Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Cell Sci ; 132(11)2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-31076516

RESUMO

The cell nucleus responds to mechanical cues with changes in size, morphology and motility. Previous work has shown that external forces couple to nuclei through the cytoskeleton network, but we show here that changes in nuclear shape can be driven solely by calcium levels. Fluid shear stress applied to MDCK cells caused the nuclei to shrink through a Ca2+-dependent signaling pathway. Inhibiting mechanosensitive Piezo1 channels through treatment with GsMTx4 prevented nuclear shrinkage. Piezo1 knockdown also significantly reduced the nuclear shrinkage. Activation of Piezo1 with the agonist Yoda1 caused similar nucleus shrinkage in cells not exposed to shear stress. These results demonstrate that the Piezo1 channel is a key element for transmitting shear force input to nuclei. To ascertain the relative contribution of Ca2+ to cytoskeleton perturbation, we examined F-actin reorganization under shear stress and static conditions, and showed that reorganization of the cytoskeleton is not necessary for nuclear shrinkage. These results emphasize the role of the mechanosensitive channels as primary transducers in force transmission to the nucleus.


Assuntos
Cálcio/metabolismo , Forma do Núcleo Celular/fisiologia , Células Epiteliais/metabolismo , Canais Iônicos/metabolismo , Mecanotransdução Celular/fisiologia , Estresse Mecânico , Animais , Sinalização do Cálcio/fisiologia , Linhagem Celular , Núcleo Celular/fisiologia , Citoesqueleto/fisiologia , Cães , Células Madin Darby de Rim Canino
2.
Development ; 141(2): 355-66, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24335254

RESUMO

Nuclei are precisely positioned within all cells, and mispositioned nuclei are a hallmark of many muscle diseases. Myonuclear positioning is dependent on Kinesin and Dynein, but interactions between these motor proteins and their mechanisms of action are unclear. We find that in developing Drosophila muscles, Dynein and Kinesin work together to move nuclei in a single direction by two separate mechanisms that are spatially segregated. First, the two motors work together in a sequential pathway that acts from the cell cortex at the muscle poles. This mechanism requires Kinesin-dependent localization of Dynein to cell cortex near the muscle pole. From this location Dynein can pull microtubule minus-ends and the attached myonuclei toward the muscle pole. Second, the motors exert forces directly on individual nuclei independently of the cortical pathway. However, the activities of the two motors on the nucleus are polarized relative to the direction of myonuclear translocation: Kinesin acts at the leading edge of the nucleus, whereas Dynein acts at the lagging edge of the nucleus. Consistent with the activities of Kinesin and Dynein being polarized on the nucleus, nuclei rarely change direction, and those that do, reorient to maintain the same leading edge. Conversely, nuclei in both Kinesin and Dynein mutant embryos change direction more often and do not maintain the same leading edge when changing directions. These data implicate Kinesin and Dynein in two distinct and independently regulated mechanisms of moving myonuclei, which together maximize the ability of myonuclei to achieve their proper localizations within the constraints imposed by embryonic development.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/fisiologia , Dineínas/fisiologia , Cinesinas/fisiologia , Desenvolvimento Muscular/fisiologia , Animais , Animais Geneticamente Modificados , Núcleo Celular/fisiologia , Forma do Núcleo Celular/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Dineínas/genética , Cinesinas/genética , Modelos Estatísticos , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/fisiologia , Movimento/fisiologia , Desenvolvimento Muscular/genética , Músculos/embriologia , Mutação
3.
Biophys J ; 111(7): 1541-1552, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27705776

RESUMO

It is now evident that the cell nucleus undergoes dramatic shape changes during important cellular processes such as cell transmigration through extracellular matrix and endothelium. Recent experimental data suggest that during cell transmigration the deformability of the nucleus could be a limiting factor, and the morphological and structural alterations that the nucleus encounters can perturb genomic organization that in turn influences cellular behavior. Despite its importance, a biophysical model that connects the experimentally observed nuclear morphological changes to the underlying biophysical factors during transmigration through small constrictions is still lacking. Here, we developed a universal chemomechanical model that describes nuclear strains and shapes and predicts thresholds for the rupture of the nuclear envelope and for nuclear plastic deformation during transmigration through small constrictions. The model includes actin contraction and cytosolic back pressure that squeeze the nucleus through constrictions and overcome the mechanical resistance from deformation of the nucleus and the constrictions. The nucleus is treated as an elastic shell encompassing a poroelastic material representing the nuclear envelope and inner nucleoplasm, respectively. Tuning the chemomechanical parameters of different components such as cell contractility and nuclear and matrix stiffnesses, our model predicts the lower bounds of constriction size for successful transmigration. Furthermore, treating the chromatin as a plastic material, our model faithfully reproduced the experimentally observed irreversible nuclear deformations after transmigration in lamin-A/C-deficient cells, whereas the wild-type cells show much less plastic deformation. Along with making testable predictions, which are in accord with our experiments and existing literature, our work provides a realistic framework to assess the biophysical modulators of nuclear deformation during cell transmigration.


Assuntos
Forma do Núcleo Celular/fisiologia , Núcleo Celular/química , Núcleo Celular/fisiologia , Modelos Biológicos , Estresse Fisiológico/fisiologia , Migração Transendotelial e Transepitelial/fisiologia , Actinas/química , Actinas/metabolismo , Animais , Simulação por Computador , Citosol/química , Citosol/metabolismo , Elasticidade , Células Endoteliais/química , Células Endoteliais/fisiologia , Dispositivos Lab-On-A-Chip , Microscopia de Força Atômica , Permeabilidade , Pressão , Estresse Mecânico , Água/química , Água/metabolismo
4.
Microsc Microanal ; 22(3): 612-20, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27329312

RESUMO

Phenotype of cultured ocular epithelial transplants has been shown to affect clinical success rates following transplantation to the cornea. The purpose of this study was to evaluate the relationship between cell nucleus morphometry and phenotype in three types of cultured epithelial cells. This study provides knowledge for the development of a non-invasive method of determining the phenotype of cultured epithelium before transplantation. Cultured human conjunctival epithelial cells (HCjE), human epidermal keratinocytes (HEK), and human retinal pigment epithelial cells (HRPE) were analyzed by quantitative immunofluorescence. Assessments of nucleus morphometry and nucleus-to-cytoplasm ratio (N/C ratio) were performed using ImageJ. Spearman's correlation coefficient was employed for statistical analysis. Levels of the proliferation marker PCNA in HCjE, HEK, and HRPE correlated positively with nuclear area. Nuclear area correlated significantly with levels of the undifferentiated cell marker ABCG2 in HCjE. Bmi1 levels, but not p63α levels, correlated significantly with nuclear area in HEK. The N/C ratio did not correlate significantly with any of the immunomarkers in HCjE (ABCG2, CK7, and PCNA) and HRPE (PCNA). In HEK, however, the N/C ratio was negatively correlated with levels of the undifferentiated cell marker CK14 and positively correlated with Bmi1 expression. The size of the nuclear area correlated positively with proliferation markers in all three epithelia. Morphometric indicators of phenotype in cultured epithelia can be identified using ImageJ. Conversely, the N/C ratio did not show a uniform relationship with phenotype in HCjE, HEK, or HRPE. N/C ratio therefore, may not be a useful morphometric marker for in vitro assessment of phenotype in these three epithelia.


Assuntos
Forma do Núcleo Celular/fisiologia , Células Epiteliais/citologia , Fenótipo , Linhagem Celular , Proliferação de Células , Células Cultivadas , Túnica Conjuntiva/citologia , Humanos , Queratinócitos/citologia
5.
Biophys J ; 109(4): 670-86, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26287620

RESUMO

The nucleus has a smooth, regular appearance in normal cells, and its shape is greatly altered in human pathologies. Yet, how the cell establishes nuclear shape is not well understood. We imaged the dynamics of nuclear shaping in NIH3T3 fibroblasts. Nuclei translated toward the substratum and began flattening during the early stages of cell spreading. Initially, nuclear height and width correlated with the degree of cell spreading, but over time, reached steady-state values even as the cell continued to spread. Actomyosin activity, actomyosin bundles, microtubules, and intermediate filaments, as well as the LINC complex, were all dispensable for nuclear flattening as long as the cell could spread. Inhibition of actin polymerization as well as myosin light chain kinase with the drug ML7 limited both the initial spreading of cells and flattening of nuclei, and for well-spread cells, inhibition of myosin-II ATPase with the drug blebbistatin decreased cell spreading with associated nuclear rounding. Together, these results show that cell spreading is necessary and sufficient to drive nuclear flattening under a wide range of conditions, including in the presence or absence of myosin activity. To explain this observation, we propose a computational model for nuclear and cell mechanics that shows how frictional transmission of stress from the moving cell boundaries to the nuclear surface shapes the nucleus during early cell spreading. Our results point to a surprisingly simple mechanical system in cells for establishing nuclear shapes.


Assuntos
Movimento Celular/fisiologia , Forma do Núcleo Celular/fisiologia , Núcleo Celular/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Células 3T3 , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Azepinas/farmacologia , Movimento Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Forma do Núcleo Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Camundongos , Microtúbulos/metabolismo , Modelos Biológicos , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Quinase de Cadeia Leve de Miosina/metabolismo , Miosinas/antagonistas & inibidores , Miosinas/metabolismo , Naftalenos/farmacologia
6.
Prostate ; 75(2): 218-24, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25327565

RESUMO

BACKGROUND: Prostate cancer progression is concomitant with quantifiable nuclear structure and texture changes as compared to non-cancer tissue. Malignant progression is associated with an epithelial-mesenchymal transition (EMT) program whereby epithelial cancer cells take on a mesenchymal phenotype and dissociate from a tumor mass, invade, and disseminate to distant metastatic sites. The objective of this study was to determine if epithelial and mesenchymal prostate cancer cells have different nuclear morphology. METHODS: Murine tibia injections of epithelial PC3 (PC3-Epi) and mesenchymal PC3 (PC3-EMT) prostate cancer cells were processed and stained with H&E. Cancer cell nuclear image data was obtained using commercially available image-processing software. Univariate and multivariate statistical analysis were used to compare the two phenotypes. Several non-parametric classifiers were constructed and permutation-tested at various training set fractions to ensure robustness of classification between PC3-Epi and PC3-EMT cells in vivo. RESULTS: PC3-Epi and PC3-EMT prostate cancer cells were separable at the single cell level in murine tibia injections on the basis of nuclear structure and texture remodeling associated with an EMT. Support vector machine and multinomial logistic regression models based on nuclear architecture features yielded AUC-ROC curves of 0.95 and 0.96, respectively, in separating PC3-Epi and PC3-EMT prostate cancer cells in vivo. CONCLUSIONS: Prostate cancer cells that have undergone an EMT demonstrated an altered nuclear structure. The association of nuclear changes and a mesenchymal phenotype demonstrates quantitative morphometric image analysis may be used to detect cancer cells that have undergone EMT. This morphometric measurement could provide valuable prognostic information in patients regarding the likelihood of [future] metastatic disease.


Assuntos
Forma do Núcleo Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
7.
Biol Reprod ; 92(3): 80, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25673562

RESUMO

Sperm are highly differentiated cells characterized by their species-specific nuclear shapes and extremely condensed chromatin. Abnormal head shapes represent a form of teratozoospermia that can impair fertilization capacity. This study shows that poly(ADP-ribose) polymerase-11 (ARTD11/PARP11), a member of the ADP-ribosyltransferase (ARTD) family, is expressed preferentially in spermatids undergoing nuclear condensation and differentiation. Deletion of the Parp11 gene results in teratozoospermia and male infertility in mice due to the formation of abnormally shaped fertilization-incompetent sperm, despite normal testis weights and sperm counts. At the subcellular level, PARP11-deficient elongating spermatids reveal structural defects in the nuclear envelope and chromatin detachment associated with abnormal nuclear shaping, suggesting functional relevance of PARP11 for nuclear envelope stability and nuclear reorganization during spermiogenesis. In vitro, PARP11 exhibits mono(ADP-ribosyl)ation activity with the ability to ADP-ribosylate itself. In transfected somatic cells, PARP11 colocalizes with nuclear pore components, such as NUP153. Amino acids Y77, Q86, and R95 in the N-terminal WWE domain, as well as presence of the catalytic domain, are essential for colocalization of PARP11 with the nuclear envelope, but catalytic activity of the protein is not required for colocalization with NUP153. This study demonstrates that PARP11 is a novel enzyme important for proper sperm head shaping and identifies it as a potential factor involved in idiopathic mammalian teratozoospermia.


Assuntos
Forma do Núcleo Celular/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Cabeça do Espermatozoide/fisiologia , Espermátides/fisiologia , Espermatogênese/fisiologia , Animais , Núcleo Celular/patologia , Núcleo Celular/fisiologia , Forma do Núcleo Celular/genética , Células Cultivadas , Modelos Animais de Doenças , Infertilidade Masculina/genética , Infertilidade Masculina/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Membrana Nuclear/fisiologia , Fenótipo , Poli(ADP-Ribose) Polimerases/deficiência , Poli(ADP-Ribose) Polimerases/genética , Capacitação Espermática/genética , Capacitação Espermática/fisiologia , Cabeça do Espermatozoide/patologia , Espermátides/citologia , Espermatogênese/genética
8.
Cytometry A ; 87(4): 309-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25523049

RESUMO

The nucleus of an eukaryotic cell is a membrane-bound organelle containing a major part of the cellular genome. Nuclear shape is controlled by forces generated in the cytoskeleton, nuclear envelope and matrix of the nucleus and may change when the balance of these forces is disturbed. In certain cases, such changes may be indicative of cell pathology. Nuclear shape feature is being commonly addressed in both experimental research and diagnostics; nevertheless its symmetry-related aspects receive little attention. This article introduces a technique allowing to estimate nuclear shape asymmetry in digital images captured from cyto- or histological preparations. Implemented in a software package, this technique quantifies the asymmetry using two scenarios. The first one presumes the identification of nuclear pixels laying outside the largest inscribed circle. According to the second scenario, the algorithm searches for nuclear pixels lacking pixel-partners symmetric with respect to the nuclear area's centroid. In both cases, the proportion of "asymmetric" pixels is used to estimate the feature of interest. The technique was validated on images of cell nuclei having distinctive shape phenotypes. A conclusion was made that shape asymmetry feature may be useful accessory to the toolbox of nuclear morphometry.


Assuntos
Forma do Núcleo Celular/fisiologia , Núcleo Celular/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Glândula Tireoide/citologia , Algoritmos , Citoesqueleto/fisiologia , Citometria de Fluxo/métodos , Humanos , Software
9.
J Mater Sci Mater Med ; 26(2): 108, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25665842

RESUMO

It has been previously shown that osteosarcoma (SaOs-2) cells respond to micropillared surfaces consisting of poly-L-lactic acid with strong deformation of the cell body and nucleus. Until now, cell nucleus deformation of SaOs-2 cells was only studied by exposing them to square shaped micropillars in an isotropic pattern. Here we report on experiments of the cell nucleus response of such cells to rhombic structures of different topographies generated from a rubbery polymer, namely poly(n-butyacrylate). It is observed that cells orientate themselves perpendicular to the long axis of the rhombi. While their spreading on the surface is not influenced by the opening angle of the structures, rhombic structures with sharper angles induce stronger deformation of the cells and accordingly more elongated nuclei.


Assuntos
Acrilatos/química , Forma do Núcleo Celular/fisiologia , Núcleo Celular/fisiologia , Núcleo Celular/ultraestrutura , Mecanotransdução Celular/fisiologia , Polímeros/química , Linhagem Celular Tumoral , Polaridade Celular/fisiologia , Tamanho Celular , Humanos , Propriedades de Superfície
10.
Ann Hematol ; 92(4): 451-7, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23238897

RESUMO

The purpose of this study was to investigate the correlation of mutations of the fms-like tyrosine kinase (FLT3) and nucleophosmin (NPM1) genes with the cup-like nuclear morphology of blasts in patients with acute myeloid leukemia (AML). We retrospectively reviewed peripheral blood (PB) and bone marrow (BM) slides of 208 patients prepared at the time of diagnosis of AML based on the results of testing for mutations of both NPM1 exon 12 and FLT3. We investigated the association between this phenotype and hematologic findings, disease markers, and mutations in NPM1 exon 12, FLT3-internal tandem duplication (ITD), and tyrosine kinase domain (TKD) genes. Cup-like nuclei were found in 44 patients (21.2 %) diagnosed with AML. This morphology was associated with high blast counts in the PB and BM; AML type, especially AML M1 (FAB classification); low CD34 expression; and mutation of FLT3-ITD, -TKD, NPM1 regardless of other mutations (p < 0.05 for all). However, FLT3-ITD or TKD mutation alone (nine cases, p = 0.228) was not associated, and NPM1 mutation alone (14 cases, p = 0.036) was weakly associated with cup-like nuclei. Mutation of both NPM1 and FLT3-ITD or TKD (17 cases, p < 0.001) was strongly correlated with the cup-like nuclear morphology. AML with cup-like nuclei is strongly associated with co-occurring mutations of both NPM1 and FLT3-ITD or TKD. Therefore, testing for both mutations is recommended for patients with the cup-like nuclear morphology.


Assuntos
Forma do Núcleo Celular/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação , Proteínas Nucleares/genética , Tirosina Quinase 3 Semelhante a fms/genética , Algoritmos , Células Sanguíneas/metabolismo , Células Sanguíneas/patologia , Células da Medula Óssea/metabolismo , Células da Medula Óssea/patologia , Núcleo Celular/patologia , Forma do Núcleo Celular/fisiologia , Éxons/genética , Humanos , Mutação/fisiologia , Proteínas Nucleares/metabolismo , Nucleofosmina , Fenótipo , Estrutura Terciária de Proteína/genética , Estudos Retrospectivos , Sequências de Repetição em Tandem/genética , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/metabolismo
11.
Proc Natl Acad Sci U S A ; 106(45): 19017-22, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19850871

RESUMO

Defects in nuclear morphology often correlate with the onset of disease, including cancer, progeria, cardiomyopathy, and muscular dystrophy. However, the mechanism by which a cell controls its nuclear shape is unknown. Here, we use adhesive micropatterned surfaces to control the overall shape of fibroblasts and find that the shape of the nucleus is tightly regulated by the underlying cell adhesion geometry. We found that this regulation occurs through a dome-like actin cap that covers the top of the nucleus. This cap is composed of contractile actin filament bundles containing phosphorylated myosin, which form a highly organized, dynamic, and oriented structure in a wide variety of cells. The perinuclear actin cap is specifically disorganized or eliminated by inhibition of actomyosin contractility and rupture of the LINC complexes, which connect the nucleus to the actin cap. The organization of this actin cap and its nuclear shape-determining function are disrupted in cells from mouse models of accelerated aging (progeria) and muscular dystrophy with distorted nuclei caused by alterations of A-type lamins. These results highlight the interplay between cell shape, nuclear shape, and cell adhesion mediated by the perinuclear actin cap.


Assuntos
Actinas/metabolismo , Adesão Celular/fisiologia , Forma do Núcleo Celular/fisiologia , Forma Celular/fisiologia , Miosinas/metabolismo , Animais , Camundongos , Microscopia de Fluorescência , Distrofias Musculares/patologia , Progéria/patologia
12.
PLoS One ; 17(1): e0261181, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34995293

RESUMO

Nuclear morphological features are potent determining factors for clinical diagnostic approaches adopted by pathologists to analyze the malignant potential of cancer cells. Considering the structural alteration of the nucleus in cancer cells, various groups have developed machine learning techniques based on variation in nuclear morphometric information like nuclear shape, size, nucleus-cytoplasm ratio and various non-parametric methods like deep learning have also been tested for analyzing immunohistochemistry images of tissue samples for diagnosing various cancers. We aim to correlate the morphometric features of the nucleus along with the distribution of nuclear lamin proteins with classical machine learning to differentiate between normal and ovarian cancer tissues. It has already been elucidated that in ovarian cancer, the extent of alteration in nuclear shape and morphology can modulate genetic changes and thus can be utilized to predict the outcome of low to a high form of serous carcinoma. In this work, we have performed exhaustive imaging of ovarian cancer versus normal tissue and developed a dual pipeline architecture that combines the matrices of morphometric parameters with deep learning techniques of auto feature extraction from pre-processed images. This novel Deep Hybrid Learning model, though derived from classical machine learning algorithms and standard CNN, showed a training and validation AUC score of 0.99 whereas the test AUC score turned out to be 1.00. The improved feature engineering enabled us to differentiate between cancerous and non-cancerous samples successfully from this pilot study.


Assuntos
Núcleo Celular/patologia , Neoplasias Ovarianas/diagnóstico , Algoritmos , Área Sob a Curva , Forma do Núcleo Celular/fisiologia , Tamanho do Núcleo Celular/fisiologia , Aprendizado Profundo , Diagnóstico por Imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Redes Neurais de Computação , Lâmina Nuclear/fisiologia , Projetos Piloto
13.
Mol Biol Cell ; 31(25): 2768-2778, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026942

RESUMO

RHO GTPases are key regulators of the cytoskeletal architecture, which impact a broad range of biological processes in malignant cells including motility, invasion, and metastasis, thereby affecting tumor progression. One of the constraints during cell migration is the diameter of the pores through which cells pass. In this respect, the size and shape of the nucleus pose a major limitation. Therefore, enhanced nuclear plasticity can promote cell migration. Nuclear morphology is determined in part through the cytoskeleton, which connects to the nucleoskeleton through the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. Here, we unravel the role of RAC1 as an orchestrator of nuclear morphology in melanoma cells. We demonstrate that activated RAC1 promotes nuclear alterations through its effector PAK1 and the tubulin cytoskeleton, thereby enhancing migration and intravasation of melanoma cells. Disruption of the LINC complex prevented RAC1-induced nuclear alterations and the invasive properties of melanoma cells. Thus, RAC1 induces nuclear morphology alterations through microtubules and the LINC complex to promote an invasive phenotype in melanoma cells.


Assuntos
Núcleo Celular/metabolismo , Melanoma/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Forma do Núcleo Celular/fisiologia , Embrião de Galinha , Citoesqueleto/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Microtúbulos/metabolismo , Invasividade Neoplásica/genética , Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo
14.
Cell Biol Int ; 33(9): 957-63, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19524685

RESUMO

Phellodendri Cortex (PC) is a traditional herbal medicine, widely used in Korea and China. The effects of the methanol extract of Phellodendri Cortex (PC extract) on 1-methyl-4-phenylpyridinium (MPP(+))-induced neuronal apoptosis in PC-12 cells have been investigated. MPP(+)-induced apoptosis in PC-12 cells was accompanied by an increased bax/bcl-2 ratio, release of cytochrome c to the cytosol and activation of caspase-3. PC extract inhibited the downregulation of bcl-2 and the upregulation of bax, as well as the release of mitochondrial cytochrome c into the cytosol. In addition, PC extract attenuated caspase-3 activation and cleavage of poly (ADP-ribose) polymerase (PARP). These results suggest that the PC extract has protective effects against MPP(+)-induced neuronal apoptosis in PC-12 cells.


Assuntos
Apoptose/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Phellodendron/química , Poli(ADP-Ribose) Polimerases/metabolismo , 1-Metil-4-fenilpiridínio/toxicidade , Animais , Apoptose/fisiologia , Caspase 3/metabolismo , Inibidores de Caspase , Forma do Núcleo Celular/efeitos dos fármacos , Forma do Núcleo Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citocromos c/metabolismo , Metanol/química , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Proteína X Associada a bcl-2/agonistas , Proteína X Associada a bcl-2/metabolismo
15.
Neurol Res ; 30(4): 430-4, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18241529

RESUMO

OBJECTIVE: Protein-free extracts from the inflamed skin of rabbits inoculated with vaccinia virus (Rosemorgen and Neurotropin are widely employed to combat chronic pain and treat allergic conditions in human subjects in Japan. However, the pharmacologic mechanisms of Rosemorgen and Neurotropin remain unclear. METHODS: In this study, we examined the effects of Rosemorgen on L-glutamic acid (Glu)-induced cell death in N18-RE-105 neural cell line, which only possessed non-N-methyl-D-aspartate (NMDA)-type receptors. RESULTS: There were many large cytoplasmic cells and elongation of fivers in phosphate-buffered saline (PBS) additional group without Glu. In PBS and Glu simultaneous additional group, the survival ratio was decrease significantly compared with PBS alone group. Moreover, there were dead cells which did not have cytoplasm and aggregated nucleus. The Glu-induced cell death of N18-RE-105 cells was inhibited by both pre-treatment (24 hours before Glu treatment) and simultaneous treatment with Rosemorgen. There were many large cytoplasmic cells and elongation of fivers in Rosemorgen group. DISCUSSION: From this finding in N18-RE-105 cells, Rosemorgen was concluded to inhibit Glu-induced cell death via non-NMDA type receptors. One of the pharmacologic mechanisms of Rosemorgen has been clear. These results suggest that Rosemorgen depresses allodynia and chronic pain through interaction with non-NMDA type receptors.


Assuntos
Analgésicos/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Dor Intratável/tratamento farmacológico , Polissacarídeos/farmacologia , Receptores de Glutamato/efeitos dos fármacos , Extratos de Tecidos/farmacologia , Analgésicos/uso terapêutico , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Extratos Celulares/farmacologia , Extratos Celulares/uso terapêutico , Linhagem Celular Transformada , Forma do Núcleo Celular/efeitos dos fármacos , Forma do Núcleo Celular/fisiologia , Citoplasma/efeitos dos fármacos , Citoplasma/patologia , Dermatite/metabolismo , Dermatite/fisiopatologia , Dermatite/virologia , Ácido Glutâmico/toxicidade , Hibridomas , Camundongos , Degeneração Neural/tratamento farmacológico , Degeneração Neural/fisiopatologia , Degeneração Neural/prevenção & controle , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Neurotoxinas/antagonistas & inibidores , Neurotoxinas/toxicidade , Dor Intratável/metabolismo , Dor Intratável/fisiopatologia , Polissacarídeos/uso terapêutico , Coelhos , Ratos , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Extratos de Tecidos/uso terapêutico , Vaccinia virus/imunologia
16.
Zh Evol Biokhim Fiziol ; 44(1): 94-9, 2008.
Artigo em Russo | MEDLINE | ID: mdl-18411519

RESUMO

In sagittal cerebellum sections, morphometrical study of cerebellum of mature-born animals - guinea pigs - was performed using Nissl's procedure. A change of shape and volume of Purkinje cells and their nuclei in the course of the guinea pig postnatal ontogenesis was studied. It has been shown that both the growth process itself and the rate of formation of the definite form of Purkinje cells and of their nuclei in the course of ontogenesis proceeds non-uniformly. The most intensive growth of vertical and horizontal diameters of Purkinje cells and of their nuclei is observed during the 1st and 4th weeks of postnatal life. Especially rapid is an increase of horizontal diameters of Purkinje cells and of their nuclei, which impairs the ovoid-bear-like shape to the cerebellar Purkinje cells of adult guinea pigs.


Assuntos
Envelhecimento/fisiologia , Forma do Núcleo Celular/fisiologia , Tamanho do Núcleo Celular/fisiologia , Forma Celular/fisiologia , Células de Purkinje/fisiologia , Animais , Cobaias , Células de Purkinje/citologia
17.
Rom J Morphol Embryol ; 49(4): 435-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19050790

RESUMO

Shape and size of the nucleus, coupled with changes in chromatin amount and distribution, still remain the basic microscopic criteria for cytological diagnoses. Diagnostic recognition of the nuclear shape in pathological histology and cytology has been always based on the assumption that it is the content in nucleic acids, which determines the nuclear shape. The present review challenges this opinion, focuses on the structure, and functions of the nuclear envelope and on how these features can be exploited in diagnostic pathology. In particular, we will present the contribution of thee-dimensional modeling to the understanding of nuclear irregularities in breast cancer and papillary thyroid carcinomas. Specifically, it will be shown how tagging the nuclear membrane with anti-Emerin antibodies can represent an additional and valuable tool in the differential diagnosis of thyroid lesions. Finally, the prognostic importance of detecting irregularities of the nuclear shape in breast carcinomas by immunofluorescence staining for nuclear proteins will be discussed.


Assuntos
Forma do Núcleo Celular/fisiologia , Núcleo Celular/patologia , Técnicas Citológicas/métodos , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Carcinoma/diagnóstico , Carcinoma/patologia , Núcleo Celular/ultraestrutura , Humanos , Imageamento Tridimensional/métodos , Membrana Nuclear/patologia , Membrana Nuclear/ultraestrutura , Prognóstico , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/patologia
18.
J Cell Biol ; 217(10): 3330-3342, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30194270

RESUMO

Positioning and shaping the nucleus represents a mechanical challenge for the migrating cell because of its large size and resistance to deformation. Cells shape and position the nucleus by transmitting forces from the cytoskeleton onto the nuclear surface. This force transfer can occur through specialized linkages between the nuclear envelope and the cytoskeleton. In response, the nucleus can deform and/or it can move. Nuclear movement will occur when there is a net differential in mechanical force across the nucleus, while nuclear deformation will occur when mechanical forces overcome the mechanical resistance of the various structures that comprise the nucleus. In this perspective, we review current literature on the sources and magnitude of cellular forces exerted on the nucleus, the nuclear envelope proteins involved in transferring cellular forces, and the contribution of different nuclear structural components to the mechanical response of the nucleus to these forces.


Assuntos
Fenômenos Biofísicos/fisiologia , Forma do Núcleo Celular/fisiologia , Citoesqueleto/metabolismo , Movimento/fisiologia , Membrana Nuclear/metabolismo , Animais , Humanos
19.
PLoS One ; 13(8): e0201858, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30089134

RESUMO

Triple negative breast cancer (TNBC) cells express increased levels of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (IL-8, CXCL8), which promotes their proliferation and migration. Because TNBC patients are unresponsive to current targeted therapies, new therapeutic strategies are urgently needed. While proteasome inhibition by bortezomib (BZ) or carfilzomib (CZ) has been effective in treating hematological malignancies, it has been less effective in solid tumors, including TNBC, but the mechanisms are incompletely understood. Here we report that proteasome inhibition significantly increases expression of IL-8, and its receptors CXCR1 and CXCR2, in TNBC cells. Suppression or neutralization of the BZ-induced IL-8 potentiates the BZ cytotoxic and anti-proliferative effect in TNBC cells. The IL-8 expression induced by proteasome inhibition in TNBC cells is mediated by IκB kinase (IKK), increased nuclear accumulation of p65 NFκB, and by IKK-dependent p65 recruitment to IL-8 promoter. Importantly, inhibition of IKK activity significantly decreases proliferation, migration, and invasion of BZ-treated TNBC cells. These data provide the first evidence demonstrating that proteasome inhibition increases the IL-8 signaling in TNBC cells, and suggesting that IKK inhibitors may increase effectiveness of proteasome inhibitors in treating TNBC.


Assuntos
Antineoplásicos/farmacologia , Quinase I-kappa B/metabolismo , Interleucina-8/metabolismo , Inibidores de Proteassoma/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Bortezomib/farmacologia , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Forma do Núcleo Celular/efeitos dos fármacos , Forma do Núcleo Celular/fisiologia , Quimioterapia Combinada , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Oligopeptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores de Interleucina-8A/metabolismo , Receptores de Interleucina-8B/metabolismo , Fator de Transcrição RelA/metabolismo
20.
Cell Struct Funct ; 32(2): 79-87, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17917305

RESUMO

In higher plant cells, various microtubular arrays can be seen despite of their lack of structurally defined microtubule-organizing centers (MTOCs) like centrosomes in animal cells. Little is known about the molecular properties of the microtubule-organizing centers in higher plant cells. The nuclear surface contains one of these microtubule-organizing centers and generates microtubules radially toward the cell periphery (radial microtubules). Previously, we reported that histone H1 possessed the microtubule-organizing activity, and it was suggested that histone H1 localized on the nuclear surfaces in Tobacco BY-2 cells (Nakayama, T., Ishii, T., Hotta, T., and Mizuno, K. J. Biol. Chem. (submitted)). Here we show that histone H1 forms ring-shaped complexes with tubulin, and these complexes nucleated and elongated the radial microtubules continuously (processively) associating with their proximal ends where the incorporation of tubulin occurred. Furthermore, the polarity of radial microtubules was determined to be proximal end plus. Immunofluorescence microscopy of the isolated nuclei revealed that histone H1 localized on the nuclear surfaces, distinct from that in the chromatin. These results indicate that radial microtubules are organized by a novel MTOC that is totally different from MTOCs previously found in either plant or animal cells.


Assuntos
Forma do Núcleo Celular/fisiologia , Histonas/fisiologia , Microtúbulos/fisiologia , Nicotiana/citologia , Nicotiana/fisiologia , Células Cultivadas , Células Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA