Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 769
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 78(5): 915-925.e7, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32392469

RESUMO

Transcriptional memory of gene expression enables adaptation to repeated stimuli across many organisms. However, the regulation and heritability of transcriptional memory in single cells and through divisions remains poorly understood. Here, we combined microfluidics with single-cell live imaging to monitor Saccharomyces cerevisiae galactokinase 1 (GAL1) expression over multiple generations. By applying pedigree analysis, we dissected and quantified the maintenance and inheritance of transcriptional reinduction memory in individual cells through multiple divisions. We systematically screened for loss- and gain-of-memory knockouts to identify memory regulators in thousands of single cells. We identified new loss-of-memory mutants, which affect memory inheritance into progeny. We also unveiled a gain-of-memory mutant, elp6Δ, and suggest that this new phenotype can be mediated through decreased histone occupancy at the GAL1 promoter. Our work uncovers principles of maintenance and inheritance of gene expression states and their regulators at the single-cell level.


Assuntos
Galactoquinase/genética , Regulação Fúngica da Expressão Gênica/genética , Transcrição Gênica/genética , Galactose/metabolismo , Expressão Gênica/genética , Genes Fúngicos/genética , Hereditariedade/genética , Histonas/metabolismo , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Célula Única/métodos
2.
EMBO J ; 40(21): e108439, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34569643

RESUMO

Upon replication stress, budding yeast checkpoint kinase Mec1ATR triggers the downregulation of transcription, thereby reducing the level of RNA polymerase (RNAP) on chromatin to facilitate replication fork progression. Here, we identify a hydroxyurea-induced phosphorylation site on Mec1, Mec1-S1991, that contributes to the eviction of RNAPII and RNAPIII during replication stress. The expression of the non-phosphorylatable mec1-S1991A mutant reduces replication fork progression genome-wide and compromises survival on hydroxyurea. This defect can be suppressed by destabilizing chromatin-bound RNAPII through a TAP fusion to its Rpb3 subunit, suggesting that lethality in mec1-S1991A mutants arises from replication-transcription conflicts. Coincident with a failure to repress gene expression on hydroxyurea in mec1-S1991A cells, highly transcribed genes such as GAL1 remain bound at nuclear pores. Consistently, we find that nuclear pore proteins and factors controlling RNAPII and RNAPIII are phosphorylated in a Mec1-dependent manner on hydroxyurea. Moreover, we show that Mec1 kinase also contributes to reduced RNAPII occupancy on chromatin during an unperturbed S phase by promoting degradation of the Rpb1 subunit.


Assuntos
Replicação do DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase III/genética , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Cromatina/química , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , Regulação Fúngica da Expressão Gênica , Hidroxiureia/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fosfoproteínas , Fosforilação , Proteínas Serina-Treonina Quinases/genética , RNA Polimerase II/metabolismo , RNA Polimerase III/metabolismo , Fase S/efeitos dos fármacos , Fase S/genética , Saccharomyces cerevisiae/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transcrição Gênica
3.
Cell ; 141(3): 407-18, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20434983

RESUMO

How is chromatin architecture established and what role does it play in transcription? We show that the yeast regulatory locus UASg bears, in addition to binding sites for the activator Gal4, sites bound by the RSC complex. RSC positions a nucleosome, evidently partially unwound, in a structure that facilitates Gal4 binding to its sites. The complex comprises a barrier that imposes characteristic features of chromatin architecture. In the absence of RSC, ordinary nucleosomes encroach over the UASg and compete with Gal4 for binding. Taken with our previous work, the results show that both prior to and following induction, specific DNA-binding proteins are the predominant determinants of chromatin architecture at the GAL1/10 genes. RSC/nucleosome complexes are also found scattered around the yeast genome. Higher eukaryotic RSC lacks the specific DNA-binding determinants found on yeast RSC, and evidently Gal4 works in those organisms despite whatever obstacle broadly positioned nucleosomes present.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Galactoquinase/genética , Células HeLa , Humanos , Elementos Reguladores de Transcrição , Proteínas de Saccharomyces cerevisiae/genética , Transativadores/genética
4.
PLoS Genet ; 17(12): e1009950, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871303

RESUMO

Chromatin structure and underlying DNA accessibility is modulated by the incorporation of histone variants. H2A.Z, a variant of the H2A core histone family, plays a distinct and essential role in a diverse set of biological functions including gene regulation and maintenance of heterochromatin-euchromatin boundaries. Although it is currently unclear how the replacement of H2A with H2A.Z can regulate gene expression, the variance in their amino acid sequence likely contributes to their functional differences. To tease apart regions of H2A.Z that confer its unique identity, a set of plasmids expressing H2A-H2A.Z hybrids from the native H2A.Z promoter were examined for their ability to recapitulate H2A.Z function. First, we found that the H2A.Z M6 region was necessary and sufficient for interaction with the SWR1-C chromatin remodeler. Remarkably, the combination of only 9 amino acid changes, the H2A.Z M6 region, K79 and L81 (two amino acids in the α2-helix), were sufficient to fully rescue growth phenotypes of the htz1Δ mutant. Furthermore, combining three unique H2A.Z regions (K79 and L81, M6, C-terminal tail) was sufficient for expression of H2A.Z-dependent heterochromatin-proximal genes and GAL1 derepression. Surprisingly, hybrid constructs that restored the transcription of H2A.Z-dependent genes, did not fully recapitulate patterns of H2A.Z-specific enrichment at the tested loci. This suggested that H2A.Z function in transcription regulation may be at least partially independent of its specific localization in chromatin. Together, this work has identified three regions that can confer specific H2A.Z-identity to replicative H2A, furthering our understanding of what makes a histone variant a variant.


Assuntos
Adenosina Trifosfatases/genética , Cromatina/genética , Galactoquinase/genética , Histonas/genética , Proteínas de Saccharomyces cerevisiae/genética , Trifosfato de Adenosina/genética , Montagem e Desmontagem da Cromatina/genética , Regulação Fúngica da Expressão Gênica/genética , Variação Genética/genética , Heterocromatina/genética , Humanos , Nucleossomos/genética , Fenótipo , Saccharomyces cerevisiae/genética
5.
Glycobiology ; 33(8): 651-660, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37283491

RESUMO

Lysosomal accumulation of the glycosphingolipid globotriaosylceramide Gb3 is linked to the deficient activity of the α-galactosidase A in the Anderson-Fabry disease and an elevated level of deacylated Gb3 is a hallmark of this condition. Localization of Gb3 in the plasma membrane is critical for studying how the membrane organization and its dynamics are affected in this genetic disorder. Gb3 analogs containing a terminal 6-azido-functionalized galactose in its head group globotriose (αGal1, 4ßGal1, and 4Glc) are attractive chemical reporters for bioimaging, as the azido-group may act as a chemical tag for bio-orthogonal click chemistry. We report here the production of azido-Gb3 analogs employing mutants of galactokinase, UTP-glucose-1-phosphate uridylyltransferase, and α-1,4-galactosyltransferase LgtC, which participate in the synthesis of the sugar motif globotriose. Variants of enzymes galactokinase/UTP-glucose-1-phosphate uridylyltransferase generate UDP-6-azido-6-deoxy-d-galactose, which is the galactosyl-donor used by LgtC for transferring the terminal galactose moiety to lactosyl-acceptors. Residues at the galactose-binding site of the 3 enzymes were modified to facilitate the accommodation of azido-functionalized substrates and variants outperforming the wild-type enzymes were characterized. Synthesis of 6-azido-6-deoxy-d-galactose-1-phosphate, UDP-6-azido-6-deoxy-d-galactose, and azido-Gb3 analogs by variants GalK-E37S, GalU-D133V, and LgtC-Q187S, respectively, is 3-6-fold that of their wild-type counterparts. Coupled reactions with these variants permit the production of the pricy, unnatural galactosyl-donor UDP-6-azido-6-deoxy-d-galactose with ~90% conversion yields, and products azido-globotriose and lyso-AzGb3 with substrate conversion of up to 70%. AzGb3 analogs could serve as precursors for the synthesis of other tagged glycosphingolipids of the globo-series.


Assuntos
Galactoquinase , Galactose , Galactose/metabolismo , Galactoquinase/genética , Galactoquinase/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Sítios de Ligação , Mutação , Difosfato de Uridina
6.
EMBO J ; 38(12)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101674

RESUMO

Transcription factors show rapid and reversible binding to chromatin in living cells, and transcription occurs in sporadic bursts, but how these phenomena are related is unknown. Using a combination of in vitro and in vivo single-molecule imaging approaches, we directly correlated binding of the Gal4 transcription factor with the transcriptional bursting kinetics of the Gal4 target genes GAL3 and GAL10 in living yeast cells. We find that Gal4 dwell time sets the transcriptional burst size. Gal4 dwell time depends on the affinity of the binding site and is reduced by orders of magnitude by nucleosomes. Using a novel imaging platform called orbital tracking, we simultaneously tracked transcription factor binding and transcription at one locus, revealing the timing and correlation between Gal4 binding and transcription. Collectively, our data support a model in which multiple RNA polymerases initiate transcription during one burst as long as the transcription factor is bound to DNA, and bursts terminate upon transcription factor dissociation.


Assuntos
Nucleossomos/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Sítios de Ligação , Metabolismo dos Carboidratos/genética , Galactoquinase/genética , Galactoquinase/metabolismo , Galactose/metabolismo , Regulação Fúngica da Expressão Gênica , Imagem Molecular/métodos , Organismos Geneticamente Modificados , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Célula Única/métodos , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica , Ativação Transcricional/genética
7.
Plant Physiol ; 189(1): 388-401, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35188197

RESUMO

Galactose is an abundant and essential sugar used for the biosynthesis of many macromolecules in different organisms, including plants. Galactose metabolism is tightly and finely controlled, since excess galactose and its derivatives are inhibitory to plant growth. In Arabidopsis (Arabidopsis thaliana), root growth and pollen germination are strongly inhibited by excess galactose. However, the mechanism of galactose-induced inhibition during pollen germination remains obscure. In this study, we characterized a plasma membrane-localized transporter, Arabidopsis Sugars Will Eventually be Exported Transporter 5, that transports glucose and galactose. SWEET5 protein levels started to accumulate at the tricellular stage of pollen development and peaked in mature pollen, before rapidly declining after pollen germinated. SWEET5 levels are responsible for the dosage-dependent sensitivity to galactose, and galactokinase is essential for these inhibitory effects during pollen germination. However, sugar measurement results indicate that galactose flux dynamics and sugar metabolism, rather than the steady-state galactose level, may explain phenotypic differences between sweet5 and Col-0 in galactose inhibition of pollen germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Galactoquinase/metabolismo , Galactoquinase/farmacologia , Galactose/metabolismo , Galactose/farmacologia , Germinação , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Pólen
8.
Mol Cell ; 60(4): 597-610, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26549684

RESUMO

Eukaryotic transcription is pervasive, and many of the resulting RNAs are non-coding. It is unknown whether ubiquitous transcription is functional or simply reflects stochastic transcriptional noise. By single-molecule visualization of the dynamic interplay between coding and non-coding transcription at the GAL locus in living yeast cells, we show that antisense GAL10 ncRNA transcription can switch between functional and spurious under different conditions. During galactose induction, GAL10 sense transcription occurs in short stochastic bursts, which are unaffected by transcription of antisense GAL10 ncRNA, even when both are present simultaneously at the same locus. In contrast, when GAL10 is not induced, ncRNA transcription is critical to prevent transcriptional leakage of GAL1 and GAL10. Suppression of ncRNA transcription by strand-specific CRISPR/dCas9 results in transcriptional leakage of the inducer GAL1, leading to a more sensitive transcription activation threshold, an alteration of metabolic switching, and a fitness defect in competition experiments.


Assuntos
Galactoquinase/genética , RNA Fúngico/genética , RNA Longo não Codificante/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transativadores/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Galactose/metabolismo , Regulação Fúngica da Expressão Gênica , Óperon , Transcrição Gênica
9.
Nucleic Acids Res ; 49(10): 5502-5519, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33963860

RESUMO

The histone chaperone facilitates chromatin transactions (FACT) functions in various DNA transactions. How FACT performs these multiple functions remains largely unknown. Here, we found, for the first time, that the N-terminal domain of its Spt16 subunit interacts with the Set3 histone deacetylase complex (Set3C) and that FACT and Set3C function in the same pathway to regulate gene expression in some settings. We observed that Spt16-G132D mutant proteins show defects in binding to Set3C but not other reported FACT interactors. At the permissive temperature, induction of the GAL1 and GAL10 genes is reduced in both spt16-G132D and set3Δ cells, whereas transient upregulation of GAL10 noncoding RNA (ncRNA), which is transcribed from the 3' end of the GAL10 gene, is elevated. Mutations that inhibit GAL10 ncRNA transcription reverse the GAL1 and GAL10 induction defects in spt16-G132D and set3Δ mutant cells. Mechanistically, set3Δ and FACT (spt16-G132D) mutants show reduced histone acetylation and increased nucleosome occupancy at the GAL1 promoter under inducing conditions and inhibition of GAL10 ncRNA transcription also partially reverses these chromatin changes. These results indicate that FACT interacts with Set3C, which in turn prevents uncontrolled GAL10 ncRNA expression and fine-tunes the expression of GAL genes upon a change in carbon source.


Assuntos
Cromatina/metabolismo , Galactoquinase/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transcrição Gênica , RNA não Traduzido/metabolismo , Transativadores , Ativação Transcricional
10.
Proc Natl Acad Sci U S A ; 117(25): 14243-14250, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32518113

RESUMO

Cells must couple cell-cycle progress to their growth rate to restrict the spread of cell sizes present throughout a population. Linear, rather than exponential, accumulation of Whi5, was proposed to provide this coordination by causing a higher Whi5 concentration in cells born at a smaller size. We tested this model using the inducible GAL1 promoter to make the Whi5 concentration independent of cell size. At an expression level that equalizes the mean cell size with that of wild-type cells, the size distributions of cells with galactose-induced Whi5 expression and wild-type cells are indistinguishable. Fluorescence microscopy confirms that the endogenous and GAL1 promoters produce different relationships between Whi5 concentration and cell volume without diminishing size control in the G1 phase. We also expressed Cln3 from the GAL1 promoter, finding that the spread in cell sizes for an asynchronous population is unaffected by this perturbation. Our findings indicate that size control in budding yeast does not fundamentally originate from the linear accumulation of Whi5, contradicting a previous claim and demonstrating the need for further models of cell-cycle regulation to explain how cell size controls passage through Start.


Assuntos
Tamanho Celular , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/fisiologia , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Fase G1 , Galactoquinase/genética , Galactoquinase/metabolismo , Galactose , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Planta ; 256(2): 26, 2022 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-35780431

RESUMO

MAIN CONCLUSION: Arabidopsis seedlings growing on low concentration of galactose stop regular root growth. Incomplete cell division with cell wall stubs, binuclear and giant cells and lignified root tips are observed. Galactose is a sugar abundant in root cell walls of Arabidopsis. Nevertheless, we found that the germination of Arabidopsis seedlings on galactose containing media causes a strong modification of the root development, as shown by analysing the root with microscopy methods ranging from the bright field over confocal to transmission electron microscopy. At concentrations of about 1 mM, the growth of the primary root stops after a few days though stem cell markers like WOX5 are still expressed. The root tip swells and forms a slightly opaque, partially lignified structure in parts of the cortex and the central cylinder. The formation of the cell plate after mitosis is impaired, often leading to cell wall stubs and binuclear cells. Some cells in the cortex and the central cylinder degenerate, while some rhizodermal and cortical cells increase massively in size. The galactose toxicity phenotype in Arabidopsis depends on the activity of galactokinase and is completely diminished in galactokinase knock-out lines. From the comparison of the galactose toxicity phenotype with those of cytokinesis mutants and plants treated with appropriate inhibitors we speculate that the toxicity syndrome of galactose is caused by interference with intracellular vesicle transport or cell wall biogenesis.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Morte Celular , Parede Celular/metabolismo , Galactoquinase/metabolismo , Galactose/metabolismo , Plântula
12.
Curr Genet ; 67(2): 267-281, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33159551

RESUMO

Controlling chromatin state constitutes a major regulatory step in gene expression regulation across eukaryotes. While global cellular features or processes are naturally impacted by chromatin state alterations, little is known about how chromatin regulatory genes interact in networks to dictate downstream phenotypes. Using the activity of the canonical galactose network in yeast as a model, here, we measured the impact of the disruption of key chromatin regulatory genes on downstream gene expression, genetic noise and fitness. Using Trichostatin A and nicotinamide, we characterized how drug-based modulation of global histone deacetylase activity affected these phenotypes. Performing epistasis analysis, we discovered phenotype-specific genetic interaction networks of chromatin regulators. Our work provides comprehensive insights into how the galactose network activity is affected by protein interaction networks formed by chromatin regulators.


Assuntos
Cromatina/genética , Epistasia Genética , Galactoquinase/genética , Histona Desacetilases/genética , Proteínas de Saccharomyces cerevisiae/genética , Cromatina/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Genes Reguladores/genética , Ácidos Hidroxâmicos/farmacologia , Niacinamida/farmacologia , Saccharomyces cerevisiae/genética
13.
Genet Med ; 23(1): 202-210, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32807972

RESUMO

PURPOSE: Galactokinase (GALK1) deficiency is a rare hereditary galactose metabolism disorder. Beyond cataract, the phenotypic spectrum is questionable. Data from affected patients included in the Galactosemias Network registry were collected to better characterize the phenotype. METHODS: Observational study collecting medical data of 53 not previously reported GALK1 deficient patients from 17 centers in 11 countries from December 2014 to April 2020. RESULTS: Neonatal or childhood cataract was reported in 15 and 4 patients respectively. The occurrence of neonatal hypoglycemia and infection were comparable with the general population, whereas bleeding diathesis (8.1% versus 2.17-5.9%) and encephalopathy (3.9% versus 0.3%) were reported more often. Elevated transaminases were seen in 25.5%. Cognitive delay was reported in 5 patients. Urinary galactitol was elevated in all patients at diagnosis; five showed unexpected Gal-1-P increase. Most patients showed enzyme activities ≤1%. Eleven different genotypes were described, including six unpublished variants. The majority was homozygous for NM_000154.1:c.82C>A (p.Pro28Thr). Thirty-five patients were diagnosed following newborn screening, which was clearly beneficial. CONCLUSION: The phenotype of GALK1 deficiency may include neonatal elevation of transaminases, bleeding diathesis, and encephalopathy in addition to cataract. Potential complications beyond the neonatal period are not systematically surveyed and a better delineation is needed.


Assuntos
Catarata , Galactoquinase/deficiência , Galactosemias , Galactoquinase/genética , Galactosemias/epidemiologia , Galactosemias/genética , Homozigoto , Humanos , Recém-Nascido , Sistema de Registros
14.
Mol Cell ; 51(6): 807-18, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-24074957

RESUMO

Transcription activation of some yeast genes correlates with their repositioning to the nuclear pore complex (NPC). The NPC-bound Mlp1 and Mlp2 proteins have been shown to associate with the GAL1 gene promoter and to maintain Ulp1, a key SUMO protease, at the NPC. Here, we show that the release of Ulp1 from the NPC increases the kinetics of GAL1 derepression, whereas artificial NPC anchoring of Ulp1 in the Δmlp1/2 strain restores normal GAL1 regulation. Moreover, artificial tethering of the Ulp1 catalytic domain to the GAL1 locus enhances the derepression kinetics. Our results also indicate that Ulp1 modulates the sumoylation state of Tup1 and Ssn6, two regulators of glucose-repressed genes, and that a loss of Ssn6 sumoylation correlates with an increase in GAL1 derepression kinetics. Altogether, our data highlight a role for the NPC-associated SUMO protease Ulp1 in regulating the sumoylation of gene-bound transcription regulators, positively affecting transcription kinetics in the context of the NPC.


Assuntos
Cisteína Endopeptidases/genética , Galactoquinase/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Galactoquinase/metabolismo , Poro Nuclear/genética , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sumoilação , Ativação Transcricional
15.
Curr Genet ; 66(6): 1029-1035, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32686056

RESUMO

Transcriptional reinduction memory is a phenomenon whereby cells "remember" their transcriptional response to a previous stimulus such that subsequent encounters with the same stimulus can result in altered gene expression kinetics. Chromatin structure is thought to play a role in certain transcriptional memory mechanisms, leading to questions as to whether and how memory can be actively maintained and inherited to progeny through cell division. Here we summarize efforts towards dissecting chromatin-based transcriptional memory inheritance of GAL genes in Saccharomyces cerevisiae. We focus on methods and analyses of GAL (as well as MAL and INO) memory in single cells and discuss the challenges in unraveling the underlying mechanisms in yeast and higher eukaryotes.


Assuntos
Galactoquinase/genética , Galactose/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Cromatina/genética , Regulação Fúngica da Expressão Gênica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise de Célula Única , Açúcares/metabolismo
16.
J Inherit Metab Dis ; 43(3): 392-408, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31808946

RESUMO

Since the first description of galactosemia in 1908 and despite decades of research, the pathophysiology is complex and not yet fully elucidated. Galactosemia is an inborn error of carbohydrate metabolism caused by deficient activity of any of the galactose metabolising enzymes. The current standard of care, a galactose-restricted diet, fails to prevent long-term complications. Studies in cellular and animal models in the past decades have led to an enormous progress and advancement of knowledge. Summarising current evidence in the pathophysiology underlying hereditary galactosemia may contribute to the identification of treatment targets for alternative therapies that may successfully prevent long-term complications. A systematic review of cellular and animal studies reporting on disease complications (clinical signs and/or biochemical findings) and/or treatment targets in hereditary galactosemia was performed. PubMed/MEDLINE, EMBASE, and Web of Science were searched, 46 original articles were included. Results revealed that Gal-1-P is not the sole pathophysiological agent responsible for the phenotype observed in galactosemia. Other currently described contributing factors include accumulation of galactose metabolites, uridine diphosphate (UDP)-hexose alterations and subsequent impaired glycosylation, endoplasmic reticulum (ER) stress, altered signalling pathways, and oxidative stress. galactokinase (GALK) inhibitors, UDP-glucose pyrophosphorylase (UGP) up-regulation, uridine supplementation, ER stress reducers, antioxidants and pharmacological chaperones have been studied, showing rescue of biochemical and/or clinical symptoms in galactosemia. Promising co-adjuvant therapies include antioxidant therapy and UGP up-regulation. This systematic review provides an overview of the scattered information resulting from animal and cellular studies performed in the past decades, summarising the complex pathophysiological mechanisms underlying hereditary galactosemia and providing insights on potential treatment targets.


Assuntos
Galactosemias/genética , Galactosemias/fisiopatologia , Animais , Modelos Animais de Doenças , Galactoquinase/genética , Galactoquinase/metabolismo , Galactose/metabolismo , Galactosemias/metabolismo , Galactosemias/terapia , Genótipo , Humanos , Estresse Oxidativo , Fenótipo , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo , UTP-Hexose-1-Fosfato Uridililtransferase/genética , UTP-Hexose-1-Fosfato Uridililtransferase/metabolismo
17.
Genes Dev ; 26(3): 294-303, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22302941

RESUMO

A wealth of genetic information and some biochemical analysis have made the GAL regulon of the yeast Saccharomyces cerevisiae a classic model system for studying transcriptional activation in eukaryotes. Galactose induces this transcriptional switch, which is regulated by three proteins: the transcriptional activator Gal4p, bound to DNA; the repressor Gal80p; and the transducer Gal3p. We showed previously that NADP appears to act as a trigger to kick the repressor off the activator. Sustained activation involves a complex of the transducer Gal3p and Gal80p mediated by galactose and ATP. We solved the crystal structure of the complex of Gal3p-Gal80p with α-D-galactose and ATP to 2.1 Å resolution. The interaction between the proteins occurs only when Gal3p is in a "closed" state induced by ligand binding. The structure of the complex provides a rationale for the phenotypes of several well-known Gal80p and Gal3p mutants as well as the lack of galactokinase activity of Gal3p.


Assuntos
Ligantes , Modelos Moleculares , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Galactoquinase/química , Galactose/química , Galactose/metabolismo , Humanos , Ligação de Hidrogênio , Mutação , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Regulon , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Ativação Transcricional
18.
Mol Syst Biol ; 14(2): e8007, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29440389

RESUMO

Antisense transcription is widespread in genomes. Despite large differences in gene size and architecture, we find that yeast and human genes share a unique, antisense transcription-associated chromatin signature. We asked whether this signature is related to a biological function for antisense transcription. Using quantitative RNA-FISH, we observed changes in sense transcript distributions in nuclei and cytoplasm as antisense transcript levels were altered. To determine the mechanistic differences underlying these distributions, we developed a mathematical framework describing transcription from initiation to transcript degradation. At GAL1, high levels of antisense transcription alter sense transcription dynamics, reducing rates of transcript production and processing, while increasing transcript stability. This relationship with transcript stability is also observed as a genome-wide association. Establishing the antisense transcription-associated chromatin signature through disruption of the Set3C histone deacetylase activity is sufficient to similarly change these rates even in the absence of antisense transcription. Thus, antisense transcription alters sense transcription dynamics in a chromatin-dependent manner.


Assuntos
Cromatina/genética , RNA Antissenso/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Citoplasma/genética , Galactoquinase/genética , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/metabolismo , Humanos , Hibridização in Situ Fluorescente , Estabilidade de RNA , RNA Fúngico/genética , RNA Mensageiro/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
19.
Plant Cell Environ ; 42(4): 1139-1157, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30156702

RESUMO

The purple acid phosphatase AtPAP26 plays a central role in Pi-scavenging by Pi-starved (-Pi) Arabidopsis. Mass spectrometry (MS) of AtPAP26-S1 and AtPAP26-S2 glycoforms secreted by -Pi suspension cells demonstrated that N-glycans at Asn365 and Asn422 were modified in AtPAP26-S2 to form high-mannose glycans. A 55-kDa protein that co-purified with AtPAP26-S2 was identified as a Galanthus nivalis agglutinin-related and apple domain lectin-1 (AtGAL1; At1g78850). MS revealed that AtGAL1 was bisphosphorylated at Tyr38 and Thr39 and glycosylated at four conserved Asn residues. When AtGAL was incubated in the presence of a thiol-reducing reagent prior to immunoblotting, its cross-reactivity with anti-AtGAL1-IgG was markedly attenuated (consistent with three predicted disulfide bonds in AtGAL1's apple domain). Secreted AtGAL1 polypeptides were upregulated to a far greater extent than AtGAL1 transcripts during Pi deprivation, indicating posttranscriptional control of AtGAL1 expression. Growth of a -Pi atgal1 mutant was unaffected, possibly due to compensation by AtGAL1's closest paralog, AtGAL2 (At1g78860). Nevertheless, AtGAL1's induction by numerous stresses combined with the broad distribution of AtGAL1-like lectins in diverse species implies an important function for AtGAL1 orthologs within the plant kingdom. We hypothesize that binding of AtPAP26-S2's high-mannose glycans by AtGAL1 enhances AtPAP26 function to facilitate Pi-scavenging by -Pi Arabidopsis.


Assuntos
Fosfatase Ácida/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Galactoquinase/metabolismo , Fosfatos/deficiência , Fosfatase Ácida/isolamento & purificação , Proteínas de Arabidopsis/isolamento & purificação , Células Cultivadas , Cromatografia em Gel , Dissacarídeos , Galactoquinase/isolamento & purificação , Glucuronatos , Fosfatos/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Regulação para Cima
20.
J Comput Aided Mol Des ; 33(4): 405-417, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30806949

RESUMO

Classic Galactosemia is a potentially lethal autosomal recessive metabolic disorder caused by deficient galactose-1-phosphate uridyltransferase (GALT) that results in the buildup of galactose-1-phosphate (gal-1-p) in cells. Galactokinase (GALK1) is the enzyme responsible for converting galactose into gal-1-p. A pharmacological inhibitor of GALK1 is hypothesized to be therapeutic strategy for treating galactosemia by reducing production of gal-1-p. In this study, we report the discovery of novel series of GALK1 inhibitors by structure-based virtual screening (VS). Followed by an extensive structural modeling and binding mode analysis of the active compounds identified from quantitative high-throughput screen (qHTS), we developed an efficient pharmacophore-based VS approach and applied for a large-scale in silico database screening. Out of 230,000 compounds virtually screened, 350 compounds were cherry-picked based on multi-factor prioritization procedure, and 75 representing a diversity of chemotypes exhibited inhibitory activity in GALK1 biochemical assay. Furthermore, a phenylsulfonamide series with excellent in vitro ADME properties was selected for downstream characterization and demonstrated its ability to lower gal-1-p in primary patient fibroblasts. The compounds described herein should provide a starting point for further development of drug candidates for the GALK1 modulation in the Classic Galactosemia.


Assuntos
Galactoquinase/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Domínio Catalítico/efeitos dos fármacos , Desenho de Fármacos , Descoberta de Drogas , Galactoquinase/química , Galactoquinase/metabolismo , Humanos , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA