymerase (PARP) inhibitors, antibody-drug conjugates, and immune-checkpoint inhibitors, have been developed for clinical use. Previous reports have demonstrated the essential role of estrogen receptor ß (ERß) in TNBC, but the detailed molecular mechanisms downstream ERß activation in TNBC are still far from elucidated. In this study, we demonstrated that a specific ERß agonist, LY500307, potently induces R-loop formation and DNA damage in TNBC cells. Subsequent interactome experiments indicated that the residues 151 to 165 of U2 small nuclear RNA auxiliary factor 1 (U2AF1) and the Trp439 and Lys443 of ERß were critical for the binding between U2AF1 and ERß. Combined RNA sequencing and ribosome sequencing analysis demonstrated that U2AF1-regulated downstream RNA splicing of 5-oxoprolinase (OPLAH) could affect its enzymatic activity and is essential for ERß-induced R-loop formation and DNA damage. In clinical samples including 115 patients from The Cancer Genome Atlas (TCGA) and 32 patients from an in-house cohort, we found a close correlation in the expression of ESR2 and U2AF1 in TNBC patients. Collectively, our study has unraveled the molecular mechanisms that explain the therapeutic effects of ERß activation in TNBC, which provides rationale for ERß activation-based single or combined therapy for patients with TNBC.


Assuntos
Processamento Alternativo , Benzopiranos , Receptor beta de Estrogênio , Estruturas R-Loop , Fator de Processamento U2AF , Neoplasias de Mama Triplo Negativas , Humanos , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/metabolismo , Fator de Processamento U2AF/química , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Terapia Combinada , Células MDA-MB-231 , Processamento Alternativo/efeitos dos fármacos , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Ligação Proteica , Sítios de Ligação
6.
Genes Dev ; 33(9-10): 482-497, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30842218

RESUMO

Somatic mutations in the genes encoding components of the spliceosome occur frequently in human neoplasms, including myeloid dysplasias and leukemias, and less often in solid tumors. One of the affected factors, U2AF1, is involved in splice site selection, and the most common change, S34F, alters a conserved nucleic acid-binding domain, recognition of the 3' splice site, and alternative splicing of many mRNAs. However, the role that this mutation plays in oncogenesis is still unknown. Here, we uncovered a noncanonical function of U2AF1, showing that it directly binds mature mRNA in the cytoplasm and negatively regulates mRNA translation. This splicing-independent role of U2AF1 is altered by the S34F mutation, and polysome profiling indicates that the mutation affects translation of hundreds of mRNA. One functional consequence is increased synthesis of the secreted chemokine interleukin 8, which contributes to metastasis, inflammation, and cancer progression in mice and humans.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/fisiopatologia , Fator de Processamento U2AF/metabolismo , Linhagem Celular Tumoral , Citoplasma/patologia , Progressão da Doença , Células HEK293 , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , Células MCF-7 , Mutação/genética , Neoplasias/genética , Ligação Proteica , RNA Mensageiro/metabolismo , Fator de Processamento U2AF/genética
7.
Nucleic Acids Res ; 52(3): 1420-1434, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38088204

RESUMO

Recurring mutations in genes encoding 3' splice-site recognition proteins, U2AF1 and ZRSR2 are associated with human cancers. Here, we determined binding sites of the proteins to reveal that U2-type and U12-type splice sites are recognized by U2AF1 and ZRSR2, respectively. However, some sites are spliced by both the U2-type and U12-type spliceosomes, indicating that well-conserved consensus motifs in some U12-type introns could be recognized by the U2-type spliceosome. Nucleotides flanking splice sites of U12-type introns are different from those flanking U2-type introns. Remarkably, the AG dinucleotide at the positions -1 and -2 of 5' splice sites of U12-type introns with GT-AG termini is not present. AG next to 5' splice site introduced by a single nucleotide substitution at the -2 position could convert a U12-type splice site to a U2-type site. The class switch of introns by a single mutation and the bias against G at the -1 position of U12-type 5' splice site support the notion that the identities of nucleotides in exonic regions adjacent to splice sites are fine-tuned to avoid recognition by the U2-type spliceosome. These findings may shed light on the mechanism of selectivity in U12-type intron splicing and the mutations that affect splicing.


Assuntos
Sítios de Splice de RNA , Ribonucleoproteínas , Spliceossomos , Fator de Processamento U2AF , Humanos , Sítios de Ligação , Íntrons , Nucleotídeos/metabolismo , Ribonucleoproteínas/metabolismo , Splicing de RNA , RNA Nuclear Pequeno/genética , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Spliceossomos/genética , Spliceossomos/metabolismo , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo
8.
Mol Cell ; 67(3): 433-446.e4, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28689656

RESUMO

The core body temperature of all mammals oscillates with the time of the day. However, direct molecular consequences of small, physiological changes in body temperature remain largely elusive. Here we show that body temperature cycles drive rhythmic SR protein phosphorylation to control an alternative splicing (AS) program. A temperature change of 1°C is sufficient to induce a concerted splicing switch in a large group of functionally related genes, rendering this splicing-based thermometer much more sensitive than previously described temperature-sensing mechanisms. AS of two exons in the 5' UTR of the TATA-box binding protein (Tbp) highlights the general impact of this mechanism, as it results in rhythmic TBP protein levels with implications for global gene expression in vivo. Together our data establish body temperature-driven AS as a core clock-independent oscillator in mammalian peripheral clocks.


Assuntos
Processamento Alternativo , Regulação da Temperatura Corporal , Relógios Circadianos , Ritmo Circadiano , Proteína de Ligação a TATA-Box/metabolismo , Regiões 5' não Traduzidas , Animais , Linhagem Celular Tumoral , Éxons , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Fosforilação , Interferência de RNA , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Proteína de Ligação a TATA-Box/genética , Fatores de Tempo , Transfecção
9.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38126797

RESUMO

The Cell Division Cycle and Apoptosis Regulator (CCAR) protein family members have recently emerged as regulators of alternative splicing and transcription, as well as having other key physiological functions. For example, mammalian CCAR2/DBC1 forms a complex with the zinc factor protein ZNF326 to integrate alternative splicing with RNA polymerase II transcriptional elongation in AT-rich regions of the DNA. Additionally, Caenorhabditis elegans CCAR-1, a homolog to mammalian CCAR2, facilitates the alternative splicing of the perlecan unc-52 gene. However, much about the CCAR family's role in alternative splicing is unknown. Here, we have examined the role of CCAR-1 in genome-wide alternative splicing in Caenorhabditis elegans and have identified new alternative splicing targets of CCAR-1 using RNA sequencing. Also, we found that CCAR-1 interacts with the spliceosome factors UAF-1 and UAF-2 using mass spectrometry, and that knockdown of ccar-1 affects alternative splicing patterns, motility, and proteostasis of UAF-1 mutant worms. Collectively, we demonstrate the role of CCAR-1 in regulating global alternative splicing in C. elegans and in conjunction with UAF-1.


Assuntos
Processamento Alternativo , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas de Membrana , Ribonucleoproteínas , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Splicing de RNA , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
10.
Mol Cell ; 62(4): 479-90, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27184077

RESUMO

Recurrent mutations in the splicing factor U2AF35 are found in several cancers and myelodysplastic syndrome (MDS). How oncogenic U2AF35 mutants promote transformation remains to be determined. Here we derive cell lines transformed by the oncogenic U2AF35(S34F) mutant and identify aberrantly processed pre-mRNAs by deep sequencing. We find that in U2AF35(S34F)-transformed cells the autophagy-related factor 7 (Atg7) pre-mRNA is abnormally processed, which unexpectedly is not due to altered splicing but rather selection of a distal cleavage and polyadenylation (CP) site. This longer Atg7 mRNA is translated inefficiently, leading to decreased ATG7 levels and an autophagy defect that predisposes cells to secondary mutations, resulting in transformation. MDS and acute myeloid leukemia patient samples harboring U2AF35(S34F) have a similar increased use of the ATG7 distal CP site, and previous studies have shown that mice with hematopoietic cells lacking Atg7 develop an MDS-like syndrome. Collectively, our results reveal a basis for U2AF35(S34F) oncogenic activity.


Assuntos
Proteína 7 Relacionada à Autofagia/genética , Transformação Celular Neoplásica/genética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Processamento de Terminações 3' de RNA , Precursores de RNA/genética , RNA Mensageiro/genética , Fator de Processamento U2AF/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Autofagia , Proteína 7 Relacionada à Autofagia/metabolismo , Linhagem Celular Transformada , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Poliadenilação , Interferência de RNA , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Fator de Processamento U2AF/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral
11.
Mol Cell ; 64(2): 307-319, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27720643

RESUMO

SF3b is a heptameric protein complex of the U2 small nuclear ribonucleoprotein (snRNP) that is essential for pre-mRNA splicing. Mutations in the largest SF3b subunit, SF3B1/SF3b155, are linked to cancer and lead to alternative branch site (BS) selection. Here we report the crystal structure of a human SF3b core complex, revealing how the distinctive conformation of SF3b155's HEAT domain is maintained by multiple contacts with SF3b130, SF3b10, and SF3b14b. Protein-protein crosslinking enabled the localization of the BS-binding proteins p14 and U2AF65 within SF3b155's HEAT-repeat superhelix, which together with SF3b14b forms a composite RNA-binding platform. SF3b155 residues, the mutation of which leads to cancer, contribute to the tertiary structure of the HEAT superhelix and its surface properties in the proximity of p14 and U2AF65. The molecular architecture of SF3b reveals the spatial organization of cancer-related SF3b155 mutations and advances our understanding of their effects on SF3b structure and function.


Assuntos
Mutação , Proteínas de Neoplasias/química , Proteínas Oncogênicas/química , Fosfoproteínas/química , Fatores de Processamento de RNA/química , Spliceossomos/química , Fator de Processamento U2AF/química , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Expressão Gênica , Genes Supressores de Tumor , Células HeLa , Humanos , Modelos Moleculares , Mariposas , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Spliceossomos/metabolismo , Spliceossomos/ultraestrutura , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo
12.
Nucleic Acids Res ; 50(9): 5299-5312, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35524551

RESUMO

The essential pre-mRNA splicing factor U2AF2 (also called U2AF65) identifies polypyrimidine (Py) tract signals of nascent transcripts, despite length and sequence variations. Previous studies have shown that the U2AF2 RNA recognition motifs (RRM1 and RRM2) preferentially bind uridine-rich RNAs. Nonetheless, the specificity of the RRM1/RRM2 interface for the central Py tract nucleotide has yet to be investigated. We addressed this question by determining crystal structures of U2AF2 bound to a cytidine, guanosine, or adenosine at the central position of the Py tract, and compared U2AF2-bound uridine structures. Local movements of the RNA site accommodated the different nucleotides, whereas the polypeptide backbone remained similar among the structures. Accordingly, molecular dynamics simulations revealed flexible conformations of the central, U2AF2-bound nucleotide. The RNA binding affinities and splicing efficiencies of structure-guided mutants demonstrated that U2AF2 tolerates nucleotide substitutions at the central position of the Py tract. Moreover, enhanced UV-crosslinking and immunoprecipitation of endogenous U2AF2 in human erythroleukemia cells showed uridine-sensitive binding sites, with lower sequence conservation at the central nucleotide positions of otherwise uridine-rich, U2AF2-bound splice sites. Altogether, these results highlight the importance of RNA flexibility for protein recognition and take a step towards relating splice site motifs to pre-mRNA splicing efficiencies.


Assuntos
Nucleotídeos , Precursores de RNA , Fator de Processamento U2AF , Humanos , Nucleotídeos/metabolismo , RNA/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , Fator de Processamento U2AF/metabolismo , Uridina/metabolismo
13.
Nucleic Acids Res ; 50(14): 8262-8278, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35871302

RESUMO

We recently reported that serine-arginine-rich (SR) protein-mediated pre-mRNA structural remodeling generates a pre-mRNA 3D structural scaffold that is stably recognized by the early spliceosomal components. However, the intermediate steps between the free pre-mRNA and the assembled early spliceosome are not yet characterized. By probing the early spliceosomal complexes in vitro and RNA-protein interactions in vivo, we show that the SR proteins bind the pre-mRNAs cooperatively generating a substrate that recruits U1 snRNP and U2AF65 in a splice signal-independent manner. Excess U1 snRNP selectively displaces some of the SR protein molecules from the pre-mRNA generating the substrate for splice signal-specific, sequential recognition by U1 snRNP, U2AF65 and U2AF35. Our work thus identifies a novel function of U1 snRNP in mammalian splicing substrate definition, explains the need for excess U1 snRNP compared to other U snRNPs in vivo, demonstrates how excess SR proteins could inhibit splicing, and provides a conceptual basis to examine if this mechanism of splicing substrate definition is employed by other splicing regulatory proteins.


Assuntos
Precursores de RNA , Splicing de RNA , Spliceossomos , Animais , Mamíferos/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Spliceossomos/metabolismo , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo
14.
J Biol Chem ; 298(8): 102224, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780835

RESUMO

During spliceosome assembly, the 3' splice site is recognized by sequential U2AF2 complexes, first with Splicing Factor 1 (SF1) and second by the SF3B1 subunit of the U2 small nuclear ribonuclear protein particle. The U2AF2-SF1 interface is well characterized, comprising a U2AF homology motif (UHM) of U2AF2 bound to a U2AF ligand motif (ULM) of SF1. However, the structure of the U2AF2-SF3B1 interface and its importance for pre-mRNA splicing are unknown. To address this knowledge gap, we determined the crystal structure of the U2AF2 UHM bound to a SF3B1 ULM site at 1.8-Å resolution. We discovered a distinctive trajectory of the SF3B1 ULM across the U2AF2 UHM surface, which differs from prior UHM/ULM structures and is expected to modulate the orientations of the full-length proteins. We established that the binding affinity of the U2AF2 UHM for the cocrystallized SF3B1 ULM rivals that of a nearly full-length U2AF2 protein for an N-terminal SF3B1 region. An additional SF3B6 subunit had no detectable effect on the U2AF2-SF3B1 binding affinities. We further showed that key residues at the U2AF2 UHM-SF3B1 ULM interface contribute to coimmunoprecipitation of the splicing factors. Moreover, disrupting the U2AF2-SF3B1 interface changed splicing of representative human transcripts. From analysis of genome-wide data, we found that many of the splice sites coregulated by U2AF2 and SF3B1 differ from those coregulated by U2AF2 and SF1. Taken together, these findings support distinct structural and functional roles for the U2AF2-SF1 and U2AF2-SF3B1 complexes during the pre-mRNA splicing process.


Assuntos
Precursores de RNA , Fatores de Processamento de RNA/química , Splicing de RNA , Fator de Processamento U2AF/química , Humanos , Ligantes , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Fator de Processamento U2AF/metabolismo
15.
J Am Chem Soc ; 145(39): 21646-21660, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37733759

RESUMO

R-loops and guanine quadruplexes (G4s) are secondary structures of nucleic acids that are ubiquitously present in cells and are enriched in promoter regions of genes. By employing a bioinformatic approach based on overlap analysis of transcription factor chromatin immunoprecipitation sequencing (ChIP-seq) data sets, we found that many splicing factors, including U2AF1 whose recognition of the 3' splicing site is crucial for pre-mRNA splicing, exhibit pronounced enrichment at endogenous R-loop- and DNA G4-structure loci in promoter regions of human genes. We also revealed that U2AF1 binds directly to R-loops and DNA G4 structures at a low-nM binding affinity. Additionally, we showed the ability of U2AF1 to undergo phase separation, which could be stimulated by binding with R-loops, but not duplex DNA, RNA/DNA hybrid, DNA G4, or single-stranded RNA. We also demonstrated that U2AF1 binds to promoter R-loops in human cells, and this binding competes with U2AF1's interaction with 3' splicing site and leads to augmented distribution of RNA polymerase II (RNAPII) to promoters over gene bodies, thereby modulating cotranscriptional pre-mRNA splicing. Together, we uncovered a group of candidate proteins that can bind to both R-loops and DNA G4s, revealed the direct and strong interactions of U2AF1 with these nucleic acid structures, and established a biochemical rationale for U2AF1's occupancy in gene promoters. We also unveiled that interaction with R-loops promotes U2AF1's phase separation, and our work suggests that U2AF1 modulates pre-mRNA splicing by regulating RNAPII's partition in transcription initiation versus elongation.


Assuntos
Estruturas R-Loop , Precursores de RNA , Humanos , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , DNA/química , RNA/química , Regiões Promotoras Genéticas
16.
PLoS Pathog ; 17(9): e1009919, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543356

RESUMO

Viral infections are known to hijack the transcription and translation of the host cell. However, the extent to which viral proteins coordinate these perturbations remains unclear. Here we used a model system, the human T-cell leukemia virus type 1 (HTLV-1), and systematically analyzed the transcriptome and interactome of key effectors oncoviral proteins Tax and HBZ. We showed that Tax and HBZ target distinct but also common transcription factors. Unexpectedly, we also uncovered a large set of interactions with RNA-binding proteins, including the U2 auxiliary factor large subunit (U2AF2), a key cellular regulator of pre-mRNA splicing. We discovered that Tax and HBZ perturb the splicing landscape by altering cassette exons in opposing manners, with Tax inducing exon inclusion while HBZ induces exon exclusion. Among Tax- and HBZ-dependent splicing changes, we identify events that are also altered in Adult T cell leukemia/lymphoma (ATLL) samples from two independent patient cohorts, and in well-known cancer census genes. Our interactome mapping approach, applicable to other viral oncogenes, has identified spliceosome perturbation as a novel mechanism coordinated by Tax and HBZ to reprogram the transcriptome.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Produtos do Gene tax/metabolismo , Infecções por HTLV-I/metabolismo , Leucemia-Linfoma de Células T do Adulto/virologia , Proteínas dos Retroviridae/metabolismo , Células HEK293 , Infecções por HTLV-I/etiologia , Vírus Linfotrópico T Tipo 1 Humano , Humanos , Células Jurkat , Splicing de RNA , RNA Mensageiro , Fator de Processamento U2AF/metabolismo
17.
Cell Mol Neurobiol ; 43(3): 1199-1218, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35748966

RESUMO

Directed migration of neural stem cells (NSCs) is critical for embryonic neurogenesis and the healing of neurological injuries. The long noncoding RNA (lncRNA) Pnky has been reported to regulate neuronal differentiation of NSCs by interacting with PTBP1. However, its regulatory effect on NSC migration remains to be determined. Herein, we identified that Pnky is also a key regulator of NSC migration in mice, as underscored by the finding that Pnky silencing suppressed but Pnky overexpression promoted the in vitro migration of both C17.2 and NE4C murine NSCs. Additionally, in vivo cell tracking demonstrated that Pnky depletion attenuated but Pnky overexpression facilitated the migration of NE4C cells in the spinal canal after transplantation via injection into the spinal canal. Mechanistically, Pnky regulated the expression of a core set of critical regulators that direct NSC migration, including MMP2, MMP9, Connexin43, Paxillin, AKT, ERK, and P38MAPK. Using catRAPID, a web server for large-scale prediction of protein-RNA interactions, the splicing factors U2AF1 and U2AF1L4, as well as the mRNA export adaptors SARNP, Aly/Ref, and THOC7, were predicted to interact strongly with Pnky. Further investigations using colocalization and RNA immunoprecipitation (RIP) assays confirmed the direct binding of Pnky to U2AF1, SARNP, Aly/Ref, and THOC7. Transcriptomic profiling revealed that as many as 5319 differential splicing events of 3848 genes, which were highly enriched in focal adhesion, PI3K-Akt and MAPK signaling pathways, were affected by Pnky depletion. The predominant subtype of differential splicing by Pnky depletion is intron retention, followed by alternative 5' and 3' splice sites and mutually exclusive exons. Moreover, Pnky knockdown substantially blocked but Pnky overexpression facilitated the export of MMP2, Paxillin, AKT, p38MAPK, and other mRNAs to the cytosol. Collectively, our data showed that through interacting with U2AF1, SARNP, Aly/Ref, and THOC7, Pnky couples and modulates the splicing and export of target mRNAs, which consequently controlling NSC migration. These findings provide a possible theoretical basis of NSC migration regulation.


Assuntos
Células-Tronco Neurais , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Paxilina/metabolismo , Metaloproteinase 2 da Matriz , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Processamento U2AF/metabolismo , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/genética , Proteínas de Ligação a RNA/metabolismo , Neurogênese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
PLoS Biol ; 18(11): e3000920, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33137094

RESUMO

U2 Small Nuclear RNA Auxiliary Factor 1 (U2AF1) forms a heterodimeric complex with U2AF2 that is primarily responsible for 3' splice site selection. U2AF1 mutations have been identified in most cancers but are prevalent in Myelodysplastic Syndrome (MDS) and Acute Myeloid Leukemia (AML), and the most common mutation is a missense substitution of serine-34 to phenylalanine (S34F). The U2AF heterodimer also has a noncanonical function as a translational regulator. Here, we report that the U2AF1-S34F mutation results in specific misregulation of the translation initiation and ribosome biogenesis machinery. The net result is an increase in mRNA translation at the single-cell level. Among the translationally up-regulated targets of U2AF1-S34F is Nucleophosmin 1 (NPM1), which is a major driver of myeloid malignancy. Depletion of NPM1 impairs the viability of the U2AF1-S34F mutant cells and causes ribosomal RNA (rRNA) processing defects, thus indicating an unanticipated synthetic interaction between U2AF1, NPM1, and ribosome biogenesis. Our results establish a unique molecular phenotype for the U2AF1 mutation that recapitulates translational misregulation in myeloid disease.


Assuntos
Ribossomos/metabolismo , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Substituição de Aminoácidos , Animais , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Inativação Gênica , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Células Progenitoras Mieloides/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Processamento Pós-Transcricional do RNA , RNA Ribossômico 28S/genética , RNA Ribossômico 28S/metabolismo , Ribossomos/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
19.
Nucleic Acids Res ; 49(17): 9965-9977, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34387687

RESUMO

Splicing of pre-mRNA is initiated by binding of U1 to the 5' splice site and of Msl5-Mud2 heterodimer to the branch site (BS). Subsequent binding of U2 displaces Msl5-Mud2 from the BS to form the prespliceosome, a step governing branchpoint selection and hence 3' splice site choice, and linking splicing to myelodysplasia and many cancers in human. Two DEAD-box proteins, Prp5 and Sub2, are required for this step, but neither is stably associated with the pre-mRNA during the reaction. Using BS-mutated ACT1 pre-mRNA, we previously identified a splicing intermediate complex, FIC, which contains U2 and Prp5, but cannot bind the tri-snRNP. We show here that Msl5 remains associated with the upstream cryptic branch site (CBS) in the FIC, with U2 binding a few bases downstream of the BS. U2 mutants that restore U2-BS base pairing enable dissociation of Prp5 and allows splicing to proceed. The CBS is required for splicing rescue by compensatory U2 mutants, and for formation of FIC, demonstrating a role for Msl5 in directing U2 to the BS, and of U2-BS base pairing for release of Prp5 and Msl5-Mud2 to form the prespliceosome. Our results provide insights into how the prespliceosome may form in normal splicing reaction.


Assuntos
Splicing de RNA/genética , RNA Mensageiro/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Spliceossomos/genética , Actinas/genética , Adenosina Trifosfatases/genética , RNA Helicases DEAD-box/genética , Humanos , Fatores de Processamento de RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Processamento U2AF/metabolismo
20.
Nucleic Acids Res ; 49(12): 7103-7121, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34161584

RESUMO

The specific recognition of splice signals at or near exon-intron junctions is not explained by their weak conservation and instead is postulated to require a multitude of features embedded in the pre-mRNA strand. We explored the possibility of 3D structural scaffold of AdML-a model pre-mRNA substrate-guiding early spliceosomal components to the splice signal sequences. We find that mutations in the non-cognate splice signal sequences impede recruitment of early spliceosomal components due to disruption of the global structure of the pre-mRNA. We further find that the pre-mRNA segments potentially interacting with the early spliceosomal component U1 snRNP are distributed across the intron, that there is a spatial proximity of 5' and 3' splice sites within the pre-mRNA scaffold, and that an interplay exists between the structural scaffold and splicing regulatory elements in recruiting early spliceosomal components. These results suggest that early spliceosomal components can recognize a 3D structural scaffold beyond the short splice signal sequences, and that in our model pre-mRNA, this scaffold is formed across the intron involving the major splice signals. This provides a conceptual basis to analyze the contribution of recognizable 3D structural scaffolds to the splicing code across the mammalian transcriptome.


Assuntos
Precursores de RNA/química , Splicing de RNA , RNA Mensageiro/química , Células HeLa , Humanos , Íntrons , Mutação , Conformação de Ácido Nucleico , Domínios Proteicos , Precursores de RNA/metabolismo , Sítios de Splice de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Fatores de Processamento de Serina-Arginina/química , Fatores de Processamento de Serina-Arginina/metabolismo , Fator de Processamento U2AF/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA