Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.359
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 54(9): 2042-2056.e8, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34407391

RESUMO

Recruitment of immune cells to the site of inflammation by the chemokine CCL1 is important in the pathology of inflammatory diseases. Here, we examined the role of CCL1 in pulmonary fibrosis (PF). Bronchoalveolar lavage fluid from PF mouse models contained high amounts of CCL1, as did lung biopsies from PF patients. Immunofluorescence analyses revealed that alveolar macrophages and CD4+ T cells were major producers of CCL1 and targeted deletion of Ccl1 in these cells blunted pathology. Deletion of the CCL1 receptor Ccr8 in fibroblasts limited migration, but not activation, in response to CCL1. Mass spectrometry analyses of CCL1 complexes identified AMFR as a CCL1 receptor, and deletion of Amfr impaired fibroblast activation. Mechanistically, CCL1 binding triggered ubiquitination of the ERK inhibitor Spry1 by AMFR, thus activating Ras-mediated profibrotic protein synthesis. Antibody blockade of CCL1 ameliorated PF pathology, supporting the therapeutic potential of targeting this pathway for treating fibroproliferative lung diseases.


Assuntos
Quimiocina CCL1/metabolismo , Fibroblastos/metabolismo , Proteínas de Membrana/metabolismo , Miofibroblastos/metabolismo , Fosfoproteínas/metabolismo , Fibrose Pulmonar/metabolismo , Receptores do Fator Autócrino de Motilidade/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Diferenciação Celular/fisiologia , Fibroblastos/patologia , Humanos , Camundongos , Miofibroblastos/patologia , Fibrose Pulmonar/patologia , Transdução de Sinais/fisiologia
2.
Nature ; 631(8021): 627-634, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38987592

RESUMO

Fibroblasts are present throughout the body and function to maintain tissue homeostasis. Recent studies have identified diverse fibroblast subsets in healthy and injured tissues1,2, but the origins and functional roles of injury-induced fibroblast lineages remain unclear. Here we show that lung-specialized alveolar fibroblasts take on multiple molecular states with distinct roles in facilitating responses to fibrotic lung injury. We generate a genetic tool that uniquely targets alveolar fibroblasts to demonstrate their role in providing niches for alveolar stem cells in homeostasis and show that loss of this niche leads to exaggerated responses to acute lung injury. Lineage tracing identifies alveolar fibroblasts as the dominant origin for multiple emergent fibroblast subsets sequentially driven by inflammatory and pro-fibrotic signals after injury. We identify similar, but not completely identical, fibroblast lineages in human pulmonary fibrosis. TGFß negatively regulates an inflammatory fibroblast subset that emerges early after injury and stimulates the differentiation into fibrotic fibroblasts to elicit intra-alveolar fibrosis. Blocking the induction of fibrotic fibroblasts in the alveolar fibroblast lineage abrogates fibrosis but exacerbates lung inflammation. These results demonstrate the multifaceted roles of the alveolar fibroblast lineage in maintaining normal alveolar homeostasis and orchestrating sequential responses to lung injury.


Assuntos
Lesão Pulmonar Aguda , Linhagem da Célula , Fibroblastos , Pneumonia , Alvéolos Pulmonares , Fibrose Pulmonar , Animais , Feminino , Humanos , Masculino , Camundongos , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Diferenciação Celular , Fibroblastos/patologia , Fibroblastos/metabolismo , Homeostase , Pneumonia/patologia , Pneumonia/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Nicho de Células-Tronco , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/patologia , Fator de Crescimento Transformador beta/metabolismo
3.
Immunity ; 52(3): 542-556.e13, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187520

RESUMO

Fibrosis is an incurable disorder of unknown etiology. Segregated-nucleus-containing atypical monocytes (SatMs) are critical for the development of fibrosis. Here we examined the mechanisms that recruit SatMs to pre-fibrotic areas. A screen based on cytokine expression in the fibrotic lung revealed that the chemokine Cxcl12, which is produced by apoptotic nonhematopoietic cells, was essential for SatM recruitment. Analyses of lung tissues at fibrosis onset showed increased expression of Rbm7, a component of the nuclear exosome targeting complex. Rbm7 deletion suppressed bleomycin-induced fibrosis and at a cellular level, suppressed apoptosis of nonhematopoietic cells. Mechanistically, Rbm7 bound to noncoding (nc)RNAs that form subnuclear bodies, including Neat1 speckles. Dysregulated expression of Rbm7 resulted in the nuclear degradation of Neat1 speckles, the dispersion of the DNA repair protein BRCA1, and the triggering of apoptosis. Thus, Rbm7 in epithelial cells plays a critical role in the development of fibrosis by regulating ncRNA decay and thereby the production of chemokines that recruit SatMs.


Assuntos
Apoptose/imunologia , Núcleo Celular/imunologia , Exossomos/imunologia , Fibrose Pulmonar/imunologia , Proteínas de Ligação a RNA/imunologia , Animais , Apoptose/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quimiocina CXCL12/imunologia , Quimiocina CXCL12/metabolismo , Exossomos/genética , Exossomos/metabolismo , Regulação da Expressão Gênica/imunologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/imunologia , Monócitos/metabolismo , Células NIH 3T3 , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Immunity ; 51(3): 522-534.e7, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31471107

RESUMO

Although recent progress provides mechanistic insights into the pathogenesis of pulmonary fibrosis (PF), rare anti-PF therapeutics show definitive promise for treating this disease. Repeated lung epithelial injury results in injury-repairing response and inflammation, which drive the development of PF. Here, we report that chronic lung injury inactivated the ubiquitin-editing enzyme A20, causing progressive accumulation of the transcription factor C/EBPß in alveolar macrophages (AMs) from PF patients and mice, which upregulated a number of immunosuppressive and profibrotic factors promoting PF development. In response to chronic lung injury, elevated glycogen synthase kinase-3ß (GSK-3ß) interacted with and phosphorylated A20 to suppress C/EBPß degradation. Ectopic expression of A20 or pharmacological restoration of A20 activity by disturbing the A20-GSK-3ß interaction accelerated C/EBPß degradation and showed potent therapeutic efficacy against experimental PF. Our study indicates that a regulatory mechanism of the GSK-3ß-A20-C/EBPß axis in AMs may be a potential target for treating PF and fibroproliferative lung diseases.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Macrófagos/metabolismo , Fibrose Pulmonar/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Animais , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/fisiologia , Transdução de Sinais/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Regulação para Cima/fisiologia
5.
J Immunol ; 212(7): 1221-1231, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334455

RESUMO

Pulmonary fibrosis is a fatal condition characterized by fibroblast and myofibroblast proliferation and collagen deposition. TGF-ß plays a pivotal role in the development of pulmonary fibrosis. Therefore, modulation of TGF-ß signaling is a promising therapeutic strategy for treating pulmonary fibrosis. To date, however, interventions targeting TGF-ß have not shown consistent efficacy. CD109 is a GPI-anchored glycoprotein that binds to TGF-ß receptor I and negatively regulates TGF-ß signaling. However, no studies have examined the role and therapeutic potential of CD109 in pulmonary fibrosis. The purpose of this study was to determine the role and therapeutic value of CD109 in bleomycin-induced pulmonary fibrosis. CD109-transgenic mice overexpressing CD109 exhibited significantly attenuated pulmonary fibrosis, preserved lung function, and reduced lung fibroblasts and myofibroblasts compared with wild-type (WT) mice. CD109-/- mice exhibited pulmonary fibrosis comparable to WT mice. CD109 expression was induced in variety types of cells, including lung fibroblasts and macrophages, upon bleomycin exposure. Recombinant CD109 protein inhibited TGF-ß signaling and significantly decreased ACTA2 expression in human fetal lung fibroblast cells in vitro. Administration of recombinant CD109 protein markedly reduced pulmonary fibrosis in bleomycin-treated WT mice in vivo. Our results suggest that CD109 is not essential for the development of pulmonary fibrosis, but excess CD109 protein can inhibit pulmonary fibrosis development, possibly through suppression of TGF-ß signaling. CD109 is a novel therapeutic candidate for treating pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Bleomicina/efeitos adversos , Fator de Crescimento Transformador beta/metabolismo , Pulmão/patologia , Fibroblastos/metabolismo , Camundongos Transgênicos , Fatores de Transcrição/metabolismo , Camundongos Endogâmicos C57BL , Proteínas de Neoplasias/metabolismo , Antígenos CD/metabolismo , Proteínas Ligadas por GPI/metabolismo
6.
EMBO J ; 40(16): e107403, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34223653

RESUMO

Excessive deposition of extracellular matrix, mainly collagen protein, is the hallmark of organ fibrosis. The molecular mechanisms regulating fibrotic protein biosynthesis are unclear. Here, we find that chemoattractant receptor homologous molecule expressed on TH2 cells (CRTH2), a plasma membrane receptor for prostaglandin D2, is trafficked to the endoplasmic reticulum (ER) membrane in fibroblasts in a caveolin-1-dependent manner. ER-anchored CRTH2 binds the collagen mRNA recognition motif of La ribonucleoprotein domain family member 6 (LARP6) and promotes the degradation of collagen mRNA in these cells. In line, CRTH2 deficiency increases collagen biosynthesis in fibroblasts and exacerbates injury-induced organ fibrosis in mice, which can be rescued by LARP6 depletion. Administration of CRTH2 N-terminal peptide reduces collagen production by binding to LARP6. Similar to CRTH2, bumetanide binds the LARP6 mRNA recognition motif, suppresses collagen biosynthesis, and alleviates bleomycin-triggered pulmonary fibrosis in vivo. These findings reveal a novel anti-fibrotic function of CRTH2 in the ER membrane via the interaction with LARP6, which may represent a therapeutic target for fibrotic diseases.


Assuntos
Autoantígenos/metabolismo , Colágeno/antagonistas & inibidores , Cirrose Hepática/prevenção & controle , Fibrose Pulmonar/prevenção & controle , Receptores Imunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Bleomicina , Tetracloreto de Carbono , Células Cultivadas , Colágeno/biossíntese , Colágeno/genética , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Membranas Intracelulares/metabolismo , Isoproterenol , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Ligação Proteica , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Receptores Imunológicos/genética , Receptores de Prostaglandina/genética , Antígeno SS-B
7.
Am J Pathol ; 194(8): 1478-1493, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38849030

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease characterized by pulmonary fibroblast overactivation, resulting in the accumulation of abnormal extracellular matrix and lung parenchymal damage. Although the pathogenesis of IPF remains unclear, aging was proposed as the most prominent nongenetic risk factor. Propionate metabolism undergoes reprogramming in the aging population, leading to the accumulation of the by-product methylmalonic acid (MMA). This study aimed to explore alterations in propionate metabolism in IPF and the impact of the by-product MMA on pulmonary fibrosis. It revealed alterations in the expression of enzymes involved in propionate metabolism within IPF lung tissues, characterized by an increase in propionyl-CoA carboxylase and methylmalonyl-CoA epimerase expression, and a decrease in methylmalonyl-CoA mutase expression. Knockdown of methylmalonyl-CoA mutase, the key enzyme in propionate metabolism, induced a profibrotic phenotype and activated co-cultured fibroblasts in A549 cells. MMA exacerbated bleomycin-induced mouse lung fibrosis and induced a profibrotic phenotype in both epithelial cells and fibroblasts through activation of the canonical transforming growth factor-ß/Smad pathway. Overall, these findings unveil an alteration of propionate metabolism in IPF, leading to MMA accumulation, thus exacerbating lung fibrosis through promoting profibrotic phenotypic transitions via the canonical transforming growth factor-ß/Smad signaling pathway.


Assuntos
Envelhecimento , Fibrose Pulmonar Idiopática , Ácido Metilmalônico , Animais , Humanos , Camundongos , Ácido Metilmalônico/metabolismo , Envelhecimento/metabolismo , Envelhecimento/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/induzido quimicamente , Masculino , Fibroblastos/metabolismo , Fibroblastos/patologia , Feminino , Camundongos Endogâmicos C57BL , Idoso , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Pessoa de Meia-Idade , Células A549 , Bleomicina/efeitos adversos , Pulmão/patologia , Pulmão/metabolismo
8.
Am J Pathol ; 194(8): 1458-1477, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38777148

RESUMO

Idiopathic pulmonary fibrosis, a fatal interstitial lung disease, is characterized by fibroblast activation and aberrant extracellular matrix accumulation. Effective therapeutic development is limited because of incomplete understanding of the mechanisms by which fibroblasts become aberrantly activated. Here, we show aldehyde dehydrogenase 2 (ALDH2) in fibroblasts as a potential therapeutic target for pulmonary fibrosis. A decrease in ALDH2 expression was observed in patients with idiopathic pulmonary fibrosis and bleomycin-treated mice. ALDH2 deficiency spontaneously induces collagen accumulation in the lungs of aged mice. Furthermore, young ALDH2 knockout mice exhibited exacerbated bleomycin-induced pulmonary fibrosis and increased mortality compared with that in control mice. Mechanistic studies revealed that transforming growth factor (TGF)-ß1 induction and ALDH2 depletion constituted a positive feedback loop that exacerbates fibroblast activation. TGF-ß1 down-regulated ALDH2 through a TGF-ß receptor 1/Smad3-dependent mechanism. The subsequent deficiency in ALDH2 resulted in fibroblast dysfunction that manifested as impaired mitochondrial autophagy and senescence, leading to fibroblast activation and extracellular matrix production. ALDH2 overexpression markedly suppressed fibroblast activation, and this effect was abrogated by PTEN-induced putative kinase 1 (PINK1) knockdown, indicating that the profibrotic effects of ALDH2 are PINK1- dependent. Furthermore, ALDH2 activated by N-(1,3-benzodioxol-5-ylmethyl)-2,6-dichlorobenzamide (Alda-1) reversed the established pulmonary fibrosis in both young and aged mice. In conclusion, ALDH2 expression inhibited the pathogenesis of pulmonary fibrosis. Strategies to up-regulate or activate ALDH2 expression could be potential therapies for pulmonary fibrosis.


Assuntos
Aldeído-Desidrogenase Mitocondrial , Bleomicina , Senescência Celular , Fibroblastos , Camundongos Knockout , Mitocôndrias , Animais , Fibroblastos/metabolismo , Fibroblastos/patologia , Aldeído-Desidrogenase Mitocondrial/metabolismo , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/deficiência , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Humanos , Bleomicina/toxicidade , Bleomicina/efeitos adversos , Fator de Crescimento Transformador beta1/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/genética , Transdução de Sinais , Pulmão/patologia , Pulmão/metabolismo
9.
Stem Cells ; 42(9): 809-820, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38982795

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (PF) is a chronic progressive interstitial lung disease characterized by alveolar epithelial cell (AEC) injury and fibroblast activation. Inadequate autophagy in AECs may result from the activation of several signaling pathways following AEC injury, with glycoproteins serving as key receptor proteins. The core fucosylation (CF) modification in glycoproteins is crucial. Mesenchymal stem cells derived from bone marrow (BMSCs) have the ability to regenerate damaged tissue and treat PF. This study aimed to elucidate the relationship and mechanism of interaction between BMSCs, CF modification, and autophagy in PF. METHODS: C57BL/6 male mice, AEC-specific FUT8 conditional knockout (CKO) mice, and MLE12 cells were administered bleomycin (BLM), FUT8 siRNA, and mouse BMSCs, respectively. Experimental techniques including tissue staining, Western blotting, immunofluorescence, autophagic flux detection, and flow cytometry were used in this study. RESULTS: First, we found that autophagy was inhibited while FUT8 expression was elevated in PF mice and BLM-induced AEC injury models. Subsequently, CKO mice and MLE12 cells transfected with FUT8 siRNA were used to demonstrate that inhibition of CF modification induces autophagy in AECs and mitigates PF. Finally, mouse BMSCs were used to demonstrate that they alleviate the detrimental autophagy of AECs by inhibiting CF modification and decreasing PF. CONCLUSIONS: Suppression of CF modification enhanced the suppression of AEC autophagy and reduced PF in mice. Additionally, through the prevention of CF modification, BMSCs can assist AECs deficient in autophagy and partially alleviate PF.


Assuntos
Células Epiteliais Alveolares , Autofagia , Células-Tronco Mesenquimais , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células-Tronco Mesenquimais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Bleomicina/toxicidade , Camundongos Knockout , Fucose/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fucosiltransferases/metabolismo , Fucosiltransferases/genética
10.
FASEB J ; 38(13): e23749, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38953707

RESUMO

Pulmonary fibrosis is a formidable challenge in chronic and age-related lung diseases. Myofibroblasts secrete large amounts of extracellular matrix and induce pro-repair responses during normal wound healing. Successful tissue repair results in termination of myofibroblast activity via apoptosis; however, some myofibroblasts exhibit a senescent phenotype and escape apoptosis, causing over-repair that is characterized by pathological fibrotic scarring. Therefore, the removal of senescent myofibroblasts using senolytics is an important method for the treatment of pulmonary fibrosis. Procyanidin C1 (PCC1) has recently been discovered as a senolytic compound with very low toxicity and few side effects. This study aimed to determine whether PCC1 could improve lung fibrosis by promoting apoptosis in senescent myofibroblasts and to investigate the mechanisms involved. The results showed that PCC1 attenuates bleomycin (BLM)-induced pulmonary fibrosis in mice. In addition, we found that PCC1 inhibited extracellular matrix deposition and promoted the apoptosis of senescent myofibroblasts by increasing PUMA expression and activating the BAX signaling pathway. Our findings represent a new method of pulmonary fibrosis management and emphasize the potential of PCC1 as a senotherapeutic agent for the treatment of pulmonary fibrosis, providing hope for patients with pulmonary fibrosis worldwide. Our results advance our understanding of age-related diseases and highlight the importance of addressing cellular senescence in treatment.


Assuntos
Bleomicina , Catequina , Senescência Celular , Camundongos Endogâmicos C57BL , Miofibroblastos , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Miofibroblastos/metabolismo , Miofibroblastos/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/patologia , Camundongos , Senescência Celular/efeitos dos fármacos , Catequina/farmacologia , Catequina/análogos & derivados , Proantocianidinas/farmacologia , Apoptose/efeitos dos fármacos , Masculino , Biflavonoides/farmacologia , Transdução de Sinais/efeitos dos fármacos
11.
Rev Med Virol ; 34(1): e2500, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38126937

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously producing new variants, necessitating effective therapeutics. Patients are not only confronted by the immediate symptoms of infection but also by the long-term health issues linked to long COVID-19. Activation of epidermal growth factor receptor (EGFR) signalling during SARS-CoV-2 infection promotes virus propagation, mucus hyperproduction, and pulmonary fibrosis, and suppresses the host's antiviral response. Over the long term, EGFR activation in COVID-19, particularly in COVID-19-induced pulmonary fibrosis, may be linked to the development of lung cancer. In this review, we have summarised the significance of EGFR signalling in the context of SARS-CoV-2 infection. We also discussed the targeting of EGFR signalling as a promising strategy for COVID-19 treatment and highlighted erlotinib as a superior option among EGFR inhibitors. Erlotinib effectively blocks EGFR and AAK1, thereby preventing SARS-CoV-2 replication, reducing mucus hyperproduction, TNF-α expression, and enhancing the host's antiviral response. Nevertheless, to evaluate the antiviral efficacy of erlotinib, relevant clinical trials involving an appropriate patient population should be designed.


Assuntos
COVID-19 , Receptores ErbB , Transdução de Sinais , Humanos , Antivirais/uso terapêutico , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/uso terapêutico , Síndrome de COVID-19 Pós-Aguda , Fibrose Pulmonar/metabolismo , SARS-CoV-2/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Cell Mol Life Sci ; 81(1): 206, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38709307

RESUMO

The epithelial-mesenchymal transformation (EMT) process of alveolar epithelial cells is recognized as involved in the development of pulmonary fibrosis. Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung tissue and elevated lactate concentration are associated with the pathogenesis of sepsis-associated pulmonary fibrosis. However, it is uncertain whether LPS promotes the development of sepsis-associated pulmonary fibrosis by promoting lactate accumulation in lung tissue, thereby initiating EMT process. We hypothesized that monocarboxylate transporter-1 (MCT1), as the main protein for lactate transport, may be crucial in the pathogenic process of sepsis-associated pulmonary fibrosis. We found that high concentrations of lactate induced EMT while moderate concentrations did not. Besides, we demonstrated that MCT1 inhibition enhanced EMT process in MLE-12 cells, while MCT1 upregulation could reverse lactate-induced EMT. LPS could promote EMT in MLE-12 cells through MCT1 inhibition and lactate accumulation, while this could be alleviated by upregulating the expression of MCT1. In addition, the overexpression of MCT1 prevented LPS-induced EMT and pulmonary fibrosis in vivo. Altogether, this study revealed that LPS could inhibit the expression of MCT1 in mouse alveolar epithelial cells and cause lactate transport disorder, which leads to lactate accumulation, and ultimately promotes the process of EMT and lung fibrosis.


Assuntos
Transição Epitelial-Mesenquimal , Ácido Láctico , Lipopolissacarídeos , Transportadores de Ácidos Monocarboxílicos , Fibrose Pulmonar , Simportadores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Animais , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Simportadores/metabolismo , Simportadores/genética , Simportadores/antagonistas & inibidores , Camundongos , Ácido Láctico/metabolismo , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fibrose Pulmonar/induzido quimicamente , Camundongos Endogâmicos C57BL , Linhagem Celular , Masculino , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
13.
Nucleic Acids Res ; 51(12): 6227-6237, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37207329

RESUMO

Long non-coding RNAs are a very versatile class of molecules that can have important roles in regulating a cells function, including regulating other genes on the transcriptional level. One of these mechanisms is that RNA can directly interact with DNA thereby recruiting additional components such as proteins to these sites via an RNA:dsDNA triplex formation. We genetically deleted the triplex forming sequence (FendrrBox) from the lncRNA Fendrr in mice and found that this FendrrBox is partially required for Fendrr function in vivo. We found that the loss of the triplex forming site in developing lungs causes a dysregulation of gene programs associated with lung fibrosis. A set of these genes contain a triplex site directly at their promoter and are expressed in lung fibroblasts. We biophysically confirmed the formation of an RNA:dsDNA triplex with target promoters in vitro. We found that Fendrr with the Wnt signalling pathway regulates these genes, implicating that Fendrr synergizes with Wnt signalling in lung fibrosis.


Assuntos
Fibrose Pulmonar , RNA Longo não Codificante , Animais , Camundongos , Fibrose , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , RNA Longo não Codificante/metabolismo
14.
Proc Natl Acad Sci U S A ; 119(10): e2116279119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238669

RESUMO

The warning cytokine interleukin-33 receptor (IL-33R) mediates local inflammatory responses and plays crucial roles in the pathogenesis of immune diseases such as pulmonary fibrosis and rheumatoid arthritis. Whether and how IL-33R is regulated remain enigmatic. Here, we identified ubiquitin-specific protease 38 (USP38) as a negative regulator of IL-33R­mediated signaling. USP38 deficiency promotes interleukin-33 (IL-33)­induced downstream proinflammatory responses in vitro and in vivo. Usp38−/− mice are more susceptible to inflammatory damage and death and developed more serious pulmonary fibrosis after bleomycin treatment. USP38 is constitutively associated with IL-33R and deconjugates its K27-linked polyubiquitination at K511, resulting in its autophagic degradation. We further show that the E3 ubiquitin ligase tumor necrosis factor receptor­associated factor 6 (TRAF6) catalyzes K27-linked polyubiquitination of IL-33R at K511, and that deficiency of TRAF6 inhibits IL-33­mediated signaling. Our findings suggest that K27-linked polyubiquitination and deubiquitination of IL-33R by TRAF6 and USP38 reciprocally regulate IL-33R level and signaling, which represents a critical mechanism in the regulation of IL-33­triggered lung inflammatory response and pulmonary fibrosis.


Assuntos
Inflamação/fisiopatologia , Interleucina-33/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fibrose Pulmonar/fisiopatologia , Proteases Específicas de Ubiquitina/metabolismo , Autofagia , Regulação para Baixo , Humanos , Inflamação/metabolismo , Interleucina-33/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Transdução de Sinais , Proteases Específicas de Ubiquitina/genética , Ubiquitinação
15.
Am J Respir Cell Mol Biol ; 71(4): 407-419, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38820234

RESUMO

Pulmonary fibrosis (PF) can be idiopathic or driven by a specific insult, genetic susceptibility, or disease process. Inflammation plays a role in the pathophysiology, the extent of which remains a longstanding topic of debate. More recently, there has been increasing interest in a potential inciting role for aberrant lipid metabolism. Lipids are essential for the structure and function of all cell membranes, but specifically in the lung for surfactant composition, intra- and intercellular lipid mediators, and lipofibroblasts. Clinically, there is evidence of increased lipid deposition in the subpleural space and at a whole-lung tissue level in PF. There is evidence of increased parenchymal lipid deposition and abnormal mediastinal fat shape on chest computed tomography. A protective role for cholesterol-lowering drugs, including statins and ezetimibe, has been described in PF. At a cellular level, fatty acid, phospholipid, and glucose metabolism are disordered, as is the production of lipid mediators. Here we put forward the argument that there is substantive clinical and biological evidence to support a role for aberrant lipid metabolism and lipid mediators in the pathogenesis of PF.


Assuntos
Metabolismo dos Lipídeos , Pulmão , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Pulmão/metabolismo , Pulmão/patologia , Animais , Lipídeos
16.
Am J Respir Cell Mol Biol ; 70(4): 247-258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38117250

RESUMO

BCL-2 family members are known to be implicated in survival in numerous biological settings. Here, we provide evidence that in injury and repair processes in lungs, BCL-2 mainly acts to attenuate endoplasmic reticulum (ER) stress and limit extracellular matrix accumulation. Days after an intratracheal bleomycin challenge, mice lose a fraction of their alveolar type II epithelium from terminal ER stress driven by activation of the critical ER sensor and stress effector IRE1α. This fraction is dramatically increased by BCL-2 inhibition, because IRE1α activation is dependent on its physical association with the BCL-2-proapoptotic family member BAX, and we found BCL-2 to disrupt this association in vitro. In vivo, navitoclax (a BCL-2/BCL-xL inhibitor) given 15-21 days after bleomycin challenge evoked strong activation of IRE-1α in mesenchymal cells and markers of ER stress, but not apoptosis. Remarkably, after BCL-2 inhibition, bleomycin-exposed mice demonstrated persistent collagen accumulation at Day 42, compared with resolution in controls. Enhanced fibrosis proved to be due to the RNAase activity of IRE1α downregulating MRC2 mRNA and protein, a mediator of collagen turnover. The critical role of MRC2 was confirmed in precision-cut lung slice cultures of Day-42 lungs from bleomycin-exposed wild-type and MRC2 null mice. Soluble and tissue collagen accumulated in precision-cut lung slice cultures from navitoclax-treated, bleomycin-challenged mice compared with controls, in a manner nearly identical to that of challenged but untreated MRC2 null mice. Thus, apart from mitochondrial-based antiapoptosis, BCL-2 functions to attenuate ER stress responses, fostering tissue homeostasis and injury repair.


Assuntos
Compostos de Anilina , Fibrose Pulmonar , Sulfonamidas , Camundongos , Animais , Fibrose Pulmonar/metabolismo , Endorribonucleases , Proteínas Serina-Treonina Quinases , Estresse do Retículo Endoplasmático , Camundongos Knockout , Colágeno/metabolismo , Bleomicina/farmacologia
17.
Am J Respir Cell Mol Biol ; 71(3): 318-331, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38843440

RESUMO

Pulmonary fibrosis (PF) can be a fatal disease characterized by progressive lung scarring. It is still poorly understood how the pulmonary endothelium is involved in the disease pathogenesis. Differences of the pulmonary vasculature between patients and donors were analyzed using transmission electron microscopy, immunohistochemistry, and single-cell RNA sequencing. Vascular barrier resistance, endothelial-immune cell adhesion, and sensitivity to an inflammatory milieu were studied in vitro. Integrity and activation markers were measured by ELISA in human plasma. Transmission electron microscopy demonstrated abnormally swollen endothelial cells (ECs) in fibrotic lungs compared with donors. A more intense CD31 and von Willebrand Factor (vWF) and patchy vascular endothelial (VE)-Cadherin staining in fibrotic lungs supported the presence of a dysregulated endothelium. Integrity markers CD31, VE-Cadherin, Thrombomodulin, and VEGFR-2 (vascular endothelial growth factor receptor-2) and activation marker vWF gene expression was increased in different endothelial subpopulations (e.g., arterial, venous, general capillary, aerocytes) in PF. This was associated with a heightened sensitivity of fibrotic ECs to TNF-α or IFN-γ and elevated immune cell adhesion. The barrier strength was overall reduced in ECs from fibrotic lungs. vWF and IL-8 were increased in the plasma of patients, whereas VE-Cadherin, Thrombomodulin, and VEGFR-2 were decreased. VE-Cadherin staining was also patchy in biopsy tissue and was decreased in plasma samples of patients with PF 6 months after the initial diagnosis. Our data demonstrate highly abnormal ECs in PF. The vascular compartment is characterized by hyperactivation and increased immune cell adhesion, as well as dysfunctional endothelial barrier function. Reestablishing EC homeostasis and function might represent a new therapeutic option for fibrotic lung diseases.


Assuntos
Células Endoteliais , Pulmão , Fibrose Pulmonar , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Pulmão/patologia , Pulmão/metabolismo , Pulmão/irrigação sanguínea , Masculino , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Feminino , Pessoa de Meia-Idade , Fator de von Willebrand/metabolismo , Idoso , Caderinas/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Adesão Celular , Trombomodulina/metabolismo , Antígenos CD/metabolismo
18.
Am J Respir Cell Mol Biol ; 71(1): 30-42, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38579159

RESUMO

Alveoli are complex microenvironments composed of various cell types, including epithelial, fibroblast, endothelial, and immune cells, which work together to maintain a delicate balance in the lung environment, ensuring proper growth, development, and an effective response to lung injuries. However, prolonged inflammation or aging can disrupt normal interactions among these cells, leading to impaired repair processes and a substantial decline in lung function. Therefore, it is essential to understand the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. We explored the key mechanisms underlying the interactions among the major cell types within the alveolar microenvironment. These interactions occur through the secretion of signaling factors and play crucial roles in the response to injury, repair mechanisms, and the development of fibrosis in the lungs. Specifically, we focused on the regulation of alveolar type 2 cells by fibroblasts, endothelial cells, and macrophages. In addition, we explored the diverse phenotypes of fibroblasts at different stages of life and in response to lung injury, highlighting their impact on matrix production and immune functions. Furthermore, we summarize the various phenotypes of macrophages in lung injury and fibrosis as well as their intricate interplay with other cell types. This interplay can either contribute to the restoration of immune homeostasis in the alveoli or impede the repair process. Through a comprehensive exploration of these cell interactions, we aim to reveal new insights into the molecular mechanisms that drive lung injury toward fibrosis and identify potential targets for therapeutic intervention.


Assuntos
Comunicação Celular , Microambiente Celular , Fibroblastos , Lesão Pulmonar , Alvéolos Pulmonares , Humanos , Animais , Lesão Pulmonar/patologia , Lesão Pulmonar/metabolismo , Alvéolos Pulmonares/patologia , Alvéolos Pulmonares/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Fibrose , Macrófagos/metabolismo , Macrófagos/patologia
19.
Am J Respir Cell Mol Biol ; 71(1): 23-29, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593005

RESUMO

Investigations into the mechanisms of injury and repair in fibroproliferative disease require consideration of the spatial heterogeneity inherent in the disease. Most scoring of fibrotic remodeling in preclinical animal models relies on the modified Ashcroft score, which is an ordinal rubric of macroscopic resolution. The obvious limitations of manual histopathologic scoring have generated an unmet need for unbiased, repeatable scoring of fibroproliferative burden in tissue. Using computer vision approaches on immunofluorescence imaging of the extracellular matrix component laminin, we generated a robust and repeatable quantitative remodeling scorer. In the bleomycin lung injury model, the quantitative remodeling scorer shows significant agreement with the modified Ashcroft scale. This antibody-based approach is easily integrated into larger multiplex immunofluorescence experiments, which we demonstrate by testing the spatial apposition of tertiary lymphoid structures to fibroproliferative tissue, a poorly characterized phenomenon observed in both human interstitial lung diseases and preclinical models of lung fibrosis. The tool reported in this article is available as a stand-alone application that is usable without programming knowledge.


Assuntos
Bleomicina , Laminina , Fibrose Pulmonar , Laminina/metabolismo , Animais , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/induzido quimicamente , Pulmão/patologia , Pulmão/metabolismo , Camundongos , Lesão Pulmonar/patologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/induzido quimicamente , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Estruturas Linfoides Terciárias/patologia , Estruturas Linfoides Terciárias/imunologia , Humanos , Imunofluorescência , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia
20.
Am J Respir Cell Mol Biol ; 71(4): 430-441, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38861338

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease that leads to respiratory decline caused by scarring and thickening of lung tissues. Multiple pathways contribute to the fibrotic process in this disease, such as inflammation, epithelial-to-mesenchymal transition, and oxidative stress. The Rho-associated coiled-coil forming protein kinase (ROCK) signaling pathway is a key regulator of profibrotic signaling, as it affects the organization of actin-myosin and the remodeling of the extracellular matrix. ROCK1/2, a downstream effector of RhoA, is overexpressed in patients with IPF and is a promising target for IPF therapy. However, because of the hypotensive side effects of ROCK1/2 inhibitors, selective ROCK2 compounds are being explored. In this study, we report the discovery of GNS-3595, a potent and selective ROCK2 inhibitor that has ∼80-fold selectivity over ROCK1 at physiological concentrations of ATP. GNS-3595 effectively inhibited ROCK2-mediated phosphorylation of myosin light chain and reduced the expression of fibrosis-related proteins (e.g., collagen, fibronectin, and α-smooth muscle actin) in various in vitro cellular models. GNS-3595 also prevented transforming growth factor ß-induced fibroblast-to-myofibroblast transition. In addition, in a bleomycin-induced mouse model of pulmonary fibrosis, therapeutic exposure to GNS-3595, suppressed lung fibrosis, stabilized body weight loss, and prevented fibrosis-induced lung weight gain. Transcriptome and protein expression analysis from lung tissues showed that GNS-3595 can revert the fibrosis-related gene expression induced by bleomycin. These results indicate that GNS-3595 is a highly potent, selective, and orally active ROCK2 inhibitor with promising therapeutic efficacy against pulmonary fibrosis.


Assuntos
Bleomicina , Quinases Associadas a rho , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Animais , Humanos , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Camundongos Endogâmicos C57BL , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Modelos Animais de Doenças , Fosforilação/efeitos dos fármacos , Masculino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA