Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
Cell ; 170(3): 548-563.e16, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28753429

RESUMO

Gut microbiota are linked to chronic inflammation and carcinogenesis. Chemotherapy failure is the major cause of recurrence and poor prognosis in colorectal cancer patients. Here, we investigated the contribution of gut microbiota to chemoresistance in patients with colorectal cancer. We found that Fusobacterium (F.) nucleatum was abundant in colorectal cancer tissues in patients with recurrence post chemotherapy, and was associated with patient clinicopathological characterisitcs. Furthermore, our bioinformatic and functional studies demonstrated that F. nucleatum promoted colorectal cancer resistance to chemotherapy. Mechanistically, F. nucleatum targeted TLR4 and MYD88 innate immune signaling and specific microRNAs to activate the autophagy pathway and alter colorectal cancer chemotherapeutic response. Thus, F. nucleatum orchestrates a molecular network of the Toll-like receptor, microRNAs, and autophagy to clinically, biologically, and mechanistically control colorectal cancer chemoresistance. Measuring and targeting F. nucleatum and its associated pathway will yield valuable insight into clinical management and may ameliorate colorectal cancer patient outcomes.


Assuntos
Autofagia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Fusobacterium nucleatum/fisiologia , Microbioma Gastrointestinal , Animais , Antineoplásicos/uso terapêutico , Capecitabina/uso terapêutico , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Xenoenxertos , Camundongos , MicroRNAs/metabolismo , Transplante de Neoplasias , Compostos de Platina/uso terapêutico , Recidiva , Receptores Toll-Like/metabolismo , Microambiente Tumoral
2.
Proc Natl Acad Sci U S A ; 119(40): e2201460119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161895

RESUMO

Fusobacterium nucleatum, long known as a common oral microbe, has recently garnered attention for its ability to colonize tissues and tumors elsewhere in the human body. Clinical and epidemiological research has now firmly established F. nucleatum as an oncomicrobe associated with several major cancer types. However, with the current research focus on host associations, little is known about gene regulation in F. nucleatum itself, including global stress-response pathways that typically ensure the survival of bacteria outside their primary niche. This is due to the phylogenetic distance of Fusobacteriota to most model bacteria, their limited genetic tractability, and paucity of known gene functions. Here, we characterize a global transcriptional stress-response network governed by the extracytoplasmic function sigma factor, σE. To this aim, we developed several genetic tools for this anaerobic bacterium, including four different fluorescent marker proteins, inducible gene expression, scarless gene deletion, and transcriptional and translational reporter systems. Using these tools, we identified a σE response partly reminiscent of phylogenetically distant Proteobacteria but induced by exposure to oxygen. Although F. nucleatum lacks canonical RNA chaperones, such as Hfq, we uncovered conservation of the noncoding arm of the σE response in form of the noncoding RNA FoxI. This regulatory small RNA acts as an mRNA repressor of several membrane proteins, thereby supporting the function of σE. In addition to the characterization of a global stress response in F. nucleatum, the genetic tools developed here will enable further discoveries and dissection of regulatory networks in this early-branching bacterium.


Assuntos
Fusobacterium nucleatum , Regulação Bacteriana da Expressão Gênica , Fator sigma , Estresse Fisiológico , Fusobacterium nucleatum/classificação , Fusobacterium nucleatum/genética , Fusobacterium nucleatum/fisiologia , Genes Reporter , Fator Proteico 1 do Hospedeiro/genética , Proteínas Luminescentes/genética , Proteínas de Membrana/genética , Oxigênio , Filogenia , RNA Mensageiro/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Fator sigma/genética , Fator sigma/fisiologia , Estresse Fisiológico/genética
3.
Cardiovasc Diabetol ; 23(1): 123, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581039

RESUMO

BACKGROUND: Diabetes is a predominant driver of coronary artery disease worldwide. This study aims to unravel the distinct characteristics of oral and gut microbiota in diabetic coronary heart disease (DCHD). Simultaneously, we aim to establish a causal link between the diabetes-driven oral-gut microbiota axis and increased susceptibility to diabetic myocardial ischemia-reperfusion injury (MIRI). METHODS: We comprehensively investigated the microbial landscape in the oral and gut microbiota in DCHD using a discovery cohort (n = 183) and a validation chohort (n = 68). Systematically obtained oral (tongue-coating) and fecal specimens were subjected to metagenomic sequencing and qPCR analysis, respectively, to holistically characterize the microbial consortia. Next, we induced diabetic MIRI by administering streptozotocin to C57BL/6 mice and subsequently investigated the potential mechanisms of the oral-gut microbiota axis through antibiotic pre-treatment followed by gavage with specific bacterial strains (Fusobacterium nucleatum or fecal microbiota from DCHD patients) to C57BL/6 mice. RESULTS: Specific microbial signatures such as oral Fusobacterium nucleatum and gut Lactobacillus, Eubacterium, and Roseburia faecis, were identified as potential microbial biomarkers in DCHD. We further validated that oral Fusobacterium nucleatum and gut Lactobacillus are increased in DCHD patients, with a positive correlation between the two. Experimental evidence revealed that in hyperglycemic mice, augmented Fusobacterium nucleatum levels in the oral cavity were accompanied by an imbalance in the oral-gut axis, characterized by an increased coexistence of Fusobacterium nucleatum and Lactobacillus, along with elevated cardiac miRNA-21 and a greater extent of myocardial damage indicated by TTC, HE, TUNEL staining, all of which contributed to exacerbated MIRI. CONCLUSION: Our findings not only uncover dysregulation of the oral-gut microbiota axis in diabetes patients but also highlight the pivotal intermediary role of the increased abundance of oral F. nucleatum and gut Lactobacillus in exacerbating MIRI. Targeting the oral-gut microbiota axis emerges as a potent strategy for preventing and treating DCHD. Oral-gut microbial transmission constitutes an intermediate mechanism by which diabetes influences myocardial injury, offering new insights into preventing acute events in diabetic patients with coronary heart disease.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus , Microbioma Gastrointestinal , Humanos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Fusobacterium nucleatum/fisiologia , Doença da Artéria Coronariana/etiologia
4.
Arch Microbiol ; 206(6): 244, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702412

RESUMO

Aggregatibacter actinomycetemcomitans is an opportunistic Gram-negative periodontopathogen strongly associated with periodontitis and infective endocarditis. Recent evidence suggests that periodontopathogens can influence the initiation and progression of oral squamous cell carcinoma (OSCC). Herein we aimed to investigate the effect of A. actinomycetemcomitans-derived extracellular vesicles (EVs) on OSCC cell behavior compared with EVs from periodontopathogens known to associate with carcinogenesis. EVs were isolated from: A. actinomycetemcomitans and its mutant strains lacking the cytolethal distending toxin (CDT) or lipopolysaccharide (LPS) O-antigen; Porphyromonas gingivalis; Fusobacterium nucleatum; and Parvimonas micra. The effect of EVs on primary and metastatic OSCC cells was assessed using cell proliferation, apoptosis, migration, invasion, and tubulogenesis assays. A. actinomycetemcomitans-derived EVs reduced the metastatic cancer cell proliferation, invasion, tubulogenesis, and increased apoptosis, mostly in CDT- and LPS O-antigen-dependent manner. EVs from F. nucleatum impaired the metastatic cancer cell proliferation and induced the apoptosis rates in all OSCC cell lines. EVs enhanced cancer cell migration regardless of bacterial species. In sum, this is the first study demonstrating the influence of A. actinomycetemcomitans-derived EVs on oral cancer in comparison with other periodontopathogens. Our findings revealed a potential antitumorigenic effect of these EVs on metastatic OSCC cells, which warrants further in vivo investigations.


Assuntos
Aggregatibacter actinomycetemcomitans , Apoptose , Proliferação de Células , Vesículas Extracelulares , Neoplasias Bucais , Aggregatibacter actinomycetemcomitans/genética , Vesículas Extracelulares/metabolismo , Neoplasias Bucais/microbiologia , Neoplasias Bucais/patologia , Humanos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Movimento Celular , Fusobacterium nucleatum/fisiologia , Carcinoma de Células Escamosas/microbiologia , Carcinoma de Células Escamosas/patologia , Porphyromonas gingivalis/genética
5.
Appl Microbiol Biotechnol ; 108(1): 336, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761182

RESUMO

To investigate the cell-cell interactions of intergeneric bacterial species, the study detected the survival of Enterococcus faecalis (Ef) under monospecies or coaggregation state with Fusobacterium nucleatum subsp. polymorphum (Fnp) in environmental stress. Ef and Fnp infected the human macrophages with different forms (Ef and Fnp monospecies, Ef-Fnp coaggregates, Ef + Fnp cocultures) for exploring the immunoregulatory effects and the relevant molecular mechanisms. Meanwhile, the transcriptomic profiles of coaggregated Ef and Fnp were analyzed. Ef was shown to coaggregate with Fnp strongly in CAB within 90 min by forming multiplexes clumps. Coaggregation with Fnp reinforced Ef resistance against unfavorable conditions including alkaline, hypertonic, nutrient-starvation, and antibiotic challenges. Compared with monospecies and coculture species, the coaggregation of Ef and Fnp significantly facilitates both species to invade dTHP-1 cells and aid Ef to survive within the cells. Compared with coculture species, dual-species interaction of Ef and Fnp significantly decreased the levels of pro-inflammatory cytokines IL-6, TNF-α, and chemokines MCP-1 secreted by dTHP-1 cells and lessened the phosphorylation of p38, JNK, and p65 signaling pathways. The transcriptome sequencing results showed that 111 genes were differentially expressed or Ef-Fnp coaggregated species compared to Ef monospecies; 651 genes were differentially expressed for Fnp when coaggregation with Ef. The analysis of KEGG pathway showed that Ef differentially expressed genes (DEGs) were enriched in quorum sensing and arginine biosynthesis pathway; Fnp DEGs were differentially concentrated in lipopolysaccharide (LPS) biosynthesis, biofilm formation, and lysine degradation pathway compared to monospecies. KEY POINTS: • Coaggregated with Fnp aids Ef's survival in environmental stress, especially in root canals after endodontic treatment. • The coaggregation of Ef and Fnp may weaken the pro-inflammatory response and facilitate Ef to evade killed by macrophages. • The coaggregation between Ef and Fnp altered interspecies transcriptional profiles.


Assuntos
Enterococcus faecalis , Fusobacterium nucleatum , Macrófagos , Estresse Fisiológico , Fusobacterium nucleatum/fisiologia , Fusobacterium nucleatum/genética , Enterococcus faecalis/genética , Enterococcus faecalis/fisiologia , Humanos , Macrófagos/microbiologia , Macrófagos/imunologia , Citocinas/metabolismo , Citocinas/genética , Aderência Bacteriana , Técnicas de Cocultura , Perfilação da Expressão Gênica , Transcriptoma , Linhagem Celular , Interleucina-6/genética , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Inflamação
6.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36902162

RESUMO

This study aimed to explore effects of Fusobacterium nucleatum with or without apelin on periodontal ligament (PDL) cells to better understand pathomechanistic links between periodontitis and obesity. First, the actions of F. nucleatum on COX2, CCL2, and MMP1 expressions were assessed. Subsequently, PDL cells were incubated with F. nucleatum in the presence and absence of apelin to study the modulatory effects of this adipokine on molecules related to inflammation and hard and soft tissue turnover. Regulation of apelin and its receptor (APJ) by F. nucleatum was also studied. F. nucleatum resulted in elevated COX2, CCL2, and MMP1 expressions in a dose- and time-dependent manner. Combination of F. nucleatum and apelin led to the highest (p < 0.05) expression levels of COX2, CCL2, CXCL8, TNF-α, and MMP1 at 48 h. The effects of F. nucleatum and/or apelin on CCL2 and MMP1 were MEK1/2- and partially NF-κB-dependent. The combined effects of F. nucleatum and apelin on CCL2 and MMP1 were also observed at protein level. Moreover, F. nucleatum downregulated (p < 0.05) the apelin and APJ expressions. In conclusion, obesity could contribute to periodontitis through apelin. The local production of apelin/APJ in PDL cells also suggests a role of these molecules in the pathogenesis of periodontitis.


Assuntos
Fusobacterium nucleatum , Periodontite , Humanos , Fusobacterium nucleatum/fisiologia , Metaloproteinase 1 da Matriz/metabolismo , Ligamento Periodontal/metabolismo , Apelina/metabolismo , Ciclo-Oxigenase 2/metabolismo , Periodontite/metabolismo , Obesidade/metabolismo
7.
Periodontol 2000 ; 89(1): 166-180, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35244982

RESUMO

Accumulating evidence demonstrates that the oral pathobiont Fusobacterium nucleatum is involved in the progression of an increasing number of tumors types. Thus far, the mechanisms underlying tumor exacerbation by F. nucleatum include the enhancement of proliferation, establishment of a tumor-promoting immune environment, induction of chemoresistance, and the activation of immune checkpoints. This review focuses on the mechanisms that mediate tumor-specific colonization by fusobacteria. Elucidating the mechanisms mediating fusobacterial tumor tropism and promotion might provide new insights for the development of novel approaches for tumor detection and treatment.


Assuntos
Infecções por Fusobacterium , Neoplasias , Infecções por Fusobacterium/microbiologia , Fusobacterium nucleatum/fisiologia , Humanos
8.
J Cell Mol Med ; 25(2): 892-904, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33289330

RESUMO

Accumulating evidence links Fusobacterium nucleatum with tumorigenesis. Our previous study demonstrated that F. nucleatum infection can induce epithelial-mesenchymal transition (EMT) in oral epithelial cells and elaborated a probable signal pathway involved in the induction of EMT. However, the comprehensive profiling and pathways of other candidate genes involved in F. nucleatum promoting malignant transformation remain largely elusive. Here, we analysed the transcriptome profile of HIOECs exposed to F. nucleatum infection. Totally, 3307 mRNAs (ǀLog2FCǀ >1.5) and 522 lncRNAs (ǀLog2FCǀ >1) were identified to be differentially expressed in F. nucleatum-infected HIOECs compared with non-infected HIOECs. GO and KEGG pathway analyses were performed to investigate the potential functions of the dysregulated genes. Tumour-associated genes were integrated, and top 10 hub genes (FYN, RAF1, ATM, FOS, CREB, NCOA3, VEGFA, JAK2, CREM and ATF3) were identified by protein-protein interaction (PPI) network, and Oncomine was used to validate hub genes' expression. LncRNA-hub genes co-expression network comprising 67 dysregulated lncRNAs were generated. Together, our study revealed the alteration of lncRNA and potential hub genes in oral epithelial cells in response to F. nucleatum infection, which may provide new insights into the shift of normal to malignant transformation initiated by oral bacterial infection.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Fusobacterium nucleatum/fisiologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Bucais/genética , Neoplasias Bucais/microbiologia , Boca/patologia , Linhagem Celular Transformada , Movimento Celular/genética , Bases de Dados Genéticas , Células Epiteliais/patologia , Ontologia Genética , Redes Reguladoras de Genes , Genes Neoplásicos , Humanos , Modelos Biológicos , Mapas de Interação de Proteínas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
9.
BMC Cancer ; 21(1): 1212, 2021 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-34774023

RESUMO

There is a growing level of interest in the potential role inflammation has on the initiation and progression of malignancy. Notable examples include Helicobacter pylori-mediated inflammation in gastric cancer and more recently Fusobacterium nucleatum-mediated inflammation in colorectal cancer. Fusobacterium nucleatum is a Gram-negative anaerobic bacterium that was first isolated from the oral cavity and identified as a periodontal pathogen. Biofilms on oral squamous cell carcinomas are enriched with anaerobic periodontal pathogens, including F. nucleatum, which has prompted hypotheses that this bacterium could contribute to oral cancer development. Recent studies have demonstrated that F. nucleatum can promote cancer by several mechanisms; activation of cell proliferation, promotion of cellular invasion, induction of chronic inflammation and immune evasion. This review provides an update on the association between F. nucleatum and oral carcinogenesis, and provides insights into the possible mechanisms underlying it.


Assuntos
Infecções por Fusobacterium/complicações , Fusobacterium nucleatum , Neoplasias Bucais/microbiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/microbiologia , Animais , Antibacterianos/uso terapêutico , Aderência Bacteriana , Biofilmes , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/microbiologia , Infecções por Fusobacterium/tratamento farmacológico , Fusobacterium nucleatum/imunologia , Fusobacterium nucleatum/fisiologia , Humanos , Evasão da Resposta Imune , Imunidade Celular , Inflamação/microbiologia , Metronidazol/uso terapêutico , Camundongos , Neoplasias Bucais/tratamento farmacológico , Invasividade Neoplásica , Porphyromonas gingivalis , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico
10.
EMBO Rep ; 20(4)2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30833345

RESUMO

Fusobacterium nucleatum, a Gram-negative oral anaerobe, is a significant contributor to colorectal cancer. Using an in vitro cancer progression model, we discover that F. nucleatum stimulates the growth of colorectal cancer cells without affecting the pre-cancerous adenoma cells. Annexin A1, a previously unrecognized modulator of Wnt/ß-catenin signaling, is a key component through which F. nucleatum exerts its stimulatory effect. Annexin A1 is specifically expressed in proliferating colorectal cancer cells and involved in activation of Cyclin D1. Its expression level in colon cancer is a predictor of poor prognosis independent of cancer stage, grade, age, and sex. The FadA adhesin from F. nucleatum up-regulates Annexin A1 expression through E-cadherin. A positive feedback loop between FadA and Annexin A1 is identified in the cancerous cells, absent in the non-cancerous cells. We therefore propose a "two-hit" model in colorectal carcinogenesis, with somatic mutation(s) serving as the first hit, and F. nucleatum as the second hit exacerbating cancer progression after benign cells become cancerous. This model extends the "adenoma-carcinoma" model and identifies microbes such as F. nucleatum as cancer "facilitators".


Assuntos
Anexina A1/metabolismo , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/metabolismo , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/microbiologia , Fusobacterium nucleatum/fisiologia , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Retroalimentação Fisiológica , Xenoenxertos , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Modelos Biológicos , Prognóstico , Ligação Proteica , Transdução de Sinais
11.
J Gastroenterol Hepatol ; 36(1): 75-88, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32198788

RESUMO

The human colon harbors a high number of microorganisms that were reported to play a crucial role in colorectal carcinogenesis. In the recent decade, molecular detection and metabolomic techniques have expanded our knowledge on the role of specific microbial species in promoting tumorigenesis. In this study, we reviewed the association between microbial dysbiosis and colorectal carcinoma (CRC). Various microbial species and their association with colorectal tumorigenesis and red/processed meat consumption have been reviewed. The literature demonstrated a significant abundance of Fusobacterium nucleatum, Streptococcus bovis/gallolyticus, Escherichia coli, and Bacteroides fragilis in patients with adenoma or adenocarcinoma compared to healthy individuals. The mechanisms in which each organism was postulated to promote colon carcinogenesis were collated and summarized in this review. These include the microorganisms' ability to adhere to colon cells; modulate the inhibition of tumor suppressor genes, the activations of oncogenes, and genotoxicity; and activate downstream targets responsible for angiogenesis. The role of these microorganisms in conjugation with meat components including N-nitroso compounds, heterocyclic amines, and heme was also evident in multiple studies. The outcome of this review supports the role of red meat consumption in modulating CRC progression and the possibility of gut microbiome influencing the relationship between CRC and diet. The study also demonstrates that microbiota analysis could potentially complement existing screening methods when detecting colonic lesions.


Assuntos
Adenocarcinoma/etiologia , Adenocarcinoma/microbiologia , Adenoma/etiologia , Adenoma/microbiologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal/fisiologia , Carne Vermelha/efeitos adversos , Adenocarcinoma/patologia , Adenoma/patologia , Aderência Bacteriana , Bacteroides fragilis/fisiologia , Carcinogênese , Neoplasias Colorretais/patologia , Dano ao DNA , Disbiose , Escherichia coli/fisiologia , Feminino , Fusobacterium nucleatum/fisiologia , Genes Supressores de Tumor , Humanos , Masculino , Oncogenes , Streptococcus bovis/fisiologia , Streptococcus gallolyticus/fisiologia
12.
Tohoku J Exp Med ; 253(4): 249-259, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33840648

RESUMO

Bacterial infection contributes to tumor development and malignant progression. Fusobacterium nucleatum (F. nucleatum) is reported to promote oral squamous cell carcinoma. However, molecular bases of F. nucleatum regulating oral cancer cells have not been fully elucidated. We report here that F. nucleatum down-regulates p53 and E-cadherin via the Wnt/NFAT pathway to promote cisplatin-resistance and migration in oral squamous carcinoma cells. We pretreated Cal-27 and HSC-3 cells with F. nucleatum and the survival rates against cysplatin (Cis-diamminedichloroplatinum, CDDP) were significantly higher in treated cells. The expressions of migration and apoptosis-related proteins like E-cadherin and p53 were lower in western blot analysis. We observed that F. nucleatum was an activator of the Wnt/NFAT pathway. The expression levels of the Wnt pathway gene wnt5a and Nuclear factors of activated T cells 3 (NFATc3) were notably higher in treated cells. With the inhibition effect of NFAT-inhibitory peptide VIVIT, the expressions of E-cadherin and p53 in response to F. nucleatum infection were up-regulated reversely. We concluded that F. nucleatum might promote cisplatin-resistance and migration of oral squamous cell carcinoma cells through the Wnt/NFAT pathway.


Assuntos
Movimento Celular , Cisplatino/farmacologia , Fusobacterium nucleatum/fisiologia , Neoplasias de Cabeça e Pescoço/genética , Fatores de Transcrição NFATC/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Regulação para Cima/genética , Proteína Wnt-5a/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Fusobacterium nucleatum/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/microbiologia , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Fatores de Transcrição NFATC/metabolismo , Oligopeptídeos/farmacologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/microbiologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Proteína Wnt-5a/metabolismo
13.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33435582

RESUMO

The aim of the study was to clarify whether orthodontic forces and periodontitis interact with respect to the anti-apoptotic molecules superoxide dismutase 2 (SOD2) and baculoviral IAP repeat-containing protein 3 (BIRC3). SOD2, BIRC3, and the apoptotic markers caspases 3 (CASP3) and 9 (CASP9) were analyzed in gingiva from periodontally healthy and periodontitis subjects by real-time PCR and immunohistochemistry. SOD2 and BIRC3 were also studied in gingiva from rats with experimental periodontitis and/or orthodontic tooth movement. Additionally, SOD2 and BIRC3 levels were examined in human periodontal fibroblasts incubated with Fusobacterium nucleatum and/or subjected to mechanical forces. Gingiva from periodontitis patients showed significantly higher SOD2, BIRC3, CASP3, and CASP9 levels than periodontally healthy gingiva. SOD2 and BIRC3 expressions were also significantly increased in the gingiva from rats with experimental periodontitis, but the upregulation of both molecules was significantly diminished in the concomitant presence of orthodontic tooth movement. In vitro, SOD2 and BIRC3 levels were significantly increased by F. nucleatum, but this stimulatory effect was also significantly inhibited by mechanical forces. Our study suggests that SOD2 and BIRC3 are produced in periodontal infection as a protective mechanism against exaggerated apoptosis. In the concomitant presence of orthodontic forces, this protective anti-apoptotic mechanism may get lost.


Assuntos
Proteína 3 com Repetições IAP de Baculovírus/genética , Regulação da Expressão Gênica , Ligamento Periodontal/metabolismo , Periodonto/metabolismo , Superóxido Dismutase/genética , Animais , Apoptose/genética , Proteína 3 com Repetições IAP de Baculovírus/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/genética , Caspase 9/metabolismo , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Fusobacterium nucleatum/fisiologia , Gengiva/citologia , Gengiva/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Ligamento Periodontal/citologia , Ligamento Periodontal/microbiologia , Periodonto/citologia , Periodonto/microbiologia , Ratos , Superóxido Dismutase/metabolismo
14.
Molecules ; 26(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443332

RESUMO

Peptoids (oligo N-substituted glycines) are peptide analogues, which can be designed to mimic host antimicrobial peptides, with the advantage that they are resistant to proteolytic degradation. Few studies on the antimicrobial efficacy of peptoids have focused on Gram negative anaerobic microbes associated with clinical infections, which are commonly recalcitrant to antibiotic treatment. We therefore studied the cytotoxicity and antibiofilm activity of a family of peptoids against the Gram negative obligate anaerobe Fusobacterium nucleatum, which is associated with infections in the oral cavity. Two peptoids, peptoid 4 (NaeNpheNphe)4 and peptoid 9 (NahNspeNspe)3 were shown to be efficacious against F. nucleatum biofilms at a concentration of 1 µM. At this concentration, peptoids 4 and 9 were not cytotoxic to human erythrocytes or primary human gingival fibroblast cells. Peptoids 4 and 9 therefore have merit as future therapeutics for the treatment of oral infections.


Assuntos
Biofilmes/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Fusobacterium nucleatum/fisiologia , Peptoides/farmacologia , Biofilmes/crescimento & desenvolvimento , Farmacorresistência Bacteriana/efeitos dos fármacos
15.
Molecules ; 26(13)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34279421

RESUMO

Colorectal cancer (CRC) is one of the most common cancers worldwide. Gut microbiota are highly associated with CRC, and Fusobacterium nucleatum was found to be enriched in CRC lesions and correlated with CRC carcinogenesis and metastases. Paris polyphylla is a well-known herbal medicine that showed anticancer activity. The present study demonstrates that P. polyphylla inhibited the growth of CRC cells. In addition, treating with active compounds pennogenin 3-O-beta-chacotrioside and polyphyllin VI isolated from P. polyphylla inhibited the growth of F. nucleatum. We also found that extracellular vesicles (EVs) released from F. nucleatum could promote mitochondrial fusion and cell invasion in CRC cells, whereas active components from P. polyphylla could dampen such an impact. The data suggest that P. polyphylla and its active ingredients could be further explored as potential candidates for developing complementary chemotherapy for the treatment of CRC.


Assuntos
Movimento Celular , Neoplasias Colorretais/tratamento farmacológico , Vesículas Extracelulares/microbiologia , Frutas/química , Fusobacterium nucleatum/fisiologia , Liliaceae/química , Extratos Vegetais/farmacologia , Carcinogênese , Proliferação de Células , Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/patologia , Humanos , Células Tumorais Cultivadas
16.
Microb Pathog ; 140: 103962, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31904448

RESUMO

BACKGROUND AND OBJECTIVES: Recent evidence suggests that oral bacteria can affect extra-oral diseases by modulating aspects of the gut environment such as the microbiome, metabolome, and immune profiles. However, differences in the effects of different types of oral bacteria, particularly periodontopathic and health-associated bacteria, remain elusive. MATERIALS AND METHODS: Five-week-old germ-free mice were orally administered with either periodontopathic bacteria as oral pathobionts (Porphyromonas gingivalis, Filifactor alocis, and Fusobacterium nucleatum) or bacteria associated with periodontal health (Actinomyces naeslundii, Streptococcus mitis, and Veillonella rogosae) twice a week for five weeks. The presence of all bacterial species in the feces and the livers of the mice was analyzed via polymerase chain reaction (PCR), using specific primers for 16S rRNA genes. Alveolar bone resorption was evaluated histologically. The expression profiles of various genes in the liver and small intestine were analyzed using real-time PCR. Sera were analyzed to determine the levels of antibodies and endotoxin. The proportions of T helper 17 (Th17) and regulatory T (Treg) cells in mesenteric lymph nodes and Peyer's patches were analyzed using flow cytometry. RESULTS: Neither of the types of bacteria administered in this experiment induced alveolar bone resorption. All bacteria elicited some degree of systemic antibody response in the mice, although the response to S. mitis was not obvious. The response to P. gingivalis and V. rogosae was strongest. Generally, the health-associated bacteria but not the periodontitis-associated bacteria were detected in fecal samples. Interestingly, only Fusobacterium nucleatum DNA was detected in the liver, despite that live Fusobacterium nucleatum were not detected in the liver. The levels of interleukin-17 in the intestine and genes related to lipid accumulation in the liver were significantly higher in the mice that received periodontitis-associated bacteria. In addition, expression of the gene associated with endoplasmic reticulum stress was higher and that of the gene controlling circadian rhythm was lower in the periodontitis group. There was no difference in serum endotoxin, T-cell phenotypes in the lymphatic tissues, or genes related to the gut barrier. CONCLUSION: Oral administration of periodontitis-associated bacteria can induce pathological changes in the liver and intestine that are implicated in the process of periodontitis. These findings further support the importance of the oral-gut connection.


Assuntos
Boca/microbiologia , Periodontite/microbiologia , Simbiose , Actinomyces/fisiologia , Animais , Clostridiales/fisiologia , Feminino , Fusobacterium nucleatum/fisiologia , Vida Livre de Germes , Humanos , Interleucina-17/genética , Interleucina-17/imunologia , Intestinos/imunologia , Fígado/imunologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Periodontite/genética , Periodontite/imunologia , Porphyromonas gingivalis/fisiologia , Streptococcus mitis/fisiologia , Linfócitos T Reguladores/imunologia , Células Th17/imunologia , Veillonella/fisiologia
17.
Lett Appl Microbiol ; 70(4): 310-317, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31955445

RESUMO

Probiotics can stabilize gut flora, regulate intestinal immunity and protect the host from enteric diseases; however, their roles in oral health have received little attention compared to their roles in gut health. Nowadays, the prevalence of sugar-sweetened foods and abuse of antibiotics contribute towards dysbiosis of oral microbiota and drug resistance development in oral pathogens, resulting in various intractable oral diseases. We screened the antibacterial activities of viable and heat-killed probiotic strains against the oral pathogens Streptococcus mutans, Porphyromonas gingivalis, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans. The probiotic strains Lactobacillus salivarius subsp. salicinius AP-32, L. rhamnosus CT-53, L. paracasei ET-66 and Bifidobacterium animalis subsp. lactis CP-9 displayed strong antipathogenic activities, whereas heat-killed AP-32, CT-53 and ET-66 displayed high levels of pathogen inhibition. The antibacterial activities of these probiotics were not associated with their H2 O2 production; L. acidophilus TYCA02 produced high levels of H2 O2 but merely exhibited moderate antibacterial activities. Oral tablets containing probiotics showed positive inhibitory effects against oral pathogens, particularly those containing viable probiotics. Our results indicate that probiotics prevent the growth of oral pathogens and improve oral health, providing insights into the antipathogenic efficacy of different probiotic species and their potential role in functional foods that improve oral health. SIGNIFICANCE AND IMPACT OF THE STUDY: Our study provides insights into the antipathogenic efficacy of different probiotic species and their potential roles in developing functional foods to improve oral health. We showed that the probiotic strains Lactobacillus salivarius subsp. salicinius AP-32, L. rhamnosus CT-53, L. paracasei ET-66 and Bifidobacterium animalis subsp. lactis CP-9 have great potential for use in the development of functional foods to improve oral health. Since active probiotics may provide strong and long-term protection, the development of functional food products should favour the use of viable bacteria.


Assuntos
Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Antibiose , Fusobacterium nucleatum/efeitos dos fármacos , Ligilactobacillus salivarius/fisiologia , Boca/microbiologia , Porphyromonas gingivalis/efeitos dos fármacos , Probióticos/farmacologia , Streptococcus mutans/fisiologia , Aggregatibacter actinomycetemcomitans/fisiologia , Fusobacterium nucleatum/fisiologia , Humanos , Microbiota , Porphyromonas gingivalis/fisiologia , Streptococcus mutans/efeitos dos fármacos
18.
Phytother Res ; 34(4): 886-895, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31846135

RESUMO

Dental caries, candidiasis, and periodontal disease are the most common oral infections affecting a wide range of the population worldwide. The present study investigated the effects of two tart cherry (Prunus cerasus L.) fractions on important oral pathogens, including Candida albicans, Streptococcus mutans, and Fusobacterium nucleatum, as well as on the barrier function of oral epithelial cells. Procyanidins and quercetin and its derivatives were the most important constituents found in the tart cherry fractions. Although the fractions showed poor antimicrobial activity, they inhibited biofilm formation by the three oral pathogens in a dose-dependent manner. The tart cherry fractions also attenuated the adherence of C. albicans and S. mutans to a hydroxylapatite surface as well as the adherence of F. nucleatum to oral epithelial cells. Treating oral epithelial cells with the tart cherry fractions significantly enhanced the barrier function as determined by monitoring the transepithelial electrical resistance. In conclusion, this study showed that the tart cherry fractions and their bioactive constituents could be promising antiplaque compounds by targeting biofilm formation and adherence properties of oral pathogens. Furthermore, its property of increasing the epithelial barrier function may protect against microbial invasion of the underlying connective tissue.


Assuntos
Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Mucosa Bucal/efeitos dos fármacos , Boca/microbiologia , Extratos Vegetais/farmacologia , Prunus/química , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Células Cultivadas , Fracionamento Químico , Cárie Dentária/microbiologia , Frutas/química , Fusobacterium nucleatum/efeitos dos fármacos , Fusobacterium nucleatum/fisiologia , Humanos , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiologia , Mucosa Bucal/fisiologia , Permeabilidade/efeitos dos fármacos , Extratos Vegetais/química , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia
19.
Anaerobe ; 62: 102100, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31521732

RESUMO

Parvimonas micra is frequently isolated from lesions of apical periodontitis and is a major disease-related pathogen. One of the main causes of apical periodontitis is extraradicular biofilm. In this study, we investigated polymicrobial biofilm formation by P. micra and species associated with apical periodontitis. The coaggregation activity of P. micra with partner strains was investigated by visual assays. Synergistic biofilm formation was evaluated by cocultures of P. micra and partner strains. Growth of planktonic cells was measured by evaluating the absorbance at OD660, and biofilm formation was examined by staining with crystal violet. The effects of soluble components on synergistic biofilm formation and planktonic cell growth were examined after coculture of P. micra and other strains separated with a 0.4-µm pore-size porous membrane. P. micra coaggregated with Fusobacterium nucleatum, Porphyromonas gingivalis, or Capnoctyophaga ochracea. P. micra showed no coaggregation with Staphylococcus aureus, S. epidermidis, or Prevotella intermedia. In mixed cultures, biofilm formation by P. micra and F. nucleatum was greater than that by P. micra and P. gingivalis or C. ochracea. In separated cocultures, planktonic cell growth of P. micra was enhanced by each of the three species. Biofilm formation by P. micra was enhanced by F. nucleatum or C. ochracea; however, no significant enhancement was observed with P. gingivalis. These data indicated that P. micra and F. nucleatum had synergistic effects in biofilm formation and that these effects may be important for colonization by these two species in apical periodontitis lesions.


Assuntos
Biofilmes/crescimento & desenvolvimento , Firmicutes/fisiologia , Fusobacterium nucleatum/fisiologia , Aderência Bacteriana , Simbiose
20.
BMC Complement Altern Med ; 19(1): 145, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31226983

RESUMO

BACKGROUND: Previous research findings support an antimicrobial effect of polyphenols against a variety of pathogens, but there is no evidence of this effect against periodontal pathogens in complex biofilms. The purpose of this study was to evaluate the antimicrobial activity of red wine and oenological extracts, rich in polyphenols, against the periodontal pathogens Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum and total bacteria growing in an in vitro oral biofilm static model. METHODS: A previously validated biofilm model, including Streptococcus oralis, Actinomyces naeslundii, Veillonella parvula, F. nucleatum, P. gingivalis and A. actinomycetemcomitans was developed on sterile hydroxyapatite discs. Red wine (and dealcoholized wine), and two polyphenols-rich extracts (from wine and grape seeds) were applied to 72 h biofilms by dipping the discs during 1 and 5 min in the wine solutions and during 30 s and 1 min in the oenological extracts. Resulting biofilms were analyzed by confocal laser scanning microscopy and viable bacteria (colony forming units/mL) were measured by quantitative polymerase chain reaction combined with propidium monoazide. A generalized linear model was constructed to determine the effect of the tested products on the viable bacterial counts of A. actinomycetemcomitans, P. gingivalis and F. nucleatum, as well on the total number of viable bacteria. RESULTS: The results showed that red wine and dealcoholized red wine caused reduction in viability of total bacteria within the biofilm, with statistically significant reductions in the number of viable P. gingivalis after 1 min (p = 0.008) and in A. actinomycetemcomitans after 5 min of exposure (p = 0.011) with red wine. No evidence of relevant antibacterial effect was observed with the oenological extracts, with statistically significant reductions of F. nucleatum after 30 s of exposure to both oenological extracts (p = 0.001). CONCLUSIONS: Although moderate, the antimicrobial impact observed in the total bacterial counts and counts of A. actinomycetemcomitans, P. gingivalis and F. nucleatum, encourage further investigations on the potential use of these natural products in the prevention and treatment of periodontal diseases.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Doenças Periodontais/microbiologia , Extratos Vegetais/farmacologia , Vinho/análise , Aggregatibacter actinomycetemcomitans/efeitos dos fármacos , Aggregatibacter actinomycetemcomitans/fisiologia , Fusobacterium nucleatum/fisiologia , Humanos , Polifenóis/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Porphyromonas gingivalis/fisiologia , Sementes/química , Vitis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA