Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 607(7918): 345-350, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768512

RESUMO

Enteric viruses like norovirus, rotavirus and astrovirus have long been accepted as spreading in the population through fecal-oral transmission: viruses are shed into feces from one host and enter the oral cavity of another, bypassing salivary glands (SGs) and reaching the intestines to replicate, be shed in feces and repeat the transmission cycle1. Yet there are viruses (for example, rabies) that infect the SGs2,3, making the oral cavity one site of replication and saliva one conduit of transmission. Here we report that enteric viruses productively and persistently infect SGs, reaching titres comparable to those in the intestines. We demonstrate that enteric viruses get released into the saliva, identifying a second route of viral transmission. This is particularly significant for infected infants, whose saliva directly transmits enteric viruses to their mothers' mammary glands through backflow during suckling. This sidesteps the conventional gut-mammary axis route4 and leads to a rapid surge in maternal milk secretory IgA antibodies5,6. Lastly, we show that SG-derived spheroids7 and cell lines8 can replicate and propagate enteric viruses, generating a scalable and manageable system of production. Collectively, our research uncovers a new transmission route for enteric viruses with implications for therapeutics, diagnostics and importantly sanitation measures to prevent spread through saliva.


Assuntos
Saliva , Glândulas Salivares , Viroses , Vírus , Astroviridae , Aleitamento Materno , Células Cultivadas , Fezes/virologia , Feminino , Humanos , Imunoglobulina A/imunologia , Lactente , Norovirus , Rotavirus , Saliva/virologia , Glândulas Salivares/virologia , Esferoides Celulares/virologia , Viroses/transmissão , Viroses/virologia , Vírus/crescimento & desenvolvimento
2.
Proc Natl Acad Sci U S A ; 119(10): e2110647119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238649

RESUMO

SignificanceAn immunosuppressant protein (MTX), which facilitates virus infection by inhibiting leukotriene A4 hydrolase (LTA4H) to produce the lipid chemoattractant leukotriene B4 (LTB4), was identified and characterized from the submandibular salivary glands of the bat Myotis pilosus. To the best of our knowledge, this is a report of an endogenous LTA4H inhibitor in animals. MTX was highly concentrated in the bat salivary glands, suggesting a mechanism for the generation of immunological privilege and immune tolerance and providing evidence of viral shedding through oral secretions. Moreover, given that the immunosuppressant MTX selectively inhibited the proinflammatory activity of LTA4H, without affecting its antiinflammatory activity, MTX might be a potential candidate for the development of antiinflammatory drugs by targeting the LTA4-LTA4H-LTB4 inflammatory axis.


Assuntos
Inibidores Enzimáticos/metabolismo , Epóxido Hidrolases , Vírus da Influenza A Subtipo H1N1/metabolismo , Leucotrieno A4/metabolismo , Infecções por Orthomyxoviridae/enzimologia , Glândulas Salivares , Proteínas e Peptídeos Salivares/metabolismo , Viroses , Animais , Quirópteros , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Camundongos , Glândulas Salivares/enzimologia , Glândulas Salivares/virologia
3.
J Gen Virol ; 105(8)2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39093048

RESUMO

Cytomegaloviruses (CMVs) transmit via chronic shedding from the salivary glands. How this relates to the broad cell tropism they exhibit in vitro is unclear. Human CMV (HCMV) infection presents only after salivary gland infection is established. Murine CMV (MCMV) is therefore useful to analyse early infection events. It reaches the salivary glands via infected myeloid cells. Three adjacent spliced genes designated as m131/129 (MCK-2), sgg1 and sgg1.1, positional homologues of the HCMV UL128/130/131 tropism determinants, are implicated. We show that a sgg1 null mutant is defective in infected myeloid cell entry into the salivary glands, a phenotype distinct from MCMV lacking MCK-2. These data point to a complex, multi-step process of salivary gland colonization.


Assuntos
Muromegalovirus , Glândulas Salivares , Animais , Glândulas Salivares/virologia , Muromegalovirus/genética , Muromegalovirus/fisiologia , Camundongos , Tropismo Viral , Células Mieloides/virologia , Células Mieloides/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Infecções por Herpesviridae/virologia , Quimiocinas CC
4.
J Virol ; 97(11): e0106723, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37855618

RESUMO

IMPORTANCE: Many plant viruses are transmitted by insect vectors in a circulative manner. For efficient transmission, the entry of the virus from vector hemolymph into the primary salivary gland (PSG) is a step of paramount importance. Yet, vector components mediating virus entry into PSG remain barely characterized. Here, we demonstrate the role of clathrin-mediated endocytosis and early endosomes in begomovirus entry into whitefly PSG. Our findings unravel the key components involved in begomovirus transport within the whitefly body and transmission by their whitefly vectors and provide novel clues for blocking begomovirus transmission.


Assuntos
Begomovirus , Endocitose , Hemípteros , Animais , Begomovirus/fisiologia , Clatrina/metabolismo , Endossomos , Hemípteros/metabolismo , Hemípteros/virologia , Doenças das Plantas , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia
5.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34290144

RESUMO

The importin α family belongs to the conserved nuclear transport pathway in eukaryotes. However, the biological functions of importin α in the plasma membrane are still elusive. Here, we report that importin α, as a plasma membrane-associated protein, is exploited by the rice stripe virus (RSV) to enter vector insect cells, especially salivary gland cells. When the expression of three importin α genes was simultaneously knocked down, few virions entered the salivary glands of the small brown planthopper, Laodelphax striatellus Through hemocoel inoculation of virions, only importin α2 was found to efficiently regulate viral entry into insect salivary-gland cells. Importin α2 bound the nucleocapsid protein of RSV with a relatively high affinity through its importin ß-binding (IBB) domain, with a dissociation constant KD of 9.1 µM. Furthermore, importin α2 and its IBB domain showed a distinct distribution in the plasma membrane through binding to heparin in heparan sulfate proteoglycan. When the expression of importin α2 was knocked down in viruliferous planthoppers or in nonviruliferous planthoppers before they acquired virions, the viral transmission efficiency of the vector insects in terms of the viral amount and disease incidence in rice was dramatically decreased. These findings not only reveal the specific function of the importin α family in the plasma membrane utilized by viruses, but also provide a promising target gene in vector insects for manipulation to efficiently control outbreaks of rice stripe disease.


Assuntos
Membrana Celular/enzimologia , Hemípteros/virologia , Carioferinas/metabolismo , Glândulas Salivares/virologia , Tenuivirus/fisiologia , Internalização do Vírus , Animais , Membrana Celular/metabolismo , Insetos Vetores/virologia , Carioferinas/genética , Oryza/virologia , Doenças das Plantas/virologia
6.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062747

RESUMO

Salivary glands' neoplasms are hard to diagnose and present a complex etiology. However, several viruses have been detected in these neoplasms, such as HCMV, which can play a role in certain cancers through oncomodulation. The co-infections between HCMV with betaherpesviruses (HHV-6 and HHV-7) and polyomaviruses (JCV and BKV) has been investigated. The aim of the current study is to describe the frequency of HCMV and co-infections in patients presenting neoplastic and non-neoplastic lesions, including in the salivary gland. Multiplex quantitative polymerase chain reaction was used for betaherpesvirus and polyomavirus quantification purposes after DNA extraction. In total, 50.7% of the 67 analyzed samples were mucocele, 40.3% were adenoma pleomorphic, and 8.9% were mucoepidermoid carcinoma. Overall, 20.9% of samples presented triple-infections with HCMV/HHV-6/HHV-7, whereas 9.0% were co-infections with HCMV/HHV-6 and HCMV/HHV-7. The largest number of co-infections was detected in pleomorphic adenoma cases. All samples tested negative for polyomaviruses, such as BKV and JCV. It was possible to conclude that HCMV can be abundant in salivary gland lesions. A high viral load can be useful to help better understand the etiological role played by viruses in these lesions. A lack of JCV and BKV in the samples analyzed herein does not rule out the involvement of these viruses in one or more salivary gland lesion subtypes.


Assuntos
Coinfecção , Infecções por Citomegalovirus , Citomegalovirus , Neoplasias das Glândulas Salivares , Glândulas Salivares , Humanos , Coinfecção/virologia , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/diagnóstico , Citomegalovirus/genética , Citomegalovirus/isolamento & purificação , Masculino , Feminino , Neoplasias das Glândulas Salivares/virologia , Pessoa de Meia-Idade , Adulto , Idoso , Glândulas Salivares/virologia , Glândulas Salivares/patologia , Adenoma/virologia , Idoso de 80 Anos ou mais , Carcinoma/virologia , DNA Viral/genética , DNA Viral/análise , Adulto Jovem , Adolescente
7.
J Virol ; 96(4): e0186721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878888

RESUMO

Common to all cytomegalovirus (CMV) genomes analyzed to date is the presence of G protein-coupled receptors (GPCR). Animal models of CMV provide insights into their role in viral fitness. The mouse cytomegalovirus (MCMV) GPCR, M33, facilitates dendritic cell (DC)-dependent viremia, the extravasation of blood-borne infected DCs to the salivary gland, and the frequency of reactivation events from latently infected tissue explants. Constitutive G protein-coupled M33 signaling is required for these phenotypes, although the contribution of distinct biochemical pathways activated by M33 is unknown. M33 engages Gq/11 to constitutively activate phospholipase C ß (PLCß) and downstream cyclic AMP response-element binding protein (CREB) in vitro. Identification of a MCMV M33 mutant (M33ΔC38) for which CREB signaling was disabled but PLCß activation was preserved provided the opportunity to investigate their relevance in vivo. Following intranasal infection with MCMV M33ΔC38, the absence of M33 CREB Gq/11-dependent signaling correlated with reduced mobilization of lytically-infected DCs to the draining lymph node high endothelial venules (HEVs) and reduced viremia compared with wild type MCMV. In contrast, M33ΔC38-infected DCs within the vascular compartment extravasated to the salivary glands via a pertussis toxin-sensitive, Gi/o-dependent, and CREB-independent mechanism. In the context of MCMV latency, spleen explants from M33ΔC38-infected mice were markedly attenuated for reactivation. Taken together, these data demonstrate that key features of the MCMV life cycle are coordinated in diverse tissues by distinct pathways of the M33 signaling repertoire. IMPORTANCE G protein-coupled receptors (GPCRs) act as cell surface molecular "switches" that regulate the cellular response to environmental stimuli. All cytomegalovirus (CMV) genomes analyzed to date possess GPCR homologs with phylogenetic evidence for independent gene capture events, signifying important in vivo roles. The mouse CMV (MCMV) GPCR homolog, designated M33, is important for cell-associated virus spread and the establishment and/or reactivation of latent MCMV infection. The signaling repertoire of M33 is distinct from cellular GPCRs and little is known of the relevance of component signaling pathways for in vivo M33 function. In this report, we showed that temporal and tissue-specific M33 signaling was required to facilitate in vivo infection. Understanding the relevance of the viral GPCR signaling profiles for in vivo function will provide opportunities for future targeted interventions.


Assuntos
Infecções por Herpesviridae/virologia , Muromegalovirus/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Virais/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Células Dendríticas/virologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Infecções por Herpesviridae/metabolismo , Linfonodos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Muromegalovirus/genética , Muromegalovirus/metabolismo , Mutação , Fosfolipase C beta/metabolismo , Receptores Acoplados a Proteínas G/genética , Glândulas Salivares/virologia , Transdução de Sinais , Proteínas Virais/genética , Viremia/metabolismo , Viremia/virologia , Ativação Viral/genética
8.
Immunity ; 41(4): 646-56, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25367576

RESUMO

Natural killer (NK) cells have been reported to control adaptive immune responses that occur in lymphoid organs at the early stages of immune challenge. The physiological purpose of such regulatory activity remains unclear, because it generally does not confer a survival advantage. We found that NK cells specifically eliminated activated CD4(+) T cells in the salivary gland during chronic murine cytomegalovirus (MCMV) infection. This was dependent on TNF-related apoptosis inducing ligand (TRAIL) expression by NK cells. Although NK cell-mediated deletion of CD4(+) T cells prolonged the chronicity of infection, it also constrained viral-induced autoimmunity. In the absence of this activity, chronic infection was associated with a Sjogren's-like syndrome characterized by focal lymphocytic infiltration into the glands, production of autoantibodies, and reduced saliva and tear secretion. Thus, NK cells are an important homeostatic control that balances the efficacy of adaptive immune responses with the risk of developing autoimmunity.


Assuntos
Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Infecções por Herpesviridae/imunologia , Células Matadoras Naturais/imunologia , Muromegalovirus/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Transferência Adotiva , Animais , Apoptose/imunologia , Doença Crônica , Citotoxicidade Imunológica/imunologia , Células Matadoras Naturais/transplante , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Subfamília K de Receptores Semelhantes a Lectina de Células NK/biossíntese , Glândulas Salivares/imunologia , Glândulas Salivares/patologia , Glândulas Salivares/virologia
9.
Proc Natl Acad Sci U S A ; 117(29): 16928-16937, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32636269

RESUMO

Whereas most of the arthropod-borne animal viruses replicate in their vectors, this is less common for plant viruses. So far, only some plant RNA viruses have been demonstrated to replicate in insect vectors and plant hosts. How plant viruses evolved to replicate in the animal kingdom remains largely unknown. Geminiviruses comprise a large family of plant-infecting, single-stranded DNA viruses that cause serious crop losses worldwide. Here, we report evidence and insight into the replication of the geminivirus tomato yellow leaf curl virus (TYLCV) in the whitefly (Bemisia tabaci) vector and that replication is mainly in the salivary glands. We found that TYLCV induces DNA synthesis machinery, proliferating cell nuclear antigen (PCNA) and DNA polymerase δ (Polδ), to establish a replication-competent environment in whiteflies. TYLCV replication-associated protein (Rep) interacts with whitefly PCNA, which recruits DNA Polδ for virus replication. In contrast, another geminivirus, papaya leaf curl China virus (PaLCuCNV), does not replicate in the whitefly vector. PaLCuCNV does not induce DNA-synthesis machinery, and the Rep does not interact with whitefly PCNA. Our findings reveal important mechanisms by which a plant DNA virus replicates across the kingdom barrier in an insect and may help to explain the global spread of this devastating pathogen.


Assuntos
Begomovirus/fisiologia , DNA Polimerase III/metabolismo , Hemípteros/virologia , Proteínas de Insetos/metabolismo , Insetos Vetores/virologia , Replicação Viral , Animais , Begomovirus/genética , DNA Polimerase III/genética , Gossypium/parasitologia , Gossypium/virologia , Hemípteros/patogenicidade , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Insetos Vetores/patogenicidade , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia
10.
J Virol ; 95(13): e0013621, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33853958

RESUMO

Arboviruses are transmitted by specific vectors, and the reasons for this specificity are not fully understood. One contributing factor is the existence of tissue barriers within the vector such as the midgut escape barrier. We used microRNA (miRNA) targeting of Sindbis virus (SINV) to study how replication in midgut cells contributes to overcoming this barrier in the mosquito Aedes aegypti. SINV constructs were designed to be attenuated specifically in midgut cells by inserting binding sites for midgut-specific miRNAs into either the 3' untranslated region (MRE3'miRT) or the structural open reading frame (MRE-ORFmiRT) of the SINV genome. Both miRNA-targeted viruses replicated less efficiently than control viruses in the presence of these miRNAs. When mosquitoes were given infectious blood meals containing miRNA-targeted viruses, only around 20% (MRE3'miRT) or 40% (MRE-ORFmiRT) of mosquitoes developed disseminated infection. In contrast, dissemination occurred in almost all mosquitoes fed control viruses. Deep sequencing of virus populations from individual mosquitoes ruled out selection for mutations in the inserted target sequences as the cause for dissemination in these mosquitoes. In mosquitoes that became infected with miRNA-targeted viruses, titers were equivalent to those of mosquitoes infected with control virus in both the midgut and the carcass, and there was no evidence of a threshold titer necessary for dissemination. Instead, it appeared that if infection was successfully established in the midgut, replication and dissemination were largely normal. Our results support the hypothesis that replication is an important factor in allowing SINV to overcome the midgut escape barrier but hint that other factors are also likely involved. IMPORTANCE When a mosquito ingests an arbovirus during a blood meal, the arbovirus must escape from the midgut of the vector and infect the salivary glands in order to be transmitted to a new host. We used tissue-specific miRNA targeting to examine the requirement for Sindbis virus (SINV) to replicate in midgut epithelium in order to cause disseminated infection in the mosquito Aedes aegypti. Our results indicate that specifically reducing the ability of SINV to replicate in the mosquito midgut reduces its overall ability to establish infection in the mosquito, but if infection is established, replication and dissemination occur normally. These results are consistent with an importance for replication in the midgut epithelium in aiding arboviruses in crossing the midgut barrier.


Assuntos
Aedes/virologia , Trato Gastrointestinal/virologia , MicroRNAs/genética , Sindbis virus/crescimento & desenvolvimento , Replicação Viral/genética , Animais , Linhagem Celular , Cricetinae , Mosquitos Vetores/virologia , Especificidade de Órgãos , Glândulas Salivares/virologia , Sindbis virus/genética , Sindbis virus/metabolismo
11.
J Virol ; 95(17): e0069321, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34132572

RESUMO

The cytomegaloviruses (CMVs) spread systemically via myeloid cells and demonstrate broad tissue tropism. Human CMV (HCMV) UL128 encodes a component of the virion pentameric complex (PC) that is important for entry into epithelial cells and cell-cell spread in vitro. It possesses N-terminal amino acid sequences similar to those of CC chemokines. While the species specificity of HCMV precludes confirmation of UL128 function in vivo, UL128-like counterparts in experimental animals have demonstrated a role in salivary gland infection. How they achieve this has not been defined, although effects on monocyte tropism and immune evasion have been proposed. By tracking infected cells following lung infection, we show that although the UL128-like protein in mouse CMV (MCMV) (designated MCK-2) facilitated entry into lung macrophages, it was dispensable for subsequent viremia mediated by CD11c+ dendritic cells (DCs) and extravasation to the salivary glands. Notably, MCK-2 was important for the transfer of MCMV infection from DCs to salivary gland acinar epithelial cells. Acinar cell infection of MCMVs deleted of MCK-2 was not rescued by T-cell depletion, arguing against an immune evasion mechanism for MCK-2 in the salivary glands. In contrast to lung infection, peritoneal MCMV inoculation yields mixed monocyte/DC viremia. In this setting, MCK-2 again promoted DC-dependent infection of salivary gland acinar cells, but it was not required for monocyte-dependent spread to the lung. Thus, the action of MCK-2 in MCMV spread was specific to DC-acinar cell interactions. IMPORTANCE Cytomegaloviruses (CMVs) establish myeloid cell-associated viremias and persistent shedding from the salivary glands. In vitro studies with human CMV (HCMV) have implicated HCMV UL128 in epithelial tropism, but its role in vivo is unknown. Here, we analyzed how a murine CMV (MCMV) protein with similar physical properties, designated MCK-2, contributes to host colonization. We demonstrate that MCK-2 is dispensable for initial systemic spread from primary infection sites but within the salivary gland facilitates the transfer of infection from dendritic cells (DCs) to epithelial acinar cells. Virus transfer from extravasated monocytes to the lungs did not require MCK-2, indicating a tissue-specific effect. These results provide new information about how persistent viral tropism determinants operate in vivo.


Assuntos
Células Acinares/virologia , Quimiocinas CC/metabolismo , Células Dendríticas/virologia , Infecções por Herpesviridae/virologia , Muromegalovirus/fisiologia , Glândulas Salivares/virologia , Proteínas Virais/metabolismo , Replicação Viral , Células Acinares/metabolismo , Animais , Quimiocinas CC/genética , Células Dendríticas/metabolismo , Feminino , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Camundongos , Camundongos Endogâmicos BALB C , Glândulas Salivares/metabolismo , Proteínas Virais/genética , Vírion , Internalização do Vírus
12.
PLoS Pathog ; 16(8): e1008710, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817722

RESUMO

Rice stripe virus (RSV, genus Tenuivirus, family Phenuiviridae) is the causal agent of rice stripe disease transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a persistent propagative manner. The midgut and salivary glands of SBPH are the first and last barriers to the viral circulation and transmission processes, respectively; however, the precise mechanisms used by RSV to cross these organs and transmit to rice plants have not been fully elucidated. We obtained the full-length cDNA sequence of L. striatellus α-tubulin 2 (LsTUB) and found that RSV infection increased the level of LsTUB in vivo. Furthermore, LsTUB was shown to co-localize with RSV nonstructural protein 3 (NS3) in vivo and bound NS3 at positions 74-76 and 80-82 in vitro. Transient gene silencing of LsTUB expression caused a significant reduction in detectable RSV loads and viral NS3 expression levels, but had no effect on NS3 silencing suppressor activity and viral replication in insect cells. However, suppression of LsTUB attenuated viral spread in the bodies of SBPHs and decreased RSV transmission rates to rice plants. Electrical penetration graphs (EPG) showed that LsTUB knockdown by RNAi did not impact SBPH feeding; therefore, the reduction in RSV transmission rates was likely caused by a decrease in viral loads inside the planthopper. These findings suggest that LsTUB mediates the passage of RSV through midgut and salivary glands and leads to successful horizontal transmission.


Assuntos
Hemípteros/metabolismo , Proteínas de Insetos/metabolismo , Insetos Vetores/metabolismo , Oryza/virologia , Doenças das Plantas/virologia , Tenuivirus/fisiologia , Tubulina (Proteína)/metabolismo , Animais , Sistema Digestório/metabolismo , Sistema Digestório/virologia , Hemípteros/genética , Hemípteros/virologia , Proteínas de Insetos/genética , Insetos Vetores/genética , Insetos Vetores/virologia , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia , Tubulina (Proteína)/genética
13.
PLoS Pathog ; 16(8): e1008754, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776975

RESUMO

Arbovirus infection of Aedes aegypti salivary glands (SGs) determines transmission. However, there is a dearth of knowledge on SG immunity. Here, we characterized SG immune response to dengue, Zika and chikungunya viruses using high-throughput transcriptomics. We also describe a transcriptomic response associated to apoptosis, blood-feeding and lipid metabolism. The three viruses differentially regulate components of Toll, Immune deficiency (IMD) and c-Jun N- terminal Kinase (JNK) pathways. However, silencing of the Toll and IMD pathway components showed variable effects on SG infection by each virus. In contrast, regulation of the JNK pathway produced consistent responses in both SGs and midgut. Infection by the three viruses increased with depletion of the activator Kayak and decreased with depletion of the negative regulator Puckered. Virus-induced JNK pathway regulates the complement factor, Thioester containing protein-20 (TEP20), and the apoptosis activator, Dronc, in SGs. Individual and co-silencing of these genes demonstrate their antiviral effects and that both may function together. Co-silencing either TEP20 or Dronc with Puckered annihilates JNK pathway antiviral effect. Upon infection in SGs, TEP20 induces antimicrobial peptides (AMPs), while Dronc is required for apoptosis independently of TEP20. In conclusion, we revealed the broad antiviral function of JNK pathway in SGs and showed that it is mediated by a TEP20 complement and Dronc-induced apoptosis response. These results expand our understanding of the immune arsenal that blocks arbovirus transmission.


Assuntos
Aedes/imunologia , Apoptose , Febre de Chikungunya/imunologia , Proteínas do Sistema Complemento/imunologia , Dengue/imunologia , Sistema de Sinalização das MAP Quinases , Glândulas Salivares/imunologia , Infecção por Zika virus/imunologia , Aedes/virologia , Animais , Febre de Chikungunya/metabolismo , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/virologia , Vírus Chikungunya/imunologia , Proteínas do Sistema Complemento/metabolismo , Dengue/metabolismo , Dengue/prevenção & controle , Dengue/virologia , Vírus da Dengue/imunologia , Feminino , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Insetos Vetores/imunologia , Insetos Vetores/virologia , Glândulas Salivares/virologia , Transcriptoma , Replicação Viral , Zika virus/imunologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
14.
Am J Pathol ; 191(12): 2064-2071, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34506752

RESUMO

Current understanding of coronavirus disease 2019 (COVID-19) pathophysiology is limited by disease heterogeneity, complexity, and a paucity of studies assessing patient tissues with advanced molecular tools. Rapid autopsy tissues were evaluated using multiscale, next-generation RNA-sequencing methods (bulk, single-nuclei, and spatial transcriptomics) to provide unprecedented molecular resolution of COVID-19-induced damage. Comparison of infected/uninfected tissues revealed four major regulatory pathways. Effectors within these pathways could constitute novel therapeutic targets, including the complement receptor C3AR1, calcitonin receptor-like receptor, or decorin. Single-nuclei RNA sequencing of olfactory bulb and prefrontal cortex highlighted remarkable diversity of coronavirus receptors. Angiotensin-converting enzyme 2 was rarely expressed, whereas basigin showed diffuse expression, and alanyl aminopeptidase, membrane, was associated with vascular/mesenchymal cell types. Comparison of lung and lymph node tissues from patients with different symptoms (one had died after a month-long hospitalization with multiorgan involvement, and the other had died after a few days of respiratory symptoms) with digital spatial profiling resulted in distinct molecular phenotypes. Evaluation of COVID-19 rapid autopsy tissues with advanced molecular techniques can identify pathways and effectors, map diverse receptors at the single-cell level, and help dissect differences driving diverging clinical courses among individual patients. Extension of this approach to larger data sets will substantially advance the understanding of the mechanisms behind COVID-19 pathophysiology.


Assuntos
COVID-19/genética , COVID-19/patologia , SARS-CoV-2/patogenicidade , Autopsia , Progressão da Doença , Perfilação da Expressão Gênica , Coração/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Rim/metabolismo , Rim/patologia , Rim/virologia , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/patologia , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Bulbo Olfatório/virologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/virologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Glândulas Salivares/virologia , Análise de Sequência de RNA , Transdução de Sinais/genética
15.
J Pathol ; 254(3): 239-243, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33834497

RESUMO

The ability of the new coronavirus SARS-CoV-2 to spread and contaminate is one of the determinants of the COVID-19 pandemic status. SARS-CoV-2 has been detected in saliva consistently, with similar sensitivity to that observed in nasopharyngeal swabs. We conducted ultrasound-guided postmortem biopsies in COVID-19 fatal cases. Samples of salivary glands (SGs; parotid, submandibular, and minor) were obtained. We analyzed samples using RT-qPCR, immunohistochemistry, electron microscopy, and histopathological analysis to identify SARS-CoV-2 and elucidate qualitative and quantitative viral profiles in salivary glands. The study included 13 female and 11 male patients, with a mean age of 53.12 years (range 8-83 years). RT-qPCR for SARS-CoV-2 was positive in 30 SG samples from 18 patients (60% of total SG samples and 75% of all cases). Ultrastructural analyses showed spherical 70-100 nm viral particles, consistent in size and shape with the Coronaviridae family, in the ductal lining cell cytoplasm, acinar cells, and ductal lumen of SGs. There was also degeneration of organelles in infected cells and the presence of a cluster of nucleocapsids, which suggests viral replication in SG cells. Qualitative histopathological analysis showed morphologic alterations in the duct lining epithelium characterized by cytoplasmic and nuclear vacuolization, as well as nuclear pleomorphism. Acinar cells showed degenerative changes of the zymogen granules and enlarged nuclei. Ductal epithelium and serous acinar cells showed intense expression of ACE2 and TMPRSS receptors. An anti-SARS-CoV-2 antibody was positive in 8 (53%) of the 15 tested cases in duct lining epithelial cells and acinar cells of major SGs. Only two minor salivary glands were positive for SARS-CoV-2 by immunohistochemistry. Salivary glands are a reservoir for SARS-CoV-2 and provide a pathophysiological background for studies that indicate the use of saliva as a diagnostic method for COVID-19 and highlight this biological fluid's role in spreading the disease. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
COVID-19/virologia , SARS-CoV-2/patogenicidade , Saliva/virologia , Glândulas Salivares/virologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/epidemiologia , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reino Unido , Adulto Jovem
16.
Proc Natl Acad Sci U S A ; 116(38): 19136-19144, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31488709

RESUMO

Zika virus (ZIKV) is an arthropod-borne flavivirus predominantly transmitted by Aedes aegypti mosquitoes and poses a global human health threat. All flaviviruses, including those that exclusively replicate in mosquitoes, produce a highly abundant, noncoding subgenomic flavivirus RNA (sfRNA) in infected cells, which implies an important function of sfRNA during mosquito infection. Currently, the role of sfRNA in flavivirus transmission by mosquitoes is not well understood. Here, we demonstrate that an sfRNA-deficient ZIKV (ZIKVΔSF1) replicates similar to wild-type ZIKV in mosquito cell culture but is severely attenuated in transmission by Ae. aegypti after an infectious blood meal, with 5% saliva-positive mosquitoes for ZIKVΔSF1 vs. 31% for ZIKV. Furthermore, viral titers in the mosquito saliva were lower for ZIKVΔSF1 as compared to ZIKV. Comparison of mosquito infection via infectious blood meals and intrathoracic injections showed that sfRNA is important for ZIKV to overcome the mosquito midgut barrier and to promote virus accumulation in the saliva. Next-generation sequencing of infected mosquitoes showed that viral small-interfering RNAs were elevated upon ZIKVΔSF1 as compared to ZIKV infection. RNA-affinity purification followed by mass spectrometry analysis uncovered that sfRNA specifically interacts with a specific set of Ae. aegypti proteins that are normally associated with RNA turnover and protein translation. The DEAD/H-box helicase ME31B showed the highest affinity for sfRNA and displayed antiviral activity against ZIKV in Ae. aegypti cells. Based on these results, we present a mechanistic model in which sfRNA sequesters ME31B to promote flavivirus replication and virion production to facilitate transmission by mosquitoes.


Assuntos
Aedes/virologia , RNA Helicases DEAD-box/metabolismo , Proteínas de Insetos/metabolismo , Mosquitos Vetores/virologia , RNA Viral/genética , Infecção por Zika virus/transmissão , Zika virus/genética , Aedes/imunologia , Animais , Chlorocebus aethiops , RNA Helicases DEAD-box/genética , Trato Gastrointestinal/virologia , Genoma Viral , Proteínas de Insetos/genética , Glândulas Salivares/virologia , Replicação Viral , Zika virus/imunologia , Infecção por Zika virus/imunologia , Infecção por Zika virus/virologia
17.
J Virol ; 94(22)2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-32847854

RESUMO

The cloning of herpesviruses as bacterial artificial chromosomes (BACs) has revolutionized the study of herpesvirus biology, allowing rapid and precise manipulation of viral genomes. Several clinical strains of human cytomegalovirus (HCMV) have been cloned as BACs; however, no low-passage strains of murine CMV (MCMV), which provide a model mimicking these isolates, have been cloned. Here, the low-passage G4 strain of was BAC cloned. G4 carries an m157 gene that does not ligate the natural killer (NK) cell-activating receptor, Ly49H, meaning that unlike laboratory strains of MCMV, this virus replicates well in C57BL/6 mice. This BAC clone exhibited normal replication during acute infection in the spleen and liver but was attenuated for salivary gland tropism. Next-generation sequencing revealed a C-to-A mutation at nucleotide position 188422, located in the 3' untranslated region of sgg1, a spliced gene critical for salivary gland tropism. Repair of this mutation restored tropism for the salivary glands. Transcriptional analysis revealed a novel spliced gene within the sgg1 locus. This small open reading frame (ORF), sgg1.1, starts at the 3' end of the first exon of sgg1 and extends exon 2 of sgg1. This shorter spliced gene is prematurely terminated by the nonsense mutation at nt 188422. Sequence analysis of tissue culture-passaged virus demonstrated that sgg1.1 was stable, although other mutational hot spots were identified. The G4 BAC will allow in vivo studies in a broader range of mice, avoiding the strong NK cell responses seen in B6 mice with other MCMV BAC-derived MCMVs.IMPORTANCE Murine cytomegalovirus (MCMV) is widely used as a model of human CMV (HCMV) infection. However, this model relies on strains of MCMV that have been serially passaged in the laboratory for over four decades. These laboratory strains have been cloned as bacterial artificial chromosomes (BACs), which permits rapid and precise manipulation. Low-passage strains of MCMV add to the utility of the mouse model of HCMV infection but do not exist as cloned BACs. This study describes the first such low-passage MCMV BAC. This BAC-derived G4 was initially attenuated in vivo, with subsequent full genomic sequencing revealing a novel spliced transcript required for salivary gland tropism. These data suggest that MCMV, like HCMV, undergoes tissue culture adaptation that can limit in vivo growth and supports the use of BAC clones as a way of standardizing viral strains and minimizing interlaboratory strain variation.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Muromegalovirus/genética , Glândulas Salivares/virologia , Tropismo/fisiologia , Animais , DNA Recombinante , Feminino , Genoma Viral , Infecções por Herpesviridae/virologia , Humanos , Células Matadoras Naturais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Fases de Leitura Aberta , Proteínas Virais/genética
18.
J Virol ; 94(21)2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796073

RESUMO

Japanese encephalitis virus (JEV) is a viral zoonosis that can cause viral encephalitis, death, and disability. Although the Culex mosquito is the primary vector of JEV, little is known about JEV transmission by this kind of mosquito. Here, we found that mosquito defensin facilitated the adsorption of JEV on target cells via the defensin/lipoprotein receptor-related protein 2 (LRP2) axis. Mosquito defensin bound the ED III domain of the viral envelope (E) protein and directly mediated efficient virus adsorption on the target cell surface; the receptor LRP2, which is expressed on the cell surface, affected defensin-dependent adsorption. As a result, mosquito defensin enhanced JEV infection in the salivary gland, increasing the possibility of viral transmission by mosquitoes. These findings demonstrate the novel role of mosquito defensin in JEV infection and the mechanisms through which the virus exploits mosquito defensin for infection and transmission.IMPORTANCE In this study, we observed the complex roles of mosquito defensin in JEV infection; mosquito defensin exhibited a weak antiviral effect but strongly enhanced binding. In the latter, defensin directly binds the ED III domain of the viral E protein and promotes the adsorption of JEV to target cells by interacting with lipoprotein receptor-related protein 2 (LRP2), thus accelerating virus entry. Together, our results indicate that mosquito defensin plays an important role in facilitating JEV infection and potential transmission.


Assuntos
Culex/genética , Defensinas/genética , Vírus da Encefalite Japonesa (Espécie)/genética , Proteínas de Insetos/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mosquitos Vetores/genética , Proteínas do Envelope Viral/genética , Adsorção , Animais , Culex/virologia , Defensinas/metabolismo , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Encefalite Japonesa/transmissão , Encefalite Japonesa/virologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas de Insetos/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Mosquitos Vetores/virologia , Ligação Proteica , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus
19.
Tumour Biol ; 43(1): 249-259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602506

RESUMO

BACKGROUND: The etiology of salivary gland tumors is mainly unknown. The anatomical location of the salivary glands, with the mucosal pathway to the oral cavity and its rich microbiome, raises the question of potential viral background. OBJECTIVE: This study focuses on the potential presence of herpes-, polyoma- and parvoviruses in pleomorphic adenoma (PA), recurrent pleomorphic adenoma (RPA) and carcinoma ex pleomorphic adenoma (CaxPA). METHODS: Thirty different viruses were analyzed by PCR-based assays in 68 formalin-fixed paraffin-embedded salivary gland tumors (25 PA, 31 RPA and 12 CaxPA). RESULTS: Virus DNA was detected altogether in 19/68 (28%) tumor samples. Human herpesviruses 6B and 7 (HHV-6B and HHV-7) and Epstein-Barr virus (EBV) were frequently and almost exclusively found in CaxPA (5/12, 7/12, and 3/12, respectively). Within the 7 CaxPA that were virus-positive, 3 samples contained 3, and 1 sample even 4, different viruses. Infrequent viral positivity was shown for parvovirus B19 and cutavirus, as well as Merkel cell and Malawi polyomaviruses. CONCLUSIONS: Our unexpected finding of herpesvirus DNA almost exclusively in CaxPA tissues deserves further in-depth studies.


Assuntos
Adenoma Pleomorfo/virologia , Neoplasias das Glândulas Salivares/virologia , DNA Viral/genética , Infecções por Vírus Epstein-Barr/virologia , Feminino , Herpesviridae/genética , Infecções por Herpesviridae/virologia , Herpesvirus Humano 4/genética , Humanos , Masculino , Pessoa de Meia-Idade , Glândulas Salivares/virologia
20.
Cell Microbiol ; 22(7): e13200, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32141690

RESUMO

Dengue virus (DENV) comprises of four serotypes (DENV-1 to -4) and is medically one of the most important arboviruses (arthropod-borne virus). DENV infection is a major human health burden and is transmitted between humans by the insect vector, Aedes aegypti. Ae. aegypti ingests DENV while feeding on infected humans, which traverses through its gut, haemolymph and salivary glands of the mosquito before being injected into a healthy human. During this process of transmission, DENV must interact with many proteins of the insect vector, which are important for its successful transmission. Our study focused on the identification and characterisation of interacting protein partners in Ae. aegypti to DENV. Since domain III (DIII) of envelope protein (E) is exposed on the virion surface and is involved in virus entry into various cells, we performed phage display library screening against domain III of the envelope protein (EDIII) of DENV-2. A peptide sequence showing similarity to lachesin protein was found interacting with EDIII. The lachesin protein was cloned, heterologously expressed, purified and used for in vitro interaction studies. Lachesin protein interacted with EDIII and also with DENV. Further, lachesin protein was localised in neuronal cells of different organs of Ae. aegypti by confocal microscopy. Blocking of lachesin protein in Ae. aegypti with anti-lachesin antibody resulted in a significant reduction in DENV replication.


Assuntos
Aedes/metabolismo , Aedes/virologia , Vírus da Dengue/fisiologia , Compostos de Amônio Quaternário/metabolismo , Replicação Viral/fisiologia , Animais , Dengue/virologia , Feminino , Imunoglobulinas/química , Mosquitos Vetores/virologia , Compostos de Amônio Quaternário/química , Glândulas Salivares/metabolismo , Glândulas Salivares/virologia , Proteínas do Envelope Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA