Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Molecules ; 26(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430517

RESUMO

This study evaluates the kinetic hydrate inhibition (KHI) performance of four quaternary ammonium hydroxides (QAH) on mixed CH4 + CO2 hydrate systems. The studied QAHs are; tetraethylammonium hydroxide (TEAOH), tetrabutylammonium hydroxide (TBAOH), tetramethylammonium hydroxide (TMAOH), and tetrapropylammonium hydroxide (TPrAOH). The test was performed in a high-pressure hydrate reactor at temperatures of 274.0 K and 277.0 K, and a concentration of 1 wt.% using the isochoric cooling method. The kinetics results suggest that all the QAHs potentially delayed mixed CH4 + CO2 hydrates formation due to their steric hindrance abilities. The presence of QAHs reduced hydrate formation risk than the conventional hydrate inhibitor, PVP, at higher subcooling conditions. The findings indicate that increasing QAHs alkyl chain lengths increase their kinetic hydrate inhibition efficacies due to better surface adsorption abilities. QAHs with longer chain lengths have lesser amounts of solute particles to prevent hydrate formation. The outcomes of this study contribute significantly to current efforts to control gas hydrate formation in offshore petroleum pipelines.


Assuntos
Hidróxido de Amônia/química , Dióxido de Carbono/química , Metano/química , Compostos de Amônio Quaternário/química , Algoritmos , Cinética , Modelos Teóricos , Transição de Fase
2.
Molecules ; 26(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513993

RESUMO

Amikacin (Amk) analysis and quantitation, for pharmacokinetics studies and other types of investigations, is conventionally performed after extraction from plasma. No report exists so far regarding drug extraction from whole blood (WB). This can represent an issue since quantification in plasma does not account for drug partitioning to the blood cell compartment, significantly underrating the drug fraction reaching the blood circulation. In the present work, the optimization of an extraction method of Amk from murine WB has been described. The extraction yield was measured by RP-HPLC-UV after derivatization with 1-fluoro-2,4-dinitrobenzene, which produced an appreciably stable derivative with a favorable UV/vis absorption. Several extraction conditions were tested: spiked Amk disulfate solution/acetonitrile/WB ratio; presence of organic acids and/or ammonium hydroxide and/or ammonium acetate in the extraction mixture; re-dissolution of the supernatant in water after a drying process under vacuum; treatment of the supernatant with a solution of inorganic salts. The use of 5% (by volume) of ammonium hydroxide in a hydro-organic solution with acetonitrile, allowed the almost quantitative (95%) extraction of the drug from WB.


Assuntos
Amicacina/química , Sangue/metabolismo , Plasma/química , Acetonitrilas/química , Hidróxido de Amônia/química , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Feminino , Camundongos
3.
Anal Chem ; 91(21): 13907-13915, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31549812

RESUMO

Chromatographic separation, analysis and characterization of complex highly polar analyte mixtures can often be very challenging using conventional separation approaches. Analysis and purification of hydrophilic compounds have been dominated by liquid chromatography (LC) and ion-exchange chromatography (IC), with sub/supercritical fluid chromatography (SFC) moving toward these new applications beyond traditional chiral separations. However, the low polarity of supercritical carbon dioxide (CO2) has limited the use of SFC for separation and purification in the bioanalytical space, especially at the preparative scale. Reaction mixtures of highly polar species are strongly retained even using polar additives in alcohol modifier/CO2 based eluents. Herein, we overcome these problems by introducing chaotropic effects in SFC separations using a nontraditional mobile phase mixture consisting of ammonium hydroxide combined with high water concentration in the alcohol modifier and carbon dioxide. The separation mechanism was here elucidated based on extensive IC-CD (IC couple to conductivity detection) analysis of cyclic peptides subjected to the SFC conditions, indicating the in situ formation of a bicarbonate counterion (HCO3-). In contrast to other salts, HCO3- was found to play a crucial role acting as a chaotropic agent that disrupts undesired H-bonding interactions, which was demonstrated by size-exclusion chromatography coupled with differential hydrogen-deuterium exchange-mass spectrometry experiments (SEC-HDX-MS). In addition, the use of NH4OH in water-rich MeOH modifiers was compared to other commonly used basic additives (diethylamine, triethylamine, and isobutylamine) showing unmatched chromatographic and MS detection performance in terms of peak shape, retention, selectivity, and ionization as well as a completely different selectivity and retention behavior. Moreover, relative to ammonium formate and ammonium acetate in water-rich methanol modifier, the ammonium hydroxide in water additive showed better chromatographic performance with enhanced sensitivity. Further optimization of NH4OH and H2O levels in conjunction with MeOH/CO2 served to furnish a generic modifier (0.2% NH4OH, 5% H2O in MeOH) that enables the widespread transition of SFC to domains that were previously considered out of its scope. This approach is extensively applied to the separation, analysis, and purification of multicomponent reaction mixtures of closely related polar pharmaceuticals using readily available SFC instrumentation. The examples described here cover a broad spectrum of bioanalytical and pharmaceutical applications including analytical and preparative chromatography of organohalogenated species, nucleobases, nucleosides, nucleotides, sulfonamides, and cyclic peptides among other highly polar species.


Assuntos
Hidróxido de Amônia/química , Cromatografia com Fluido Supercrítico/métodos , Peptídeos/isolamento & purificação , Preparações Farmacêuticas/isolamento & purificação , Água/química , Dióxido de Carbono/química , Ligação de Hidrogênio , Espectrometria de Massa com Troca Hidrogênio-Deutério/métodos , Interações Hidrofóbicas e Hidrofílicas , Metanol/química
4.
Analyst ; 144(15): 4582-4588, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31236555

RESUMO

Plasmonic nanostructures have been broadly used for chemical detections, but their applications are limited by slow detection rates, insufficient visual resolution and sensitivity due to the chemical and structural stability of conventional plasmonic nanomaterials. It is thus essential to develop strategies to enhance the detection kinetics while promoting their excellent plasmonic properties. In this work, a colorimetric assay for HCHO measurement is developed based on the fact that HCHO can react with Tollens' reagent to anisotropically deposit a layer of silver shells onto the bone-shaped gold nanorod (Au NR) cores. Compared to the routine rod-shaped Au NRs, the bone-shaped Au NRs facilitate the deposition of Ag onto the sunken section due to their unique concave structures, giving rise to fast reaction kinetics and detection rate. It is also important to point out that the surface ligand exchange from CTAB to CTAC is helpful to accelerate the deposition of silver onto Au NRs, which significantly shortens the reaction time. The preferential deposition of Ag on the concave Au NRs induces more dramatic morphology changes and therefore promotes the plasmonic shift of the bone-shaped Au NRs and improves the sensing efficiency. Correspondingly, the apparent color of the solution changes from light gray to dark blue, purple, red, orange and finally to yellow as the longitudinal localized surface plasmon resonance (LSPR) band shifts from 710 to 500 nm along with the emergence of a new LSPR band at 400 nm almost covering the full visible region. The colorimetric method developed enables sensitive detection of HCHO with a low detection limit (1 nM), wide linear range (0.1-50 µM), high visual resolution and good specificity against other common indoor gases. It was successfully applied to the detection of gaseous HCHO present in the air collected from a furniture plaza, showing its potential practicality for on-site HCHO analysis.


Assuntos
Poluentes Atmosféricos/análise , Cetrimônio/química , Formaldeído/análise , Ouro/química , Nanotubos/química , Hidróxido de Amônia/química , Anisotropia , Colorimetria/métodos , Limite de Detecção , Nitrato de Prata/química , Ressonância de Plasmônio de Superfície/métodos
5.
Int J Mol Sci ; 20(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783473

RESUMO

A comparative study of the impact of n-butylamine and traditionally used additives (ammonium hydroxide and formic acid) on the efficiency of the electrospray ionization (ESI) process for the enhancement of metabolite coverage was performed by direct injection mass spectrometry (MS) analysis in negative mode. Evaluation of obtained MS data showed that n-butylamine is one of the most effective additives for the analysis of metabolite composition in ESI in negative ion mode (ESI(-)) The limitations of the use of n-butylamine and other alkylamines in the analysis of metabolic composition and a decontamination procedure that can reduce MS device contamination after their application are discussed. The proposed procedure allows the performance of high-sensitivity analysis of low-molecular-weight compounds on the same MS device in both polarities.


Assuntos
Butilaminas/química , Plasma/química , Plasma/metabolismo , Hidróxido de Amônia/química , Formiatos/química , Espectrometria de Massas por Ionização por Electrospray/métodos
6.
Rapid Commun Mass Spectrom ; 32(3): 201-211, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29105990

RESUMO

RATIONALE: Mobile-phase additives in liquid chromatography/mass spectrometry (LC/MS) are used to improve peak shape, analyte ionization efficiency and method coverage. Both basic and acidic mobile phases have been used successfully for negative electrospray ionization (ESI), but very few systematic investigations exist to date to justify the choice of mobile phase. Acetic acid was previously shown to improve ionization in untargeted metabolomics of urine, but has not been investigated in lipidomics. The goal of this study was to systematically compare the performance of acetic acid to that of other commonly employed additives in negative LC/ESI-MS lipidomics. METHODS: The performance of acetic acid was compared to that of commonly used mobile-phase additives in lipidomics, namely ammonium acetate, ammonium acetate with acetic acid and ammonium hydroxide, using lipid standard solutions containing representatives of major mammalian lipid subclasses and isopropanol-precipitated human plasma. This design allowed comparison of the influence of additive and additive concentration on lipid signal intensity, lipid peak shape and lipid coverage in both simple and complex biological matrices using both Orbitrap and quadrupole time-of-flight MS platforms with different ESI source designs. RESULTS: Ammonium hydroxide caused 2- to 1000-fold signal suppression of all lipid classes in comparison to acetic acid. In comparison to ammonium acetate, acetic acid increased lipid signal intensity from 2- to 19-fold for 11 lipid subclasses, and decreased ionization efficiency only for ceramide and phosphatidylcholine lipid classes which can be effectively ionized in positive ESI mode. The improved ionization efficiency using acetic acid also increased lipid coverage by 21-50% versus ammonium acetate additive. CONCLUSIONS: Acetic acid at a concentration of 0.02% (v/v) is the suggested choice as a mobile-phase additive for lipidomics and targeted lipid profiling with negative LC/ESI-MS based on signal enhancement and improved lipid coverage compared to ammonium acetate, ammonium acetate with acetic acid and ammonium hydroxide mobile phases.


Assuntos
Ácido Acético/química , Análise Química do Sangue/métodos , Cromatografia Líquida/métodos , Lipídeos/sangue , Espectrometria de Massas por Ionização por Electrospray/métodos , Acetatos/química , Hidróxido de Amônia/química , Humanos
7.
Rapid Commun Mass Spectrom ; 32(11): 882-888, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29575162

RESUMO

RATIONALE: N-linked glycan analysis of recombinant therapeutic proteins, such as monoclonal antibodies, Fc-fusion proteins, and antibody-drug conjugates, provides valuable information regarding protein therapeutics glycosylation profile. Both qualitative identification and quantitative analysis of N-linked glycans on recombinant therapeutic proteins are critical analytical tasks in the biopharma industry during the development of a biotherapeutic. METHODS: Currently, such analyses are mainly carried out using capillary electrophoresis/laser-induced fluorescence (CE/LIF), liquid chromatography/fluorescence (LC/FLR), and liquid chromatography/fluorescence/mass spectrometry (LC/FLR/MS) technologies. N-linked glycans are first released from glycoproteins by enzymatic digestion, then labeled with fluorescence dyes for subsequent CE or LC separation, and LIF or MS detection. Here we present an on-line CE/LIF/MS N-glycan analysis workflow that incorporates the fluorescent Teal™ dye and an electrokinetic pump-based nanospray sheath liquid capillary electrophoresis/mass spectrometry (CE/MS) ion source. RESULTS: Electrophoresis running buffer systems using ammonium acetate and ammonium hydroxide were developed for the negative ion mode CE/MS analysis of fluorescence-labeled N-linked glycans. Results show that on-line CE/LIF/MS analysis can be readily achieved using this versatile CE/MS ion source on common CE/MS instrument platforms. CONCLUSIONS: This on-line CE/LIF/MS method using Teal™ fluorescent dye and electrokinetic pump-based nanospray sheath liquid CE/MS coupling technology holds promise for on-line quantitation and identification of N-linked glycans on recombinant therapeutic proteins.


Assuntos
Eletroforese Capilar/métodos , Corantes Fluorescentes/química , Espectrometria de Massas/métodos , Polissacarídeos/análise , Hidróxido de Amônia/química , Soluções Tampão , Desenho de Equipamento , Fluorescência , Lasers , Espectrometria de Massas/instrumentação , Nanoestruturas , Sistemas On-Line , Polissacarídeos/química , Pirenos/química , Fluxo de Trabalho
8.
Ther Drug Monit ; 40(2): 230-236, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29256969

RESUMO

BACKGROUND: Pazopanib is an angiogenesis inhibitor approved for renal cell carcinoma and soft-tissue sarcoma. Studies indicate that treatment with pazopanib could be optimized by adapting the dose based on measured pazopanib plasma concentrations. METHODS: We describe the validation and clinical application of a fast and straightforward method for the quantification of pazopanib in human plasma for the purpose of therapeutic drug monitoring and bioanalytical support of clinical trials. Stable isotopically labeled C,H3-pazopanib was used as internal standard. Plasma samples were prepared for analysis by protein precipitation using methanol and diluted with 10 mmol/L ammonium hydroxide buffer. Chromatographic separation was performed on a C18 column using isocratic elution with ammonium hydroxide in water and methanol. For detection, a tandem mass spectrometer, equipped with a turbo ion spray interface was used in positive ion mode at m/z 438 → m/z 357 for pazopanib and m/z 442 → m/z 361 for the internal standard. RESULTS: Final runtime was 2.5 minutes. All validated parameters were within pre-established limits and fulfilled the FDA and EMA requirements for bioanalytical method validation. After completion of the validation, the routine application of the method was tested by analyzing clinical study samples that were collected for the purpose of therapeutic drug monitoring. CONCLUSIONS: In conclusion, the described method was successfully validated and was found to be robust for routine application to analyze samples from cancer patients treated with pazopanib.


Assuntos
Inibidores da Angiogênese/sangue , Bioensaio/métodos , Cromatografia Líquida/métodos , Pirimidinas/sangue , Sulfonamidas/sangue , Espectrometria de Massas em Tandem/métodos , Hidróxido de Amônia/química , Monitoramento de Medicamentos/métodos , Humanos , Indazóis , Reprodutibilidade dos Testes
9.
Proteomics ; 16(14): 1970-4, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27139031

RESUMO

Histone proteins are essential elements for DNA packaging. Moreover, the PTMs that are extremely abundant on these proteins, contribute in modeling chromatin structure and recruiting enzymes involved in gene regulation, DNA repair and chromosome condensation. This fundamental aspect, together with the epigenetic inheritance of histone PTMs, underlines the importance of having biochemical techniques for their characterization. Over the past two decades, significant improvements in mass accuracy and resolution of mass spectrometers have made LC-coupled MS the strategy of choice for accurate identification and quantification of protein PTMs. Nevertheless, in previous work we disclosed the limitations and biases of the most widely adopted sample preparation protocols for histone propionylation, required prior to bottom-up MS analysis. In this work, however, we put forward a new specific and efficient propionylation strategy by means of propionic anhydride. In this method, aspecific overpropionylation at serine (S), threonine (T) and tyrosine (Y) is reversed by adding hydroxylamine (HA). We recommend using this method for future analysis of histones through bottom-up MS.


Assuntos
Anidridos/química , Histonas/análise , Fragmentos de Peptídeos/análise , Propionatos/química , Processamento de Proteína Pós-Traducional , Proteômica/métodos , Sequência de Aminoácidos , Hidróxido de Amônia/química , Anidridos/metabolismo , Arginina/química , Arginina/metabolismo , Artefatos , Código das Histonas , Histonas/química , Histonas/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Hidroxilamina/química , Lisina/química , Lisina/metabolismo , Espectrometria de Massas/normas , Mapeamento de Peptídeos , Propionatos/metabolismo , Solventes/química , Tripsina/química
10.
Anal Chem ; 88(10): 5080-7, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27111505

RESUMO

The complication of IgG2 disulfide connections demands advances in techniques for disulfide bond determination. We have developed a new LC/MS/MS method for improved disulfide analysis. With postcolumn introduction of dithiothreitol (DTT) and ammonium hydroxide, each disulfide-containing peptide eluted out of LC in an acidic mobile phase can be rapidly reduced prior to MS analysis. The reduction can be driven to near completion. The reagents are MS-friendly, and the reaction occurs at no cost of separation (little is added to the postcolumn dead volume of the LC system). Comparing LC/MS data with and without online reduction, a direct correlation can be established between a disulfide peptide and its composing peptides using retention time. With disulfide online removal, high-quality MS/MS fragmentation data can be acquired and allows for definitive determination of the disulfide peptide. This technique is especially valuable in determining the disulfide bond linkage of complicated molecules such as the hinge-containing disulfide peptides produced from IgG2 disulfide isoforms. Due to over/under enzymatic cleavages, multiple hinge-containing disulfide peptides are produced from each isoform. Twenty-two hinge-containing disulfide peptides in total have been confidently identified with this technique. Without the method, successful identification to many of these peptides would have become extremely difficult.


Assuntos
Dissulfetos/química , Imunoglobulina G/química , Fragmentos de Peptídeos/química , Sequência de Aminoácidos , Hidróxido de Amônia/química , Cromatografia Líquida , Ditiotreitol/química , Concentração de Íons de Hidrogênio , Oxirredução , Espectrometria de Massas em Tandem
11.
Anal Chem ; 88(21): 10654-10660, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27709905

RESUMO

Low-molecular weight heparins (LMWH) prepared by partial depolymerization of unfractionated heparin are used globally to treat coagulation disorders on an outpatient basis. Patent protection for several LMWH has expired and abbreviated new drug applications have been approved by the Food and Drug Administration. As a result, reverse engineering of LMWH for biosimilar LMWH has become an active global endeavor. Traditionally, the molecular weight distributions of LMWH preparations have been determined using size exclusion chromatography (SEC) with optical detection. Recent advances in liquid chromatography-mass spectrometry methods have enabled exact mass measurements of heparin saccharides roughly up to degree-of-polymerization 20, leaving the high molecular weight half of the LMWH preparation unassigned. We demonstrate a new LC-MS system capable of determining the exact masses of complete LMWH preparations, up to dp30. This system employed an ion suppressor cell to desalt the chromatographic effluent online prior to the electrospray mass spectrometry source. We expect this new capability will impact the ability to define LMWH mixtures favorably.


Assuntos
Medicamentos Biossimilares/análise , Cromatografia em Gel/métodos , Dalteparina/análise , Enoxaparina/análise , Espectrometria de Massas/métodos , Hidróxido de Amônia/química , Medicamentos Biossimilares/química , Dalteparina/química , Enoxaparina/química , Peso Molecular
12.
J Nanosci Nanotechnol ; 16(6): 6440-4, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27427732

RESUMO

Magnetite nanoparticles were synthesized by adding ammonium hydroxide to an iron chloride solution. An unsaturated oleate surfactant was adsorbed on the magnetic particles, and a nonionic Span 20 surfactant was applied onto the oleate-adsorbed particles to form a bilayer structure. The bilayer nanoparticles formed stable dispersions with isoparaffin as the liquid base. The experimental parameters were determined at each concentration to prepare isoparaffin-based ferrofluids with concentrations of 200, 300, 400 and 500 mg/mL; these were characterized by density, dispersion, magnetization and viscosity. The density of the fluids increased in proportion to the concentration from 0.93 g/mL to 1.22 g/mL, whereas the dispersion stability decreased from 97% to 69% with increasing ferrofluid concentration. The saturation magnetization of the ferrofluids depended upon the content of particles in the fluid, with values of 17.8 to 42.2 mT at the concentrations of 200 to 500 mg/mL, respectively. The fluid viscosity increased exponentially with the concentration increase in the same range, from 5.1 cP to 53.7 cP at 20 degrees C and from 3.2 cP to 25.6 cP at 40 degrees C.


Assuntos
Alcanos/química , Fenômenos Magnéticos , Nanopartículas de Magnetita/química , Hidróxido de Amônia/química , Cloretos/química , Compostos Férricos/química , Temperatura , Viscosidade
13.
J Environ Manage ; 183(Pt 3): 667-672, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27639299

RESUMO

Confined poultry production is an important livestock activity, which generates large amounts of waste associated with the potential for environmental pollution and ammonia (NH3) emissions. The release of ammonia negatively affects poultry production and decreases the N content of wastes that could be used as soil fertilizers. The objective of this study was to evaluate a low-cost, simple and rapid method to simulate ammonia emissions from poultry litter as well as to quantify the reduction in the ammonia emissions to the environment employing two adsorbent zeolites, a commercial Cuban zeolite (CZ) and a ground basalt Brazilian rock containing zeolite (BZ). The experiments were conducted in a laboratory, in 2012-2013. The zeolites were characterized by X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), physical adsorption of N2 (BET) and scanning electron microscopy (SEM). Ammonia released from poultry litter and its simulation from NH4OH solution presented similar capture rates of 7.99 × 10-5 and 7.35 × 10-5 mg/h, respectively. Both zeolites contain SiO2 and Al2O3 as major constituents, with contents of 84% and 12% in the CZ, and 51% and 12% in the BZ, respectively, besides heulandite groups. Their BET surface areas were 89.4 and 11.3 m2 g-1, respectively, and the two zeolites had similar surface morphologies. The zeolites successfully adsorbed the ammonia released, but CZ was more efficient than BZ, since to capture all of the ammonia 5 g of CZ and 20 g of BZ were required. This difference is due to higher values for the superficial area, porosity, CEC and acid site strength of CZ relatively to BZ. The proposed methodology was shown to be an efficient method to simulate and quantify the ammonia released from poultry litter.


Assuntos
Amônia/química , Esterco , Aves Domésticas , Gerenciamento de Resíduos/métodos , Zeolitas/química , Adsorção , Amônia/análise , Hidróxido de Amônia/química , Animais , Brasil , Microscopia Eletrônica de Varredura , Silicatos , Dióxido de Silício/química , Solo , Espectrometria por Raios X , Difração de Raios X
14.
J AOAC Int ; 98(5): 1407-16, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26525260

RESUMO

A collaborative study was conducted to determine total iodine in infant formula and adult/pediatric nutritional formula by inductively coupled plasma-MS (ICP-MS) using AOAC First Action Official Method(SM) 2012.15. The purpose of this study was to evaluate the method's intralaboratory and interlaboratory performance and submit the results to AOAC INTERNATIONAL for adoption as a Final Action Official Method for the determination of total iodine in infant formula and adult/pediatric nutritional formula. Upon providing acceptable results for practice samples National Institute of Standard and Technology (NIST) Standard Reference Material (SRM) 1849a and a low-fat adult nutritional powder, 13 laboratories analyzed seven various infant and adult nutritional products including a blind duplicate of each. Products were chosen with varying levels of iodine and included low-fat, soy-based, and milk-based formulas and NIST SRM 1849a. Random identification numbers were assigned to each of the seven fortified test materials. Digestion of the test samples occurred using a potassium hydroxide solution in an oven or open-vessel microwave system. Iodine was stabilized with ammonium hydroxide and sodium thiosulfate after digestion. The solutions were brought to volume followed by filtration. The filtrates were then analyzed by ICP-MS after dilution. Results for all seven test samples met all the AOAC Standard Method Performance Requirements (SMPR(®) 2012.008) guidelines. The RSDr ranged from 0.77 to 4.78% and the RSDR from 5.42 to 11.5%. The Horwitz ratio (HorRat) for each result was excellent, ranging from 0.35 to 1.31%. The results demonstrate that the method is fit-for-purpose to determine iodine in infant formula and adult/pediatric nutritional formula.


Assuntos
Alimentos Formulados/análise , Iodo/análise , Espectrofotometria Atômica/normas , Adulto , Hidróxido de Amônia/química , Criança , Guias como Assunto , Humanos , Hidrólise , Hidróxidos/química , Lactente , Limite de Detecção , Micro-Ondas , Variações Dependentes do Observador , Compostos de Potássio/química , Pós , Reprodutibilidade dos Testes , Espectrofotometria Atômica/métodos , Tiossulfatos/química
15.
J Microencapsul ; 32(4): 336-48, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26057257

RESUMO

Poly(styrene-co-maleic anhydride) was imidized with ammonium hydroxide and palm oil, resulting in an aqueous dispersion of hybrid nanoparticles with diameters 85-180 nm (dispersed) or 20-50 nm (dried). The reaction conditions were optimized for different precursors by evaluating the relative amount ammonium hydroxide and maximizing the incorporated palm oil up to 70 wt.%. The interactions between palm oil and polymer phase have been studied by TEM, IR, Raman spectroscopy and thermal analysis (TGA, [TM] DSC). From Raman spectra, the amount of imide and reacted oil were quantified. Through concurring effects of imidization and coupling of fatty acids, the imidization needs a slight excess of NH3 relatively to maleic anhydride. The oxidative stability highly depends on oxidative crosslinking of free or non-reacted oil. Comparing the imide content from spectroscopic and thermal analysis suggests that a complex rigid imide phase without strong relaxation behavior has formed in combination with oil.


Assuntos
Maleatos/química , Maleimidas/química , Nanopartículas/química , Óleos de Plantas/química , Poliestirenos/química , Hidróxido de Amônia/química , Nanopartículas/ultraestrutura , Nanotecnologia , Óleo de Palmeira , Tamanho da Partícula , Água/química
16.
Environ Sci Technol ; 47(22): 13047-52, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24151978

RESUMO

Although long-regarded as an excellent soil fumigant for killing plant pests, methyl bromide (MeBr) was phased out in 2005 in the USA, because it can deplete the stratospheric ozone layer. Iodomethane (MeI) has been identified as an effective alternative to MeBr and is used in a number of countries for preplant pest control. However, MeI is highly volatile and potentially carcinogenic to humans if inhaled. In addition, iodide anions, a breakdown product of MeI, can build up in fumigated soils and potentially cause plant toxicity and contaminate groundwater via leaching. In order to overcome the above two obstacles in MeI application, a method is proposed to place reactive bags containing ammonium hydroxide solution (NH4OH) on the soil surface underneath an impermeable plastic film covering the fumigated area. Our research showed that using this approach, over 99% of the applied MeI was quantitatively transferred to iodide. Of all the resulting iodide, only 2.7% remained in the fumigated soil, and 97.3% was contained in the reactive bag that can be easily removed after fumigation.


Assuntos
Poluição Ambiental/prevenção & controle , Fumigação , Hidrocarbonetos Iodados/análise , Iodetos/análise , Poluentes do Solo/análise , Solo/química , Hidróxido de Amônia/química , Meia-Vida , Cinética , Modelos Teóricos , Permeabilidade , Polietileno/química , Temperatura
17.
Environ Technol ; 34(13-16): 1837-48, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24350437

RESUMO

Switchgrass (Panicum virgatum L.) is a perennial C4 grass that is being developed as a bioenergy crop because it has high production yields and suitable agronomic traits. Five switchgrass biomass samples from upland and lowland switchgrass ecotypes harvested at different stages or maturity were used in this study. Switchgrass samples contained 317.0-385.0 g glucans/kg switchgrass dry basis (db) and 579.3-660.2 g total structural carbohydrates/kg switchgrass, db. Carbohydrate contents were greater for the upland ecotype versus lowland ecotype and increased with harvest maturity. Pretreatment of switchgrass with dilute ammonium hydroxide (8% w/w ammonium loading) at 170 degrees C for 20 min was determined to be effective for preparing switchgrass for enzymatic conversion to monosaccharides; glucose recoveries were 66.9-90.5% and xylose recoveries 60.1-84.2% of maximum and decreased with increased maturity at harvest. Subsequently, pretreated switchgrass samples were converted to ethanol by simultaneous saccharification and fermentation using engineered xylose-fermenting Saccharomyces cerevisiae strain YRH400. Ethanol yields were 176.2-202.01/Mg of switchgrass (db) and followed a similar trend as observed for enzymatic sugar yields.


Assuntos
Hidróxido de Amônia/química , Biocombustíveis , Etanol/metabolismo , Panicum/química , Panicum/metabolismo , Biomassa , Biotecnologia , Etanol/análise , Etanol/química , Fermentação , Glucose/análise , Glucose/metabolismo , Xilose/análise , Xilose/metabolismo
18.
ChemSusChem ; 16(13): e202300460, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37130354

RESUMO

Ammonia is an indispensable commodity and a potential carbon free energy carrier. The use of H permeable electrodes to synthesize ammonia from N2 , water and electricity, provides a promising alternative to the fossil fuel based Haber-Bosch process. Here, H permeable Ni electrodes are investigated in the operating temperature range 25-120 °C, and varying the rate of electrochemical atomic hydrogen permeation. At 120 °C, a steady reaction is achieved for over 12 h with 10 times higher cumulative NH3 production and almost 40-fold increase in faradaic efficiency compared to room temperature experiments. NH3 is formed with a cell potential of 1.4 V, corresponding to a minimum electrical energy investment of 6.6 kWh kg-1 NH 3 ${{_{{\rm NH}{_{3}}}}}$ . The stable operation is attributed to a balanced control over the population of N, NHx and H species at the catalyst surface. These findings extend the understanding on the mechanisms involved in the nitrogen reduction reaction and may facilitate the development of an efficient green ammonia synthesis process.


Assuntos
Técnicas Eletroquímicas , Temperança , Hidrogênio/química , Hidróxido de Amônia/química
19.
J Chromatogr A ; 1651: 462272, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34107402

RESUMO

Long-term stability of retention times of a wide range of analytes has been evaluated using eight different stationary phases. These were from a single manufacturer to minimize the differences in silanol activity caused by the manufacturing process. The tested stationary phases included bridge ethylene hybrid, 2-ethylpyridine bridge ethylene hybrid with direct modification of silica particles, bidentate crosslinked charged surface hybrid fluorophenyl, bidentate crosslinked high strength silica C18, and propanediol linked phases including diol (pure propanediol linker), and three phases based on diol further modified with 2-picolylamine, diethylamine, and 1-aminoanthracene group. Retention times were monitored at the first injection, after three, nine, twelve months, and after the column regeneration via washing with pure water. The analyses were carried out using three different mobile phases, including methanol, methanol with 10 mmol/L ammonium formate, and methanol with 0.1% ammonium hydroxide. No overall decreasing or increasing trends were observed after evaluating individual contributing parameters such as analyte, stationary phase, and organic modifier. Our results suggest that the silyl-ether formation is not the only factor contributing to changes in the stationary phase pore surface. Indeed, the adsorption of mobile phase additives is probably another significant factor. That was also confirmed by the regeneration procedure using water, which is likely to reverse the silyl-ether formation to achieve the original retention. However, the retention times returned to the original values for all analytes only on three columns. Retention times on other columns remained shifted within ± 15 % RSD depending on the analyte properties and the nature of organic modifier. The retention time variations observed for each analyte group, i.e., acids, bases, and neutrals, were interpreted for each stationary phase. We concluded that the sterically protected surfaces exhibited significantly smaller changes in the retention times. Although the regeneration procedure effect depended on the column type, the results suggested beneficial effect of water. However, as the adsorption of additives on the column surface is an additional factor leading to retention time variations, the recommendation of using only one additive and/or organic modifier in each column will clearly improve the long-term repeatability of the retention times.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Hidróxido de Amônia/química , Formiatos/química , Metanol/química , Dióxido de Silício/química , Fatores de Tempo , Água/química
20.
J Chromatogr A ; 1652: 462356, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34218126

RESUMO

An efficient and "endotoxin-free" purification of a cyclic dinucleotide (CDN) STING agonist was achieved to produce multigram quantities of pure BMT-390025, an active pharmaceutical ingredient (API), for toxicological studies. A two-step sub/supercritical fluid chromatography (SFC) procedure was developed for the achiral purification and desalting of the polar ionic CDN. A robust SFC process employing methanol-acetonitrile-water with ammonium acetate as co-solvent in CO2 on BEH 2-ethylpyridine was established and scaled up as the first step to achieve a successful purification. The desalting/salt-switching (i.e. removing acetate and acetamide) was conducted using methanol-water with ammonium hydroxide as co-solvent on the same column in the second step to convert the final API to the ammonium salt. Water with additive was essential to eliminating salt precipitation and improving the peak shape and resolution. Due to the extreme hydrophilicity of BMT-390025, 65% of co-solvent was needed to adequately elute the target in both steps. More than 40 g of crude API was purified and desalted producing >20 g of pure BMT-390025 as the ammonium salt which was obtained with a chemical purity of >98.5% and met the endotoxin requirement of <0.1 EU/mg. In addition, >80 g of its penultimate prior to the deprotection of the silyl group was purified at a high throughput of 6.3 g/h (0.42 g/day/g SP).


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Acetamidas/química , Acetatos/química , Acetonitrilas/química , Hidróxido de Amônia/química , Interações Hidrofóbicas e Hidrofílicas , Metanol/química , Solventes/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA